Welcome to mirror list, hosted at ThFree Co, Russian Federation.

cygwin.com/git/newlib-cygwin.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'newlib/libm/machine/spu/headers/divd2.h')
-rw-r--r--newlib/libm/machine/spu/headers/divd2.h279
1 files changed, 142 insertions, 137 deletions
diff --git a/newlib/libm/machine/spu/headers/divd2.h b/newlib/libm/machine/spu/headers/divd2.h
index 7bcf366eb..005194b86 100644
--- a/newlib/libm/machine/spu/headers/divd2.h
+++ b/newlib/libm/machine/spu/headers/divd2.h
@@ -51,65 +51,115 @@
*
* DESCRIPTION
* _divd2 divides the vector dividend a by the vector divisor b and
- * returns the resulting vector quotient. Maximum error 0.5 ULPS for
- * normalized results, 1ulp for denorm results, over entire double
- * range including denorms, compared to true result in round-to-nearest
- * rounding mode. Handles Inf or NaN operands and results correctly.
+ * returns the resulting vector quotient. Maximum error about 0.5 ulp
+ * over entire double range including denorms, compared to true result
+ * in round-to-nearest rounding mode. Handles Inf or NaN operands and
+ * results correctly.
*/
-static __inline vector double _divd2(vector double a, vector double b)
+static __inline vector double _divd2(vector double a_in, vector double b_in)
{
+ /* Variables */
+ vec_int4 exp, exp_bias;
+ vec_uint4 no_underflow, overflow;
+ vec_float4 mant_bf, inv_bf;
+ vec_ullong2 exp_a, exp_b;
+ vec_ullong2 a_nan, a_zero, a_inf, a_denorm;
+ vec_ullong2 b_nan, b_zero, b_inf, b_denorm;
+ vec_ullong2 nan;
+ vec_double2 a, b;
+ vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;
+ /* Constants */
+ vec_float4 onef = spu_splats(1.0f);
+ vec_ullong2 exp_mask = spu_splats(0x7FF0000000000000ULL);
+ vec_double2 one = spu_splats(1.0);
- /* Variables
- */
- vec_float4 inv_bf, mant_bf;
- vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;
- vec_int4 exp, tmp;
- vec_uint4 exp_a, exp_b, exp_q1, overflow, nounderflow, normal, utmp,
- sign_a, sign_b, a_frac, b_frac, a_frac_0, b_frac_0, a_exp_0, b_exp_0,
- a_exp_ones, b_exp_ones, a_nan, b_nan, a_inf, b_inf, a_zero, b_zero,
- res_nan, sign_res;
+#ifdef __SPU_EDP__
+ vec_double2 denorm_scale = (vec_double2)spu_splats(0x4330000000000000ULL);
- /* Constants
+ /* Identify all possible special values that must be accomodated including:
+ * +-0, +-infinity, +-denorm, and NaNs.
*/
- vec_float4 onef = spu_splats(1.0f);
- vec_double2 one = spu_splats(1.0);
- vec_uint4 exp_mask = (vec_uint4) { 0x7FF00000, 0, 0x7FF00000, 0 };
- vec_uint4 sign_mask = (vec_uint4) { 0x80000000, 0, 0x80000000, 0};
- vec_uint4 sign_exp_mask = (vec_uint4) { 0xFFF00000, 0, 0xFFF00000,0};
- vec_uint4 frac_mask =(vec_uint4) { 0x000FFFFF, 0xFFFFFFFF, 0x000FFFFF, 0xFFFFFFFF };
- vec_uchar16 swap32 = (vec_uchar16) ((vec_uint4) { 0x04050607, 0x00010203, 0x0C0D0E0F, 0x08090A0B} );
- vec_uint4 zero = (vec_uint4) { 0, 0, 0, 0 };
- vec_int4 e1022 = (vec_int4) { 0x000003FE, 0, 0x000003FE, 0 };
- vec_int4 emax = (vec_int4) { 0x000007FE, 0, 0x000007FE, 0 };
- vec_int4 e1 = (vec_int4) { 0x00000001, 0, 0x00000001, 0 };
-
- vec_uint4 nan = (vec_uint4) { 0x7FF80000, 0, 0x7FF80000, 0};
-
- /* Extract exponents and underflow denorm arguments to signed zero.
+ a_nan = spu_testsv(a_in, (SPU_SV_NAN));
+ a_zero = spu_testsv(a_in, (SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO));
+ a_inf = spu_testsv(a_in, (SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
+ a_denorm = spu_testsv(a_in, (SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
+
+ b_nan = spu_testsv(b_in, (SPU_SV_NAN));
+ b_zero = spu_testsv(b_in, (SPU_SV_NEG_ZERO | SPU_SV_POS_ZERO));
+ b_inf = spu_testsv(b_in, (SPU_SV_NEG_INFINITY | SPU_SV_POS_INFINITY));
+ b_denorm = spu_testsv(b_in, (SPU_SV_NEG_DENORM | SPU_SV_POS_DENORM));
+
+ /* Scale denorm inputs to into normalized numbers by conditionally scaling the
+ * input parameters.
