Welcome to mirror list, hosted at ThFree Co, Russian Federation.

cygwin.com/git/newlib-cygwin.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorDanny Smith <dannysmith@users.sourceforge.net>2002-11-26 03:11:06 +0300
committerDanny Smith <dannysmith@users.sourceforge.net>2002-11-26 03:11:06 +0300
commit5362be5926f9b07cb8c61fc10e0ed4485fc8bf86 (patch)
tree6759ce6b8c7e1d2112b9545e7f26a3ea1155b5df /winsup/mingw/mingwex/math
parent4e85569d1146c519fdb51758df7d8ca5c92e4311 (diff)
Add strtold and wcstold to libmingwex.a
* mingwex/strtold.c: New file. * mingwex/wcstold.c: New file. * mingwex/ldtoa.c: New file. * mingwex/math/cephes_emath.h: New file. * mingwex/math/cephes_emath.c: New file. * mingwex/Makefile.in (DISTFILES): Add new files. (MATH_DISTFILES): Ditto. (STDLIB_OBJS): New. Define as strtold.c wcstold.c. (MATH_OBJS): Add cephes_emath.o. (LIB_OBJS): Add $(STDLIB_OBJS). * include/stdlib.h (strtold, wcstold): Add prototypes. * include/wchar.h (wcstold): Add prototype. Add missing ChangeLog entry for 2002-11-09.
Diffstat (limited to 'winsup/mingw/mingwex/math')
-rw-r--r--winsup/mingw/mingwex/math/cephes_emath.c1318
-rw-r--r--winsup/mingw/mingwex/math/cephes_emath.h713
2 files changed, 2031 insertions, 0 deletions
diff --git a/winsup/mingw/mingwex/math/cephes_emath.c b/winsup/mingw/mingwex/math/cephes_emath.c
new file mode 100644
index 000000000..ab798a2d2
--- /dev/null
+++ b/winsup/mingw/mingwex/math/cephes_emath.c
@@ -0,0 +1,1318 @@
+/* This file is extracted from S L Moshier's ioldoubl.c,
+ * modified for use in MinGW
+ *
+ * Extended precision arithmetic functions for long double I/O.
+ * This program has been placed in the public domain.
+ */
+
+
+
+/*
+ * Revision history:
+ *
+ * 5 Jan 84 PDP-11 assembly language version
+ * 6 Dec 86 C language version
+ * 30 Aug 88 100 digit version, improved rounding
+ * 15 May 92 80-bit long double support
+ *
+ * Author: S. L. Moshier.
+ *
+ * 6 Oct 02 Modified for MinGW by inlining utility routines,
+ * removing global variables and splitting out strtold
+ * from _IO_ldtoa and _IO_ldtostr.
+ *
+ * Danny Smith <dannysmith@users.sourceforge.net>
+ *
+ */
+
+
+#include "cephes_emath.h"
+
+/*
+ * The constants are for 64 bit precision.
+ */
+
+
+/* Move in external format number,
+ * converting it to internal format.
+ */
+void __emovi(const short unsigned int * __restrict__ a,
+ short unsigned int * __restrict__ b)
+{
+register const unsigned short *p;
+register unsigned short *q;
+int i;
+
+q = b;
+p = a + (NE-1); /* point to last word of external number */
+/* get the sign bit */
+if( *p & 0x8000 )
+ *q++ = 0xffff;
+else
+ *q++ = 0;
+/* get the exponent */
+*q = *p--;
+*q++ &= 0x7fff; /* delete the sign bit */
+#ifdef INFINITY
+if( (*(q-1) & 0x7fff) == 0x7fff )
+ {
+#ifdef NANS
+ if( __eisnan(a) )
+ {
+ *q++ = 0;
+ for( i=3; i<NI; i++ )
+ *q++ = *p--;
+ return;
+ }
+#endif
+ for( i=2; i<NI; i++ )
+ *q++ = 0;
+ return;
+ }
+#endif
+/* clear high guard word */
+*q++ = 0;
+/* move in the significand */
+for( i=0; i<NE-1; i++ )
+ *q++ = *p--;
+/* clear low guard word */
+*q = 0;
+}
+
+
+/*
+; Add significands
+; x + y replaces y
+*/
+
+void __eaddm(const short unsigned int * __restrict__ x,
+ short unsigned int * __restrict__ y)
+{
+register unsigned long a;
+int i;
+unsigned int carry;
+
+x += NI-1;
+y += NI-1;
+carry = 0;
+for( i=M; i<NI; i++ )
+ {
+ a = (unsigned long )(*x) + (unsigned long )(*y) + carry;
+ if( a & 0x10000 )
+ carry = 1;
+ else
+ carry = 0;
+ *y = (unsigned short )a;
+ --x;
+ --y;
+ }
+}
+
+/*
+; Subtract significands
+; y - x replaces y
+*/
+
+void __esubm(const short unsigned int * __restrict__ x,
+ short unsigned int * __restrict__ y)
+{
+unsigned long a;
+int i;
+unsigned int carry;
+
+x += NI-1;
+y += NI-1;
+carry = 0;
+for( i=M; i<NI; i++ )
+ {
+ a = (unsigned long )(*y) - (unsigned long )(*x) - carry;
+ if( a & 0x10000 )
+ carry = 1;
+ else
+ carry = 0;
+ *y = (unsigned short )a;
+ --x;
+ --y;
+ }
+}
+
+
+/* Multiply significand of e-type number b
+by 16-bit quantity a, e-type result to c. */
+
+static void __m16m(short unsigned int a,
+ short unsigned int * __restrict__ b,
+ short unsigned int * __restrict__ c)
+{
+register unsigned short *pp;
+register unsigned long carry;
+unsigned short *ps;
+unsigned short p[NI];
+unsigned long aa, m;
+int i;
+
+aa = a;
+pp = &p[NI-2];
+*pp++ = 0;
+*pp = 0;
+ps = &b[NI-1];
+
+for( i=M+1; i<NI; i++ )
+ {
+ if( *ps == 0 )
+ {
+ --ps;
+ --pp;
+ *(pp-1) = 0;
+ }
+ else
+ {
+ m = (unsigned long) aa * *ps--;
+ carry = (m & 0xffff) + *pp;
+ *pp-- = (unsigned short )carry;
+ carry = (carry >> 16) + (m >> 16) + *pp;
+ *pp = (unsigned short )carry;
+ *(pp-1) = carry >> 16;
+ }
+ }
+for( i=M; i<NI; i++ )
+ c[i] = p[i];
+}
+
+
+/* Divide significands. Neither the numerator nor the denominator
+is permitted to have its high guard word nonzero. */
+
+
+int __edivm(short unsigned int * __restrict__ den,
+ short unsigned int * __restrict__ num)
+{
+int i;
+register unsigned short *p;
+unsigned long tnum;
+unsigned short j, tdenm, tquot;
+unsigned short tprod[NI+1];
