/* lgamf() * * Natural logarithm of gamma function * * * * SYNOPSIS: * * float x, y, __lgammaf_r(); * int* sgngamf; * y = __lgammaf_r( x, sgngamf ); * * float x, y, lgammaf(); * y = lgammaf( x); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of the absolute * value of the gamma function of the argument. In the reentrant * version the sign (+1 or -1) of the gamma function is returned in * variable referenced by sgngamf. * * For arguments greater than 6.5, the logarithm of the gamma * function is approximated by the logarithmic version of * Stirling's formula. Arguments between 0 and +6.5 are reduced by * by recurrence to the interval [.75,1.25] or [1.5,2.5] of a rational * approximation. The cosecant reflection formula is employed for * arguments less than zero. * * Arguments greater than MAXLGM = 2.035093e36 return MAXNUM and an * error message. * * * * ACCURACY: * * * * arithmetic domain # trials peak rms * IEEE -100,+100 500,000 7.4e-7 6.8e-8 * The error criterion was relative when the function magnitude * was greater than one but absolute when it was less than one. * The routine has low relative error for positive arguments. * * The following test used the relative error criterion. * IEEE -2, +3 100000 4.0e-7 5.6e-8 * */ /* Cephes Math Library Release 2.7: July, 1998 Copyright 1984, 1987, 1989, 1992, 1998 by Stephen L. Moshier */ /* 26-11-2002 Modified for mingw. Danny Smith */ /* log gamma(x+2), -.5 < x < .5 */ static const float B[] = { 6.055172732649237E-004, -1.311620815545743E-003, 2.863437556468661E-003, -7.366775108654962E-003, 2.058355474821512E-002, -6.735323259371034E-002, 3.224669577325661E-001, 4.227843421859038E-001 }; /* log gamma(x+1), -.25 < x < .25 */ static const float C[] = { 1.369488127325832E-001, -1.590086327657347E-001, 1.692415923504637E-001, -2.067882815621965E-001, 2.705806208275915E-001, -4.006931650563372E-001, 8.224670749082976E-001, -5.772156501719101E-001 }; /* log( sqrt( 2*pi ) ) */ static const float LS2PI = 0.91893853320467274178; #define MAXLGM 2.035093e36 static const float PIINV = 0.318309886183790671538; #ifndef __MINGW32__ #include "mconf.h" float floorf(float); float polevlf( float, float *, int ); float p1evlf( float, float *, int ); #else #include "cephes_mconf.h" #endif /* Reentrant version */ /* Logarithm of gamma function */ float __lgammaf_r( float x, int* sgngamf ) { float p, q, w, z; float nx, tx; int i, direction; *sgngamf = 1; #ifdef NANS if( isnan(x) ) return(x); #endif #ifdef INFINITIES if( !isfinite(x) ) return(x); #endif if( x < 0.0 ) { q = -x; w = __lgammaf_r(q, sgngamf); /* note this modifies sgngam! */ p = floorf(q); if( p == q ) { lgsing: _SET_ERRNO(EDOM); mtherr( "lgamf", SING ); #ifdef INFINITIES return (INFINITYF); #else return( *sgngamf * MAXNUMF ); #endif } i = p; if( (i & 1) == 0 ) *sgngamf = -1; else *sgngamf = 1; z = q - p; if( z > 0.5 ) { p += 1.0; z = p - q; } z = q * sinf( PIF * z ); if( z == 0.0 ) goto lgsing; z = -logf( PIINV*z ) - w; return( z ); } if( x < 6.5 ) { direction = 0; z = 1.0; tx = x; nx = 0.0; if( x >= 1.5 ) { while( tx > 2.5 ) { nx -= 1.0; tx = x + nx; z *=tx; } x += nx - 2.0; iv1r5: p = x * polevlf( x, B, 7 ); goto cont; } if( x >= 1.25 ) { z *= x; x -= 1.0; /* x + 1 - 2 */ direction = 1; goto iv1r5; } if( x >= 0.75 ) { x -= 1.0; p = x * polevlf( x, C, 7 ); q = 0.0; goto contz; } while( tx < 1.5 ) { if( tx == 0.0 ) goto lgsing; z *=tx; nx += 1.0; tx = x + nx; } direction = 1; x += nx - 2.0; p = x * polevlf( x, B, 7 ); cont: if( z < 0.0 ) { *sgngamf = -1; z = -z; } else { *sgngamf = 1; } q = logf(z); if( direction ) q = -q; contz: return( p + q ); } if( x > MAXLGM ) { _SET_ERRNO(ERANGE); mtherr( "lgamf", OVERFLOW ); #ifdef INFINITIES return( *sgngamf * INFINITYF ); #else return( *sgngamf * MAXNUMF ); #endif } /* Note, though an asymptotic formula could be used for x >= 3, * there is cancellation error in the following if x < 6.5. */ q = LS2PI - x; q += ( x - 0.5 ) * logf(x); if( x <= 1.0e4 ) { z = 1.0/x; p = z * z; q += (( 6.789774945028216E-004 * p - 2.769887652139868E-003 ) * p + 8.333316229807355E-002 ) * z; } return( q ); } /* This is the C99 version */ float lgammaf(float x) { int local_sgngamf=0; return (__lgammaf_r(x, &local_sgngamf)); }