+ */
+ a = spu_sel(a_in, spu_mul(a_in, denorm_scale), a_denorm);
+ b = spu_sel(b_in, spu_mul(b_in, denorm_scale), b_denorm);
+
+#else /* !__SPU_EDP__ */
+ vec_uint4 a_exp, b_exp;
+ vec_ullong2 a_mant_0, b_mant_0;
+ vec_ullong2 a_exp_1s, b_exp_1s;
+ vec_ullong2 sign_exp_mask;
+
+ vec_uint4 exp_mask_u32 = spu_splats((unsigned int)0x7FF00000);
+ vec_uchar16 splat_hi = (vec_uchar16){0,1,2,3, 0,1,2,3, 8, 9,10,11, 8,9,10,11};
+ vec_uchar16 swap_32 = (vec_uchar16){4,5,6,7, 0,1,2,3, 12,13,14,15, 8,9,10,11};
+ vec_ullong2 sign_mask = spu_splats(0x8000000000000000ULL);
+ vec_double2 exp_53 = (vec_double2)spu_splats(0x0350000000000000ULL);
+
+ sign_exp_mask = spu_or(sign_mask, exp_mask);
+
+ /* Extract the floating point components from each of the operands including
+ * exponent and mantissa.
*/
- exp_a = spu_and((vec_uint4)a, exp_mask);
- exp_b = spu_and((vec_uint4)b, exp_mask);
+ a_exp = (vec_uint4)spu_and((vec_uint4)a_in, exp_mask_u32);
+ a_exp = spu_shuffle(a_exp, a_exp, splat_hi);
+ b_exp = (vec_uint4)spu_and((vec_uint4)b_in, exp_mask_u32);
+ b_exp = spu_shuffle(b_exp, b_exp, splat_hi);
+
+ a_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)a_in, sign_exp_mask), 0);
+ a_mant_0 = spu_and(a_mant_0, spu_shuffle(a_mant_0, a_mant_0, swap_32));
+
+ b_mant_0 = (vec_ullong2)spu_cmpeq((vec_uint4)spu_andc((vec_ullong2)b_in, sign_exp_mask), 0);
+ b_mant_0 = spu_and(b_mant_0, spu_shuffle(b_mant_0, b_mant_0, swap_32));
- sign_a = spu_and((vec_uint4)a, sign_mask);
- sign_b = spu_and((vec_uint4)b, sign_mask);
+ a_exp_1s = (vec_ullong2)spu_cmpeq(a_exp, exp_mask_u32);
+ b_exp_1s = (vec_ullong2)spu_cmpeq(b_exp, exp_mask_u32);
- a_exp_0 = spu_cmpeq (exp_a, 0);
- utmp = spu_shuffle (a_exp_0, a_exp_0, swap32);
- a_exp_0 = spu_and (a_exp_0, utmp);
- b_exp_0 = spu_cmpeq (exp_b, 0);
- utmp = spu_shuffle (b_exp_0, b_exp_0, swap32);
- b_exp_0 = spu_and (b_exp_0, utmp);
+ /* Identify all possible special values that must be accomodated including:
+ * +-denorm, +-0, +-infinity, and NaNs.
+ */
+ a_denorm = (vec_ullong2)spu_cmpeq(a_exp, 0); /* really is a_exp_0 */
+ a_nan = spu_andc(a_exp_1s, a_mant_0);
+ a_zero = spu_and (a_denorm, a_mant_0);
+ a_inf = spu_and (a_exp_1s, a_mant_0);
+
+ b_denorm = (vec_ullong2)spu_cmpeq(b_exp, 0); /* really is b_exp_0 */
+ b_nan = spu_andc(b_exp_1s, b_mant_0);
+ b_zero = spu_and (b_denorm, b_mant_0);
+ b_inf = spu_and (b_exp_1s, b_mant_0);
+
+ /* Scale denorm inputs to into normalized numbers by conditionally scaling the
+ * input parameters.
+ */
+ a = spu_sub(spu_or(a_in, exp_53), spu_sel(exp_53, a_in, sign_mask));
+ a = spu_sel(a_in, a, a_denorm);
- a = spu_sel(a, (vec_double2)sign_a, (vec_ullong2)a_exp_0);
- b = spu_sel(b, (vec_double2)sign_b, (vec_ullong2)b_exp_0);
+ b = spu_sub(spu_or(b_in, exp_53), spu_sel(exp_53, b_in, sign_mask));
+ b = spu_sel(b_in, b, b_denorm);
- /* Force the divisor and dividend into the range [1.0,2.0).