+unsigned short equot[NI];
+
+p = &equot[0];
+*p++ = num[0];
+*p++ = num[1];
+
+for( i=M; i<NI; i++ )
+ {
+ *p++ = 0;
+ }
+__eshdn1( num );
+tdenm = den[M+1];
+for( i=M; i<NI; i++ )
+ {
+ /* Find trial quotient digit (the radix is 65536). */
+ tnum = (((unsigned long) num[M]) << 16) + num[M+1];
+
+ /* Do not execute the divide instruction if it will overflow. */
+ if( (tdenm * 0xffffUL) < tnum )
+ tquot = 0xffff;
+ else
+ tquot = tnum / tdenm;
+
+ /* Prove that the divide worked. */
+/*
+ tcheck = (unsigned long )tquot * tdenm;
+ if( tnum - tcheck > tdenm )
+ tquot = 0xffff;
+*/
+ /* Multiply denominator by trial quotient digit. */
+ __m16m( tquot, den, tprod );
+ /* The quotient digit may have been overestimated. */
+ if( __ecmpm( tprod, num ) > 0 )
+ {
+ tquot -= 1;
+ __esubm( den, tprod );
+ if( __ecmpm( tprod, num ) > 0 )
+ {
+ tquot -= 1;
+ __esubm( den, tprod );
+ }
+ }
+ __esubm( tprod, num );
+ equot[i] = tquot;
+ __eshup6(num);
+ }
+/* test for nonzero remainder after roundoff bit */
+p = &num[M];
+j = 0;
+for( i=M; i<NI; i++ )
+ {
+ j |= *p++;
+ }
+if( j )
+ j = 1;
+
+for( i=0; i<NI; i++ )
+ num[i] = equot[i];
+
+return( (int )j );
+}
+
+
+
+/* Multiply significands */
+int __emulm(const short unsigned int * __restrict__ a,
+ short unsigned int * __restrict__ b)
+{
+const unsigned short *p;
+unsigned short *q;
+unsigned short pprod[NI];
+unsigned short equot[NI];
+unsigned short j;
+int i;
+
+equot[0] = b[0];
+equot[1] = b[1];
+for( i=M; i<NI; i++ )
+ equot[i] = 0;
+
+j = 0;
+p = &a[NI-1];
+q = &equot[NI-1];
+for( i=M+1; i<NI; i++ )
+ {
+ if( *p == 0 )
+ {
+ --p;
+ }
+ else
+ {
+ __m16m( *p--, b, pprod );
+ __eaddm(pprod, equot);
+ }
+ j |= *q;
+ __eshdn6(equot);
+ }
+
+for( i=0; i<NI; i++ )
+ b[i] = equot[i];
+
+/* return flag for lost nonzero bits */
+return( (int)j );
+}
+
+
+
+/*
+ * Normalize and round off.
+ *
+ * The internal format number to be rounded is "s".
+ * Input "lost" indicates whether the number is exact.
+ * This is the so-called sticky bit.
+ *
+ * Input "subflg" indicates whether the number was obtained
+ * by a subtraction operation. In that case if lost is nonzero
+ * then the number is slightly smaller than indicated.
+ *
+ * Input "exp" is the biased exponent, which may be negative.
+ * the exponent field of "s" is ignored but is replaced by
+ * "exp" as adjusted by normalization and rounding.
+ *
+ * Input "rcntrl" is the rounding control.
+ *
+ * Input "rnprc" is precison control (64 or NBITS).
+ */
+
+void __emdnorm(short unsigned int *s, int lost, int subflg, long int exp, int rcntrl, int rndprc)
+{
+int i, j;
+unsigned short r;
+int rw = NI-1; /* low guard word */
+int re = NI-2;
+const unsigned short rmsk = 0xffff;
+const unsigned short rmbit = 0x8000;
+#if NE == 6
+unsigned short rbit[NI] = {0,0,0,0,0,0,0,1,0};
+#else
+unsigned short rbit[NI] = {0,0,0,0,0,0,0,0,0,0,0,1,0};
+#endif
+
+/* Normalize */
+j = __enormlz( s );
+
+/* a blank significand could mean either zero or infinity. */
+#ifndef INFINITY
+if( j > NBITS )
+ {
+ __ecleazs( s );
+ return;
+ }
+#endif
+exp -= j;
+#ifndef INFINITY
+if( exp >= 32767L )
+ goto overf;
+#else
+if( (j > NBITS) && (exp < 32767L) )
+ {
+ __ecleazs( s );
+ return;
+ }
+#endif
+if( exp < 0L )
+ {
+ if( exp > (long )(-NBITS-1) )
+ {
+ j = (int )exp;
+ i = __eshift( s, j );
+ if( i )
+ lost = 1;
+ }
+ else
+ {
+ __ecleazs( s );
+ return;
+ }
+ }
+/* Round off, unless told not to by rcntrl. */
+if( rcntrl == 0 )
+ goto mdfin;
+if (rndprc == 64)
+ {
+ rw = 7;
+ re = 6;
+ rbit[NI-2] = 0;
+ rbit[6] = 1;
+ }
+
+/* Shift down 1 temporarily if the data structure has an implied
+ * most significant bit and the number is denormal.
+ * For rndprc = 64 or NBITS, there is no implied bit.
+ * But Intel long double denormals lose one bit of significance even so.
+ */
+#if IBMPC
+if( (exp <= 0) && (rndprc != NBITS) )
+#else
+if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) )
+#endif
+ {
+ lost |= s[NI-1] & 1;
+ __eshdn1(s);
+ }
+/* Clear out all bits below the rounding bit,
+ * remembering in r if any were nonzero.
+ */
+r = s[rw] & rmsk;
+if( rndprc < NBITS )
+ {
+ i = rw + 1;
+ while( i < NI )
+ {
+ if( s[i] )
+ r |= 1;
+ s[i] = 0;
+ ++i;
+ }
+ }
+s[rw] &= ~rmsk;
+if( (r & rmbit) != 0 )
+ {
+ if( r == rmbit )
+ {
+ if( lost == 0 )
+ { /* round to even */
+ if( (s[re] & 1) == 0 )
+ goto mddone;
+ }
+ else
+ {
+ if( subflg != 0 )
+ goto mddone;
+ }
+ }
+ __eaddm( rbit, s );
+ }
+mddone:
+#if IBMPC
+if( (exp <= 0) && (rndprc != NBITS) )
+#else
+if( (exp <= 0) && (rndprc != 64) && (rndprc != NBITS) )
+#endif
+ {
+ __eshup1(s);
+ }
+if( s[2] != 0 )
+ { /* overflow on roundoff */
+ __eshdn1(s);
+ exp += 1;
+ }
+mdfin:
+s[NI-1] = 0;
+if( exp >= 32767L )
+ {
+#ifndef INFINITY
+overf:
+#endif
+#ifdef INFINITY
+ s[1] = 32767;
+ for( i=2; i<NI-1; i++ )
+ s[i] = 0;
+#else
+ s[1] = 32766;
+ s[2] = 0;
+ for( i=M+1; i<NI-1; i++ )
+ s[i] = 0xffff;
+ s[NI-1] = 0;
+ if( (rndprc < 64) || (rndprc == 113) )
+ s[rw] &= ~rmsk;
+#endif
+ return;
+ }
+if( exp < 0 )
+ s[1] = 0;
+else
+ s[1] = (unsigned short )exp;
+}
+
+
+/*
+; Multiply.