- (Unless they're zero.)
- */
- mant_a = spu_sel(a, one, (vec_ullong2)sign_exp_mask);
- mant_b = spu_sel(b, one, (vec_ullong2)sign_exp_mask);
+#endif /* __SPU_EDP__ */
+
+ /* Extract the divisor and dividend exponent and force parameters into the signed
+ * range [1.0,2.0) or [-1.0,2.0).
+ */
+ exp_a = spu_and((vec_ullong2)a, exp_mask);
+ exp_b = spu_and((vec_ullong2)b, exp_mask);
+ mant_a = spu_sel(a, one, (vec_ullong2)exp_mask);
+ mant_b = spu_sel(b, one, (vec_ullong2)exp_mask);
+
/* Approximate the single reciprocal of b by using
* the single precision reciprocal estimate followed by one
* single precision iteration of Newton-Raphson.
@@ -118,112 +168,67 @@ static __inline vector double _divd2(vector double a, vector double b)
inv_bf = spu_re(mant_bf);
inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);
- /* Perform 2 more Newton-Raphson iterations in double precision.
+ /* Perform 2 more Newton-Raphson iterations in double precision. The
+ * result (q1) is in the range (0.5, 2.0).
*/
inv_b = spu_extend(inv_bf);
inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
q0 = spu_mul(mant_a, inv_b);
q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);
- /* Compute the quotient's expected exponent. If the exponent
- * is out of range, then force the resulting exponent to 0.
- * (1023 with the bias). We correct for the out of range
- * values by computing a multiplier (mult) that will force the
- * result to the correct out of range value and set the
- * correct exception flag (UNF, OVF, or neither).
- */
- exp_q1 = spu_and((vec_uint4)q1, exp_mask);
- exp = spu_sub((vec_int4)exp_a, (vec_int4)exp_b);
- exp = spu_rlmaska(exp, -20); // shift right to allow enough bits for working
- tmp = spu_rlmaska((vec_int4)exp_q1, -20);
- exp = spu_add(exp, tmp); // biased exponent of result (right justified)
-
- /* The default multiplier is 1.0. If an underflow is detected (the computed
- * exponent is less than or equal to a biased 0), force the multiplier to 0.0.
- * If exp<=0 set mult = 2**(unbiased exp + 1022) and unbiased exp = -1022
- * = biased 1, the smallest normalized exponent. If exp<-51 set
- * mult = 2**(-1074) to ensure underflowing result. Otherwise mult=1.
- */
- normal = spu_cmpgt(exp, 0);
- nounderflow = spu_cmpgt(exp, -52);
- tmp = spu_add(exp, e1022);
- mult = (vec_double2)spu_sl(tmp, 20);
- mult = spu_sel(mult, one, (vec_ullong2)normal);
- mult = spu_sel((vec_double2)e1, mult, (vec_ullong2)nounderflow);
- exp = spu_sel(e1, exp, normal); // unbiased -1022 is biased 1
-
- /* Force the multiplier to positive infinity (exp_mask) and the biased
- * exponent to 1022, if the computed biased exponent is > emax.
+
+ /* Determine the exponent correction factor that must be applied
+ * to q1 by taking into account the exponent of the normalized inputs
+ * and the scale factors that were applied to normalize them.
*/
- overflow = spu_cmpgt(exp, (vec_int4)emax);
- exp = spu_sel(exp, (vec_int4)e1022, overflow);
- mult = spu_sel(mult, (vec_double2)exp_mask, (vec_ullong2)overflow);
-
- /* Determine if a, b are Inf, NaN, or zero.
- * Since these are rare, it would improve speed if these could be detected
- * quickly and a branch used to avoid slowing down the main path. However
- * most of the work seems to be in the detection.
+ exp = spu_rlmaska(spu_sub((vec_int4)exp_a, (vec_int4)exp_b), -20);
+ exp = spu_add(exp, (vec_int4)spu_add(spu_and((vec_int4)a_denorm, -0x34), spu_and((vec_int4)b_denorm, 0x34)));
+
+ /* Bias the quotient exponent depending on the sign of the exponent correction
+ * factor so that a single multiplier will ensure the entire double precision
+ * domain (including denorms) can be achieved.