+;
+; unsigned short a[NE], b[NE], c[NE];
+; emul( a, b, c ); c = b * a
+*/
+void __emul(const short unsigned int *a,
+ const short unsigned int *b,
+ short unsigned int *c)
+{
+unsigned short ai[NI], bi[NI];
+int i, j;
+long lt, lta, ltb;
+
+#ifdef NANS
+/* NaN times anything is the same NaN. */
+if( __eisnan(a) )
+ {
+ __emov(a,c);
+ return;
+ }
+if( __eisnan(b) )
+ {
+ __emov(b,c);
+ return;
+ }
+/* Zero times infinity is a NaN. */
+if( (__eisinf(a) && __eiiszero(b))
+ || (__eisinf(b) && __eiiszero(a)) )
+ {
+ mtherr( "emul", DOMAIN );
+ __enan_NBITS( c );
+ return;
+ }
+#endif
+/* Infinity times anything else is infinity. */
+#ifdef INFINITY
+if( __eisinf(a) || __eisinf(b) )
+ {
+ if( __eisneg(a) ^ __eisneg(b) )
+ *(c+(NE-1)) = 0x8000;
+ else
+ *(c+(NE-1)) = 0;
+ __einfin(c);
+ return;
+ }
+#endif
+__emovi( a, ai );
+__emovi( b, bi );
+lta = ai[E];
+ltb = bi[E];
+if( ai[E] == 0 )
+ {
+ for( i=1; i<NI-1; i++ )
+ {
+ if( ai[i] != 0 )
+ {
+ lta -= __enormlz( ai );
+ goto mnzer1;
+ }
+ }
+ __eclear(c);
+ return;
+ }
+mnzer1:
+
+if( bi[E] == 0 )
+ {
+ for( i=1; i<NI-1; i++ )
+ {
+ if( bi[i] != 0 )
+ {
+ ltb -= __enormlz( bi );
+ goto mnzer2;
+ }
+ }
+ __eclear(c);
+ return;
+ }
+mnzer2:
+
+/* Multiply significands */
+j = __emulm( ai, bi );
+/* calculate exponent */
+lt = lta + ltb - (EXONE - 1);
+__emdnorm( bi, j, 0, lt, 64, NBITS );
+/* calculate sign of product */
+if( ai[0] == bi[0] )
+ bi[0] = 0;
+else
+ bi[0] = 0xffff;
+__emovo( bi, c );
+}
+
+
+/* move out internal format to ieee long double */
+void __toe64(short unsigned int *a, short unsigned int *b)
+{
+register unsigned short *p, *q;
+unsigned short i;
+
+#ifdef NANS
+if( __eiisnan(a) )
+ {
+ __enan_64( b );
+ return;
+ }
+#endif
+#ifdef IBMPC
+/* Shift Intel denormal significand down 1. */
+if( a[E] == 0 )
+ __eshdn1(a);
+#endif
+p = a;
+#ifdef MIEEE
+q = b;
+#else
+q = b + 4; /* point to output exponent */
+#if 1
+/* NOTE: if data type is 96 bits wide, clear the last word here. */
+*(q+1)= 0;
+#endif
+#endif
+
+/* combine sign and exponent */
+i = *p++;
+#ifdef MIEEE
+if( i )
+ *q++ = *p++ | 0x8000;
+else
+ *q++ = *p++;
+*q++ = 0;
+#else
+if( i )
+ *q-- = *p++ | 0x8000;
+else
+ *q-- = *p++;
+#endif
+/* skip over guard word */
+++p;
+/* move the significand */
+#ifdef MIEEE
+for( i=0; i<4; i++ )
+ *q++ = *p++;
+#else
+#ifdef INFINITY
+if (__eiisinf (a))
+ {
+ /* Intel long double infinity. */
+ *q-- = 0x8000;
+ *q-- = 0;
+ *q-- = 0;
+ *q = 0;
+ return;
+ }
+#endif
+for( i=0; i<4; i++ )
+ *q-- = *p++;
+#endif
+}
+
+
+/* Compare two e type numbers.
+ *
+ * unsigned short a[NE], b[NE];
+ * ecmp( a, b );
+ *
+ * returns +1 if a > b
+ * 0 if a == b
+ * -1 if a < b
+ * -2 if either a or b is a NaN.
+ */
+int __ecmp(const short unsigned int * __restrict__ a,
+ const short unsigned int * __restrict__ b)
+{
+unsigned short ai[NI], bi[NI];
+register unsigned short *p, *q;
+register int i;
+int msign;
+
+#ifdef NANS
+if (__eisnan (a) || __eisnan (b))
+ return( -2 );
+#endif
+__emovi( a, ai );
+p = ai;
+__emovi( b, bi );
+q = bi;
+
+if( *p != *q )
+ { /* the signs are different */
+/* -0 equals + 0 */
+ for( i=1; i<NI-1; i++ )
+ {
+ if( ai[i] != 0 )
+ goto nzro;
+ if( bi[i] != 0 )
+ goto nzro;
+ }
+ return(0);
+nzro:
+ if( *p == 0 )
+ return( 1 );
+ else
+ return( -1 );
+ }
+/* both are the same sign */
+if( *p == 0 )
+ msign = 1;
+else
+ msign = -1;
+i = NI-1;
+do
+ {
+ if( *p++ != *q++ )
+ {
+ goto diff;
+ }
+ }
+while( --i > 0 );
+
+return(0); /* equality */
+
+
+
+diff:
+
+if( *(--p) > *(--q) )
+ return( msign ); /* p is bigger */
+else
+ return( -msign ); /* p is littler */
+}
+
+/*
+; Shift significand
+;
+; Shifts significand area up or down by the number of bits
+; given by the variable sc.
+*/
+int __eshift(short unsigned int *x, int sc)
+{
+unsigned short lost;
+unsigned short *p;
+
+if( sc == 0 )
+ return( 0 );
+
+lost = 0;
+p = x + NI-1;
+
+if( sc < 0 )
+ {
+ sc = -sc;
+ while( sc >= 16 )
+ {
+ lost |= *p; /* remember lost bits */
+ __eshdn6(x);
+ sc -= 16;
+ }
+
+ while( sc >= 8 )
+ {
+ lost |= *p & 0xff;
+ __eshdn8(x);
+ sc -= 8;
+ }
+
+ while( sc > 0 )
+ {
+ lost |= *p & 1;
+ __eshdn1(x);
+ sc -= 1;
+ }
+ }
+else
+ {
+ while( sc >= 16 )
+ {
+ __eshup6(x);
+ sc -= 16;
+ }
+
+ while( sc >= 8 )
+ {
+ __eshup8(x);
+ sc -= 8;
+ }
+
+ while( sc > 0 )
+ {
+ __eshup1(x);
+ sc -= 1;
+ }
+ }
+if( lost )
+ lost = 1;
+return( (int )lost );
+}
+
+
+
+/*
+; normalize
+;
+; Shift normalizes the significand area pointed to by argument
+; shift count (up = positive) is returned.
+*/
+int __enormlz(short unsigned int *x)
+{
+register unsigned short *p;
+int sc;
+
+sc = 0;
+p = &x[M];
+if( *p != 0 )
+ goto normdn;
+++p;
+if( *p & 0x8000 )
+ return( 0 ); /* already normalized */
+while( *p == 0 )
+ {
+ __eshup6(x);
+ sc += 16;
+/* With guard word, there are NBITS+16 bits available.
+ * return true if all are zero.
+ */
+ if( sc > NBITS )
+ return( sc );
+ }
+/* see if high byte is zero */
+while( (*p & 0xff00) == 0 )
+ {
+ __eshup8(x);
+ sc += 8;
+ }
+/* now shift 1 bit at a time */
+while( (*p & 0x8000) == 0)
+ {
+ __eshup1(x);
+ sc += 1;
+ if( sc > (NBITS+16) )
+ {
+ mtherr( "enormlz", UNDERFLOW );
+ return( sc );
+ }
+ }
+return( sc );
+
+/* Normalize by shifting down out of the high guard word
+ of the significand */
+normdn:
+
+if( *p & 0xff00 )
+ {
+ __eshdn8(x);
+ sc -= 8;
+ }
+while( *p != 0 )
+ {
+ __eshdn1(x);
+ sc -= 1;
+
+ if( sc < -NBITS )
+ {
+ mtherr( "enormlz", OVERFLOW );
+ return( sc );
+ }
+ }
+return( sc );
+}
+
+
+/* Move internal format number out,
+ * converting it to external format.
+ */
+void __emovo(const short unsigned int * __restrict__ a,
+ short unsigned int * __restrict__ b)
+{
+register const unsigned short *p;
+register unsigned short *q;
+unsigned short i;
+
+p = a;
+q = b + (NE-1); /* point to output exponent */
+/* combine sign and exponent */
+i = *p++;
+if( i )
+ *q-- = *p++ | 0x8000;
+else
+ *q-- = *p++;
+#ifdef INFINITY
+if( *(p-1) == 0x7fff )
+ {
+#ifdef NANS
+ if( __eiisnan(a) )
+ {
+ __enan_NBITS( b );
+ return;
+ }
+#endif
+ __einfin(b);
+ return;
+ }
+#endif
+/* skip over guard word */
+++p;
+/* move the significand */
+for( i=0; i<NE-1; i++ )
+ *q-- = *p++;
+}
+
+
+#if USE_LDTOA
+
+
+void __eiremain(short unsigned int *den, short unsigned int *num,
+ short unsigned int *equot )
+{
+long ld, ln;
+unsigned short j;
+
+ld = den[E];
+ld -= __enormlz( den );
+ln = num[E];
+ln -= __enormlz( num );
+__ecleaz( equot );
+while( ln >= ld )
+ {
+ if( __ecmpm(den,num) <= 0 )
+ {
+ __esubm(den, num);
+ j = 1;
+ }
+ else
+ {
+ j = 0;
+ }
+ __eshup1(equot);
+ equot[NI-1] |= j;
+ __eshup1(num);
+ ln -= 1;
+ }
+__emdnorm( num, 0, 0, ln, 0, NBITS );
+}
+
+
+void __eadd1(const short unsigned int * __restrict__ a,
+ const short unsigned int * __restrict__ b,
+ short unsigned int * __restrict__ c,
+ int subflg)
+{
+unsigned short ai[NI], bi[NI], ci[NI];
+int i, lost, j, k;
+long lt, lta, ltb;
+
+#ifdef INFINITY
+if( __eisinf(a) )
+ {
+ __emov(a,c);
+ if( subflg )
+ __eneg(c);
+ return;
+ }
+if( __eisinf(b) )
+ {
+ __emov(b,c);
+ return;
+ }
+#endif
+__emovi( a, ai );
+__emovi( b, bi );
+if( sub )
+ ai[0] = ~ai[0];
+
+/* compare exponents */
+lta = ai[E];
+ltb = bi[E];
+lt = lta - ltb;
+if( lt > 0L )
+ { /* put the larger number in bi */
+ __emovz( bi, ci );
+ __emovz( ai, bi );
+ __emovz( ci, ai );
+ ltb = bi[E];
+ lt = -lt;
+ }
+lost = 0;
+if( lt != 0L )
+ {
+ if( lt < (long )(-NBITS-1) )
+ goto done; /* answer same as larger addend */
+ k = (int )lt;
+ lost = __eshift( ai, k ); /* shift the smaller number down */
+ }
+else
+ {
+/* exponents were the same, so must compare significands */
+ i = __ecmpm( ai, bi );
+ if( i == 0 )
+ { /* the numbers are identical in magnitude */
+ /* if different signs, result is zero */
+ if( ai[0] != bi[0] )
+ {
+ __eclear(c);
+ return;
+ }
+ /* if same sign, result is double */
+ /* double denomalized tiny number */
+ if( (bi[E] == 0) && ((bi[3] & 0x8000) == 0) )
+ {
+ __eshup1( bi );
+ goto done;
+ }
+ /* add 1 to exponent unless both are zero! */
+ for( j=1; j<NI-1; j++ )
+ {
+ if( bi[j] != 0 )
+ {
+/* This could overflow, but let emovo take care of that. */
+ ltb += 1;
+ break;
+ }
+ }
+ bi[E] = (unsigned short )ltb;
+ goto done;
+ }
+ if( i > 0 )
+ { /* put the larger number in bi */
+ __emovz( bi, ci );
+ __emovz( ai, bi );
+ __emovz( ci, ai );
+ }
+ }
+if( ai[0] == bi[0] )
+ {
+ __eaddm( ai, bi );
+ subflg = 0;
+ }
+else
+ {
+ __esubm( ai, bi );
+ subflg = 1;
+ }
+__emdnorm( bi, lost, subflg, ltb, 64, NBITS);
+
+done:
+__emovo( bi, c );
+}
+
+
+/* y = largest integer not greater than x
+ * (truncated toward minus infinity)
+ *
+ * unsigned short x[NE], y[NE]
+ *
+ * efloor( x, y );
+ */
+
+
+void __efloor(short unsigned int *x, short unsigned int *y)
+{
+register unsigned short *p;
+int e, expon, i;
+unsigned short f[NE];
+const unsigned short bmask[] = {
+0xffff,
+0xfffe,
+0xfffc,
+0xfff8,
+0xfff0,
+0xffe0,
+0xffc0,
+0xff80,
+0xff00,
+0xfe00,
+0xfc00,
+0xf800,
+0xf000,
+0xe000,
+0xc000,
+0x8000,
+0x0000,
+};
+
+__emov( x, f ); /* leave in external format */
+expon = (int )f[NE-1];
+e = (expon & 0x7fff) - (EXONE - 1);
+if( e <= 0 )
+ {
+ __eclear(y);
+ goto isitneg;
+ }
+/* number of bits to clear out */
+e = NBITS - e;
+__emov( f, y );
+if( e <= 0 )
+ return;
+
+p = &y[0];
+while( e >= 16 )
+ {
+ *p++ = 0;
+ e -= 16;
+ }
+/* clear the remaining bits */
+*p &= bmask[e];
+/* truncate negatives toward minus infinity */
+isitneg:
+
+if( (unsigned short )expon & (unsigned short )0x8000 )
+ {
+ for( i=0; i<NE-1; i++ )
+ {
+ if( f[i] != y[i] )
+ {
+ __esub( __eone, y, y );
+ break;
+ }
+ }
+ }
+}
+
+/*
+; Subtract external format numbers.