+ *
+ * exp bias q1 adjust exp
+ * ===== ======== ==========
+ * positive 2^+65 -65
+ * negative 2^-64 +64
*/
- a_exp_ones = spu_cmpeq (exp_a, exp_mask);
- utmp = spu_shuffle (a_exp_ones, a_exp_ones, swap32);
- a_exp_ones = spu_and (a_exp_ones, utmp);
-
- a_frac = spu_and ((vec_uint4)a, frac_mask);
- a_frac_0 = spu_cmpeq (a_frac, 0);
- utmp = spu_shuffle (a_frac_0, a_frac_0, swap32);
- a_frac_0 = spu_and (a_frac_0, utmp);
-
- a_zero = spu_and (a_exp_0, a_frac_0);
- a_inf = spu_and (a_exp_ones, a_frac_0);
- a_nan = spu_andc (a_exp_ones, a_frac_0);
-
- b_exp_ones = spu_cmpeq (exp_b, exp_mask);
- utmp = spu_shuffle (b_exp_ones, b_exp_ones, swap32);
- b_exp_ones = spu_and (b_exp_ones, utmp);
+ exp_bias = spu_xor(spu_rlmaska(exp, -31), 64);
- b_frac = spu_and ((vec_uint4)b, frac_mask);
- b_frac_0 = spu_cmpeq (b_frac, 0);
- utmp = spu_shuffle (b_frac_0, b_frac_0, swap32);
- b_frac_0 = spu_and (b_frac_0, utmp);
- b_zero = spu_and (b_exp_0, b_frac_0);
- b_inf = spu_and (b_exp_ones, b_frac_0);
- b_nan = spu_andc (b_exp_ones, b_frac_0);
+ exp = spu_sub(exp, exp_bias);
- /* Handle exception cases */
+ q1 = spu_sel(q1, (vec_double2)spu_add((vec_int4)q1, spu_sl(exp_bias, 20)), exp_mask);
- /* Result is 0 for 0/x, x!=0, or x/Inf, x!=Inf.
- * Set mult=0 for 0/0 or Inf/Inf now, since it will be replaced
- * with NaN later.
+ /* Compute a multiplier (mult) to applied to the quotient (q1) to produce the
+ * expected result.
*/
- utmp = spu_or (a_zero, b_inf);
- mult = spu_sel(mult, (vec_double2)zero, (vec_ullong2)utmp);
-
- /* Result is Inf for x/0, x!=0. Set mult=Inf for 0/0 now, since it
- * will be replaced with NaN later.
+ exp = spu_add(exp, 0x3FF);
+ no_underflow = spu_cmpgt(exp, 0);
+ overflow = spu_cmpgt(exp, 0x7FF);
+ exp = spu_and(spu_sl(exp, 20), (vec_int4)no_underflow);
+ exp = spu_and(exp, (vec_int4)exp_mask);
+ mult = spu_sel((vec_double2)exp, (vec_double2)exp_mask, (vec_ullong2)overflow);
+
+ /* Handle special value conditions. These include:
+ *
+ * 1) IF either operand is a NaN OR both operands are 0 or INFINITY THEN a NaN
+ * results.
+ * 2) ELSE IF the dividend is an INFINITY OR the divisor is 0 THEN a INFINITY results.
+ * 3) ELSE IF the dividend is 0 OR the divisor is INFINITY THEN a 0 results.
*/
- mult = spu_sel(mult, (vec_double2)exp_mask, (vec_ullong2)b_zero);
+ mult = spu_andc(mult, (vec_double2)spu_or(a_zero, b_inf));
+ mult = spu_sel(mult, (vec_double2)exp_mask, spu_or(a_inf, b_zero));
- /* Result is NaN if either operand is, or Inf/Inf, or 0/0.
- */
- res_nan = spu_or (a_nan, b_nan);
- utmp = spu_and (a_inf, b_inf);
- res_nan = spu_or (res_nan, utmp);
- utmp = spu_and (a_zero, b_zero);
- res_nan = spu_or (res_nan, utmp);
- mult = spu_sel(mult, (vec_double2)nan, (vec_ullong2)res_nan);
-
- /* Insert sign of result into mult.
- */
- sign_res = spu_xor (sign_a, sign_b);
- mult = spu_or (mult, (vec_double2)sign_res);
+ nan = spu_or(a_nan, b_nan);
+ nan = spu_or(nan, spu_and(a_zero, b_zero));
+ nan = spu_or(nan, spu_and(a_inf, b_inf));
- /* Insert the sign and exponent into the result and perform the
- * final multiplication.
- */
- exp = spu_sl(exp, 20);
- q2 = spu_sel(q1, (vec_double2)exp, (vec_ullong2)exp_mask);
- q2 = spu_mul(q2, mult);
+ mult = spu_or(mult, (vec_double2)nan);
+
+ /* Scale the final quotient */
+
+ q2 = spu_mul(q1, mult);
return (q2);
}