+;
+; unsigned short a[NE], b[NE], c[NE];
+; esub( a, b, c ); c = b - a
+*/
+
+
+void __esub(const short unsigned int * a,
+ const short unsigned int * b,
+ short unsigned int * c)
+{
+
+#ifdef NANS
+if( __eisnan(a) )
+ {
+ __emov (a, c);
+ return;
+ }
+if( __eisnan(b) )
+ {
+ __emov(b,c);
+ return;
+ }
+/* Infinity minus infinity is a NaN.
+ * Test for subtracting infinities of the same sign.
+ */
+if( __eisinf(a) && __eisinf(b) && ((__eisneg (a) ^ __eisneg (b)) == 0))
+ {
+ mtherr( "esub", DOMAIN );
+ __enan_NBITS( c );
+ return;
+ }
+#endif
+__eadd1( a, b, c, 1 );
+}
+
+
+
+/*
+; Divide.
+;
+; unsigned short a[NI], b[NI], c[NI];
+; ediv( a, b, c ); c = b / a
+*/
+
+void __ediv(const short unsigned int *a,
+ const short unsigned int *b,
+ short unsigned int *c)
+{
+unsigned short ai[NI], bi[NI];
+int i;
+long lt, lta, ltb;
+
+#ifdef NANS
+/* Return any NaN input. */
+if( __eisnan(a) )
+ {
+ __emov(a,c);
+ return;
+ }
+if( __eisnan(b) )
+ {
+ __emov(b,c);
+ return;
+ }
+/* Zero over zero, or infinity over infinity, is a NaN. */
+if( (__eiszero(a) && __eiszero(b))
+ || (__eisinf (a) && __eisinf (b)) )
+ {
+ mtherr( "ediv", DOMAIN );
+ __enan_NBITS( c );
+ return;
+ }
+#endif
+/* Infinity over anything else is infinity. */
+#ifdef INFINITY
+if( __eisinf(b) )
+ {
+ if( __eisneg(a) ^ __eisneg(b) )
+ *(c+(NE-1)) = 0x8000;
+ else
+ *(c+(NE-1)) = 0;
+ __einfin(c);
+ return;
+ }
+if( __eisinf(a) )
+ {
+ __eclear(c);
+ return;
+ }
+#endif
+__emovi( a, ai );
+__emovi( b, bi );
+lta = ai[E];
+ltb = bi[E];
+if( bi[E] == 0 )
+ { /* See if numerator is zero. */
+ for( i=1; i<NI-1; i++ )
+ {
+ if( bi[i] != 0 )
+ {
+ ltb -= __enormlz( bi );
+ goto dnzro1;
+ }
+ }
+ __eclear(c);
+ return;
+ }
+dnzro1:
+
+if( ai[E] == 0 )
+ { /* possible divide by zero */
+ for( i=1; i<NI-1; i++ )
+ {
+ if( ai[i] != 0 )
+ {
+ lta -= __enormlz( ai );
+ goto dnzro2;
+ }
+ }
+ if( ai[0] == bi[0] )
+ *(c+(NE-1)) = 0;
+ else
+ *(c+(NE-1)) = 0x8000;
+ __einfin(c);
+ mtherr( "ediv", SING );
+ return;
+ }
+dnzro2:
+
+i = __edivm( ai, bi );
+/* calculate exponent */
+lt = ltb - lta + EXONE;
+__emdnorm( bi, i, 0, lt, 64, NBITS );
+/* set the sign */
+if( ai[0] == bi[0] )
+ bi[0] = 0;
+else
+ bi[0] = 0Xffff;
+__emovo( bi, c );
+}
+
+void __e64toe(short unsigned int *pe, short unsigned int *y)
+{
+unsigned short yy[NI];
+unsigned short *p, *q, *e;
+int i;
+
+e = pe;
+p = yy;
+for( i=0; i<NE-5; i++ )
+ *p++ = 0;
+#ifdef IBMPC
+for( i=0; i<5; i++ )
+ *p++ = *e++;
+#endif
+#ifdef DEC
+for( i=0; i<5; i++ )
+ *p++ = *e++;
+#endif
+#ifdef MIEEE
+p = &yy[0] + (NE-1);
+*p-- = *e++;
+++e;
+for( i=0; i<4; i++ )
+ *p-- = *e++;
+#endif
+
+#ifdef IBMPC
+/* For Intel long double, shift denormal significand up 1
+ -- but only if the top significand bit is zero. */
+if((yy[NE-1] & 0x7fff) == 0 && (yy[NE-2] & 0x8000) == 0)
+ {
+ unsigned short temp[NI+1];
+ __emovi(yy, temp);
+ __eshup1(temp);
+ __emovo(temp,y);
+ return;
+ }
+#endif
+#ifdef INFINITY
+/* Point to the exponent field. */
+p = &yy[NE-1];
+if( *p == 0x7fff )
+ {
+#ifdef NANS
+#ifdef IBMPC
+ for( i=0; i<4; i++ )
+ {
+ if((i != 3 && pe[i] != 0)
+ /* Check for Intel long double infinity pattern. */
+ || (i == 3 && pe[i] != 0x8000))
+ {
+ __enan_NBITS( y );
+ return;
+ }
+ }
+#else
+ for( i=1; i<=4; i++ )
+ {
+ if( pe[i] != 0 )
+ {
+ __enan_NBITS( y );
+ return;
+ }
+ }
+#endif
+#endif /* NANS */
+ __eclear( y );
+ __einfin( y );
+ if( *p & 0x8000 )
+ __eneg(y);
+ return;
+ }
+#endif
+p = yy;
+q = y;
+for( i=0; i<NE; i++ )
+ *q++ = *p++;
+}
+
+#endif /* USE_LDTOA */
diff --git a/winsup/mingw/mingwex/math/cephes_emath.h b/winsup/mingw/mingwex/math/cephes_emath.h
new file mode 100644
index 000000000..133b0e03f
--- /dev/null
+++ b/winsup/mingw/mingwex/math/cephes_emath.h
@@ -0,0 +1,713 @@
+#ifndef _CEPHES_EMATH_H
+#define _CEPHES_EMATH_H
+
+/* This file is extracted from S L Moshier's ioldoubl.c,
+ * modified for use in MinGW
+ *
+ * Extended precision arithmetic functions for long double I/O.
+ * This program has been placed in the public domain.
+ */
+
+
+
+/*
+ * Revision history:
+ *
+ * 5 Jan 84 PDP-11 assembly language version
+ * 6 Dec 86 C language version
+ * 30 Aug 88 100 digit version, improved rounding
+ * 15 May 92 80-bit long double support
+ *
+ * Author: S. L. Moshier.
+ *
+ * 6 Oct 02 Modified for MinGW by inlining utility routines,
+ * removing global variables, and splitting out strtold
+ * from _IO_ldtoa and _IO_ldtostr.
+ *
+ * Danny Smith <dannysmith@users.sourceforge.net>
+ *
+ */
+
+
+
+/* ieee.c
+ *
+ * Extended precision IEEE binary floating point arithmetic routines
+ *
+ * Numbers are stored in C language as arrays of 16-bit unsigned
+ * short integers. The arguments of the routines are pointers to
+ * the arrays.
+ *
+ *
+ * External e type data structure, simulates Intel 8087 chip
+ * temporary real format but possibly with a larger significand:
+ *
+ * NE-1 significand words (least significant word first,
+ * most significant bit is normally set)
+ * exponent (value = EXONE for 1.0,
+ * top bit is the sign)
+ *
+ *
+ * Internal data structure of a number (a "word" is 16 bits):
+ *
+ * ei[0] sign word (0 for positive, 0xffff for negative)
+ * ei[1] biased __exponent (value = EXONE for the number 1.0)
+ * ei[2] high guard word (always zero after normalization)
+ * ei[3]
+ * to ei[NI-2] significand (NI-4 significand words,
+ * most significant word first,
+ * most significant bit is set)
+ * ei[NI-1] low guard word (0x8000 bit is rounding place)
+ *
+ *
+ *
+ * Routines for external format numbers
+ *
+ * __asctoe64( string, &d ) ASCII string to long double
+ * __asctoeg( string, e, prec ) ASCII string to specified precision
+ * __e64toe( &d, e ) IEEE long double precision to e type
+ * __eadd( a, b, c ) c = b + a
+ * __eclear(e) e = 0
+ * __ecmp (a, b) Returns 1 if a > b, 0 if a == b,
+ * -1 if a < b, -2 if either a or b is a NaN.
+ * __ediv( a, b, c ) c = b / a
+ * __efloor( a, b ) truncate to integer, toward -infinity
+ * __efrexp( a, exp, s ) extract exponent and significand
+ * __eifrac( e, &l, frac ) e to long integer and e type fraction
+ * __euifrac( e, &l, frac ) e to unsigned long integer and e type fraction
+ * __einfin( e ) set e to infinity, leaving its sign alone
+ * __eldexp( a, n, b ) multiply by 2**n
+ * __emov( a, b ) b = a
+ * __emul( a, b, c ) c = b * a
+ * __eneg(e) e = -e
+ * __eround( a, b ) b = nearest integer value to a
+ * __esub( a, b, c ) c = b - a
+ * __e24toasc( &f, str, n ) single to ASCII string, n digits after decimal
+ * __e53toasc( &d, str, n ) double to ASCII string, n digits after decimal
+ * __e64toasc( &d, str, n ) long double to ASCII string
+ * __etoasc( e, str, n ) e to ASCII string, n digits after decimal
+ * __etoe24( e, &f ) convert e type to IEEE single precision
+ * __etoe53( e, &d ) convert e type to IEEE double precision
+ * __etoe64( e, &d ) convert e type to IEEE long double precision
+ * __eisneg( e ) 1 if sign bit of e != 0, else 0
+ * __eisinf( e ) 1 if e has maximum exponent (non-IEEE)
+ * or is infinite (IEEE)
+ * __eisnan( e ) 1 if e is a NaN
+ * __esqrt( a, b ) b = square root of a
+ *
+ *
+ * Routines for internal format numbers
+ *
+ * __eaddm( ai, bi ) add significands, bi = bi + ai
+ * __ecleaz(ei) ei = 0
+ * __ecleazs(ei) set ei = 0 but leave its sign alone
+ * __ecmpm( ai, bi ) compare significands, return 1, 0, or -1
+ * __edivm( ai, bi ) divide significands, bi = bi / ai
+ * __emdnorm(ai,l,s,exp) normalize and round off
+ * __emovi( a, ai ) convert external a to internal ai
+ * __emovo( ai, a ) convert internal ai to external a
+ * __emovz( ai, bi ) bi = ai, low guard word of bi = 0
+ * __emulm( ai, bi ) multiply significands, bi = bi * ai
+ * __enormlz(ei) left-justify the significand
+ * __eshdn1( ai ) shift significand and guards down 1 bit
+ * __eshdn8( ai ) shift down 8 bits
+ * __eshdn6( ai ) shift down 16 bits
+ * __eshift( ai, n ) shift ai n bits up (or down if n < 0)
+ * __eshup1( ai ) shift significand and guards up 1 bit
+ * __eshup8( ai ) shift up 8 bits
+ * __eshup6( ai ) shift up 16 bits
+ * __esubm( ai, bi ) subtract significands, bi = bi - ai
+ *
+ *
+ * The result is always normalized and rounded to NI-4 word precision
+ * after each arithmetic operation.
+ *
+ * Exception flags are NOT fully supported.
+ *
+ * Define INFINITY in mconf.h for support of infinity; otherwise a
+ * saturation arithmetic is implemented.
+ *
+ * Define NANS for support of Not-a-Number items; otherwise the
+ * arithmetic will never produce a NaN output, and might be confused
+ * by a NaN input.
+ * If NaN's are supported, the output of ecmp(a,b) is -2 if
+ * either a or b is a NaN. This means asking if(ecmp(a,b) < 0)
+ * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than
+ * if in doubt.
+ * Signaling NaN's are NOT supported; they are treated the same
+ * as quiet NaN's.
+ *
+ * Denormals are always supported here where appropriate (e.g., not
+ * for conversion to DEC numbers).
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <errno.h>
+#include <math.h>
+#include <locale.h>
+#include <ctype.h>
+
+#define alloca __builtin_alloca
+
+/* Don't build non-ANSI _IO_ldtoa. It is not thread safe. */
+#ifndef USE_LDTOA
+#define USE_LDTOA 0
+#endif
+
+
+ /* Number of 16 bit words in external x type format */
+#define NE 6
+
+ /* Number of 16 bit words in internal format */
+#define NI (NE+3)
+
+ /* Array offset to exponent */
+#define E 1
+
+ /* Array offset to high guard word */
+#define M 2
+
+ /* Number of bits of precision */
+#define NBITS ((NI-4)*16)
+
+ /* Maximum number of decimal digits in ASCII conversion
+ * = NBITS*log10(2)
+ */
+#define NDEC (NBITS*8/27)
+
+ /* The exponent of 1.0 */
+#define EXONE (0x3fff)
+
+
+#define mtherr(x,y)
+
+
+extern long double strtold (const char * __restrict__ s, char ** __restrict__ se);
+extern int __asctoe64(const char * __restrict__ ss,
+ short unsigned int * __restrict__ y);
+extern void __emul(const short unsigned int * a,
+ const short unsigned int * b,
+ short unsigned int * c);
+extern int __ecmp(const short unsigned int * __restrict__ a,
+ const short unsigned int * __restrict__ b);
+extern int __enormlz(short unsigned int *x);
+extern int __eshift(short unsigned int *x, int sc);
+extern void __eaddm(const short unsigned int * __restrict__ x,
+ short unsigned int * __restrict__ y);
+extern void __esubm(const short unsigned int * __restrict__ x,
+ short unsigned int * __restrict__ y);
+extern void __emdnorm(short unsigned int *s, int lost, int subflg,
+ long int exp, int rcntrl, const int rndprc);
+extern void __toe64(short unsigned int * __restrict__ a,
+ short unsigned int * __restrict__ b);
+extern int __edivm(short unsigned int * __restrict__ den,
+ short unsigned int * __restrict__ num);
+extern int __emulm(const short unsigned int * __restrict__ a,
+ short unsigned int * __restrict__ b);
+extern void __emovi(const short unsigned int * __restrict__ a,
+ short unsigned int * __restrict__ b);
+extern void __emovo(const short unsigned int * __restrict__ a,
+ short unsigned int * __restrict__ b);
+
+#if USE_LDTOA
+
+extern char * _IO_ldtoa(long double, int, int, int *, int *, char **);
+extern void _IO_ldtostr(long double *x, char *string, int ndigs,
+ int flags, char fmt);
+
+extern void __eiremain(short unsigned int * __restrict__ den,
+ short unsigned int *__restrict__ num,
+ short unsigned int *__restrict__ equot);
+extern void __efloor(short unsigned int *x, short unsigned int *y);
+extern void __eadd1(const short unsigned int * __restrict__ a,
+ const short unsigned int * __restrict__ b,
+ short unsigned int * __restrict__ c,
+ int subflg);
+extern void __esub(const short unsigned int *a, const short unsigned int *b,
+ short unsigned int *c);
+extern void __ediv(const short unsigned int *a, const short unsigned int *b,
+ short unsigned int *c);
+extern void __e64toe(short unsigned int *pe, short unsigned int *y);
+
+
+#endif
+
+static __inline__ int __eisneg(const short unsigned int *x);
+static __inline__ int __eisinf(const short unsigned int *x);
+static __inline__ int __eisnan(const short unsigned int *x);
+static __inline__ int __eiszero(const short unsigned int *a);
+static __inline__ void __emovz(register const short unsigned int * __restrict__ a,
+ register short unsigned int * __restrict__ b);
+static __inline__ void __eclear(register short unsigned int *x);
+static __inline__ void __ecleaz(register short unsigned int *xi);
+static __inline__ void __ecleazs(register short unsigned int *xi);
+static __inline__ int __eiisinf(const short unsigned int *x);
+static __inline__ int __eiisnan(const short unsigned int *x);
+static __inline__ int __eiiszero(const short unsigned int *x);
+static __inline__ void __enan_64(short unsigned int *nan);
+static __inline__ void __enan_NBITS (short unsigned int *nan);
+static __inline__ void __enan_NI16 (short unsigned int *nan);
+static __inline__ void __einfin(register short unsigned int *x);
+static __inline__ void __eneg(short unsigned int *x);
+static __inline__ void __eshup1(register short unsigned int *x);
+static __inline__ void __eshup8(register short unsigned int *x);
+static __inline__ void __eshup6(register short unsigned int *x);
+static __inline__ void __eshdn1(register short unsigned int *x);
+static __inline__ void __eshdn8(register short unsigned int *x);
+static __inline__ void __eshdn6(register short unsigned int *x);
+
+
+
+/* Intel IEEE, low order words come first:
+ */
+#define IBMPC 1
+
+/* Define 1 for ANSI C atan2() function
+ * See atan.c and clog.c.
+ */
+#define ANSIC 1
+
+/*define VOLATILE volatile*/
+#define VOLATILE
+
+/* For 12-byte long doubles on an i386, pad a 16-bit short 0
+ * to the end of real constants initialized by integer arrays.
+ *
+ * #define XPD 0,
+ *
+ * Otherwise, the type is 10 bytes long and XPD should be
+ * defined blank.
+ *
+ * #define XPD
+ */
+#define XPD 0,
+/* #define XPD */
+#define NANS
+#define INFINITY
+
+/* NaN's require infinity support. */
+#ifdef NANS
+#ifndef INFINITY
+#define INFINITY
+#endif
+#endif
+
+/* This handles 64-bit long ints. */
+#define LONGBITS (8 * sizeof(long))
+
+
+#define NTEN 12
+#define MAXP 4096
+
+extern const unsigned short __etens[NTEN + 1][NE];
+
+/*
+; Clear out entire external format number.
+;
+; unsigned short x[];
+; eclear( x );
+*/
+
+static __inline__ void __eclear(register short unsigned int *x)
+{
+ memset(x, 0, NE * sizeof(unsigned short));
+}
+
+
+/* Move external format number from a to b.
+ *
+ * emov( a, b );
+ */
+
+static __inline__ void __emov(register const short unsigned int * __restrict__ a,
+ register short unsigned int * __restrict__ b)
+{
+ memcpy(b, a, NE * sizeof(unsigned short));
+}
+
+
+/*
+; Negate external format number
+;
+; unsigned short x[NE];
+; eneg( x );
+*/
+
+static __inline__ void __eneg(short unsigned int *x)
+{
+
+#ifdef NANS
+if( __eisnan(x) )
+ return;
+#endif
+x[NE-1] ^= 0x8000; /* Toggle the sign bit */
+}
+
+
+/* Return 1 if external format number is negative,
+ * else return zero.
+ */
+static __inline__ int __eisneg(const short unsigned int *x)
+{
+
+#ifdef NANS
+if( __eisnan(x) )
+ return( 0 );
+#endif
+if( x[NE-1] & 0x8000 )
+ return( 1 );
+else
+ return( 0 );
+}
+
+
+/* Return 1 if external format number has maximum possible exponent,
+ * else return zero.
+ */
+static __inline__ int __eisinf(const short unsigned int *x)
+{
+
+if( (x[NE-1] & 0x7fff) == 0x7fff )
+ {
+#ifdef NANS
+ if( __eisnan(x) )
+ return( 0 );
+#endif
+ return( 1 );
+ }
+else
+ return( 0 );
+}
+
+/* Check if e-type number is not a number.
+ */
+static __inline__ int __eisnan(const short unsigned int *x)
+{
+#ifdef NANS
+int i;
+/* NaN has maximum __exponent */
+if( (x[NE-1] & 0x7fff) == 0x7fff )
+/* ... and non-zero significand field. */
+ for( i=0; i<NE-1; i++ )
+ {
+ if( *x++ != 0 )
+ return (1);
+ }
+#endif
+return (0);
+}
+
+/*
+; Fill __entire number, including __exponent and significand, with
+; largest possible number. These programs implement a saturation
+; value that is an ordinary, legal number. A special value
+; "infinity" may also be implemented; this would require tests
+; for that value and implementation of special rules for arithmetic
+; operations involving inifinity.
+*/
+
+static __inline__ void __einfin(register short unsigned int *x)
+{
+register int i;
+
+#ifdef INFINITY
+for( i=0; i<NE-1; i++ )
+ *x++ = 0;
+*x |= 32767;
+#else
+for( i=0; i<NE-1; i++ )
+ *x++ = 0xffff;
+*x |= 32766;
+*(x-5) = 0;
+#endif
+}
+
+/* Clear out internal format number.
+ */
+
+static __inline__ void __ecleaz(register short unsigned int *xi)
+{
+ memset(xi, 0, NI * sizeof(unsigned short));
+}
+
+/* same, but don't touch the sign. */
+
+static __inline__ void __ecleazs(register short unsigned int *xi)
+{
+ ++xi;
+ memset(xi, 0, (NI-1) * sizeof(unsigned short));
+}
+
+
+
+/* Move internal format number from a to b.
+ */
+static __inline__ void __emovz(register const short unsigned int * __restrict__ a,
+ register short unsigned int * __restrict__ b)
+{
+ memcpy(b, a, (NI-1) * sizeof(unsigned short));
+ b[NI-1]=0;
+}
+
+/* Return nonzero if internal format number is a NaN.
+ */
+
+static __inline__ int __eiisnan (const short unsigned int *x)
+{
+int i;
+
+if( (x[E] & 0x7fff) == 0x7fff )
+ {
+ for( i=M+1; i<NI; i++ )
+ {
+ if( x[i] != 0 )
+ return(1);
+ }
+ }
+return(0);
+}
+
+/* Return nonzero if external format number is zero. */
+
+static __inline__ int
+__eiszero(const short unsigned int * a)
+{
+if (*((long double*) a) == 0)
+ return (1);
+return (0);
+}
+
+/* Return nonzero if internal format number is zero. */
+
+static __inline__ int
+__eiiszero(const short unsigned int * ai)
+{
+ int i;
+ /* skip the sign word */
+ for( i=1; i<NI-1; i++ )
+ {
+ if( ai[i] != 0 )
+ return (0);
+ }
+ return (1);
+}
+
+
+/* Return nonzero if internal format number is infinite. */
+
+static __inline__ int
+__eiisinf (const unsigned short *x)
+{
+
+#ifdef NANS
+ if (__eiisnan (x))
+ return (0);
+#endif
+ if ((x[E] & 0x7fff) == 0x7fff)
+ return (1);
+ return (0);
+}
+
+/*
+; Compare significands of numbers in internal format.
+; Guard words are included in the comparison.
+;
+; unsigned short a[NI], b[NI];
+; cmpm( a, b );
+;
+; for the significands:
+; returns +1 if a > b
+; 0 if a == b
+; -1 if a < b
+*/
+static __inline__ int __ecmpm(register const short unsigned int * __restrict__ a,
+ register const short unsigned int * __restrict__ b)
+{
+int i;
+
+a += M; /* skip up to significand area */
+b += M;
+for( i=M; i<NI; i++ )
+ {
+ if( *a++ != *b++ )
+ goto difrnt;
+ }
+return(0);
+
+difrnt:
+if( *(--a) > *(--b) )
+ return(1);
+else
+ return(-1);
+}
+
+
+/*
+; Shift significand down by 1 bit
+*/
+
+static __inline__ void __eshdn1(register short unsigned int *x)
+{
+register unsigned short bits;
+int i;
+
+x += M; /* point to significand area */
+
+bits = 0;
+for( i=M; i<NI; i++ )
+ {
+ if( *x & 1 )
+ bits |= 1;
+ *x >>= 1;
+ if( bits & 2 )
+ *x |= 0x8000;
+ bits <<= 1;
+ ++x;
+ }
+}
+
+/*
+; Shift significand up by 1 bit
+*/
+
+static __inline__ void __eshup1(register short unsigned int *x)
+{
+register unsigned short bits;
+int i;
+
+x += NI-1;
+bits = 0;
+
+for( i=M; i<NI; i++ )
+ {
+ if( *x & 0x8000 )
+ bits |= 1;
+ *x <<= 1;
+ if( bits & 2 )
+ *x |= 1;
+ bits <<= 1;
+ --x;
+ }
+}
+
+
+
+/*
+; Shift significand down by 8 bits
+*/
+
+static __inline__ void __eshdn8(register short unsigned int *x)
+{
+register unsigned short newbyt, oldbyt;
+int i;
+
+x += M;
+oldbyt = 0;
+for( i=M; i<NI; i++ )
+ {
+ newbyt = *x << 8;
+ *x >>= 8;
+ *x |= oldbyt;
+ oldbyt = newbyt;
+ ++x;
+ }
+}
+
+/*
+; Shift significand up by 8 bits
+*/
+
+static __inline__ void __eshup8(register short unsigned int *x)
+{
+int i;
+register unsigned short newbyt, oldbyt;
+
+x += NI-1;
+oldbyt = 0;
+
+for( i=M; i<NI; i++ )
+ {
+ newbyt = *x >> 8;
+ *x <<= 8;
+ *x |= oldbyt;
+ oldbyt = newbyt;
+ --x;
+ }
+}
+
+/*
+; Shift significand up by 16 bits
+*/
+
+static __inline__ void __eshup6(register short unsigned int *x)
+{
+int i;
+register unsigned short *p;
+
+p = x + M;
+x += M + 1;
+
+for( i=M; i<NI-1; i++ )
+ *p++ = *x++;
+
+*p = 0;
+}
+
+/*
+; Shift significand down by 16 bits
+*/
+
+static __inline__ void __eshdn6(register short unsigned int *x)
+{
+int i;
+register unsigned short *p;
+
+x += NI-1;
+p = x + 1;
+
+for( i=M; i<NI-1; i++ )
+ *(--p) = *(--x);
+
+*(--p) = 0;
+}
+
+/*
+; Add significands
+; x + y replaces y
+*/
+
+static __inline__ void __enan_64(unsigned short* nan)
+{
+ static const unsigned short nan64[6]
+ = {0, 0, 0, 0xc000, 0xffff, 0};
+ nan = (unsigned short*) nan64;
+ return;
+}
+
+static __inline__ void __enan_NBITS(unsigned short* nan)
+{
+ int i;
+ for( i=0; i<NE-2; i++ )
+ *nan++ = 0;
+ *nan++ = 0xc000;
+ *nan++ = 0x7fff;
+ return;
+}
+
+static __inline__ void __enan_NI16(unsigned short* nan)
+{
+ int i;
+ *nan++ = 0;
+ *nan = 0x7fff;
+ *nan = 0;
+ *nan = 0xc000;
+ for( i=4; i<NI; i++ )
+ *nan++ = 0;
+ return;
+}
+
+
+#endif /* _CEPHES_EMATH_H */
+