Welcome to mirror list, hosted at ThFree Co, Russian Federation.

divd2.h « headers « spu « machine « libm « newlib - cygwin.com/git/newlib-cygwin.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7bcf366eb00207393dd42e1479de946aa5805a7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
/* --------------------------------------------------------------  */
/* (C)Copyright 2001,2008,                                         */
/* International Business Machines Corporation,                    */
/* Sony Computer Entertainment, Incorporated,                      */
/* Toshiba Corporation,                                            */
/*                                                                 */
/* All Rights Reserved.                                            */
/*                                                                 */
/* Redistribution and use in source and binary forms, with or      */
/* without modification, are permitted provided that the           */
/* following conditions are met:                                   */
/*                                                                 */
/* - Redistributions of source code must retain the above copyright*/
/*   notice, this list of conditions and the following disclaimer. */
/*                                                                 */
/* - Redistributions in binary form must reproduce the above       */
/*   copyright notice, this list of conditions and the following   */
/*   disclaimer in the documentation and/or other materials        */
/*   provided with the distribution.                               */
/*                                                                 */
/* - Neither the name of IBM Corporation nor the names of its      */
/*   contributors may be used to endorse or promote products       */
/*   derived from this software without specific prior written     */
/*   permission.                                                   */
/*                                                                 */
/* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND          */
/* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,     */
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF        */
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE        */
/* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR            */
/* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,    */
/* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT    */
/* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;    */
/* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)        */
/* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN       */
/* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR    */
/* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,  */
/* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.              */
/* --------------------------------------------------------------  */
/* PROLOG END TAG zYx                                              */
#ifdef __SPU__

#ifndef _DIVD2_H_
#define _DIVD2_H_		 1

#include <spu_intrinsics.h>

/*
 * FUNCTION
 * 	vector double _divd2(vector double a, vector double b)
 * 
 * DESCRIPTION
 * 	_divd2 divides the vector dividend a by the vector divisor b and 
 *      returns the resulting vector quotient.  Maximum error 0.5 ULPS for 
 *      normalized results, 1ulp for denorm results, over entire double 
 *      range including denorms, compared to true result in round-to-nearest
 *      rounding mode.  Handles Inf or NaN operands and results correctly.
 */
static __inline vector double _divd2(vector double a, vector double b)
{


  /* Variables
   */
  vec_float4 inv_bf, mant_bf;
  vec_double2 mant_a, mant_b, inv_b, q0, q1, q2, mult;
  vec_int4 exp, tmp;
  vec_uint4 exp_a, exp_b, exp_q1, overflow, nounderflow, normal, utmp,
    sign_a, sign_b, a_frac, b_frac, a_frac_0, b_frac_0, a_exp_0, b_exp_0, 
    a_exp_ones, b_exp_ones, a_nan, b_nan, a_inf, b_inf, a_zero, b_zero, 
    res_nan, sign_res;

  /* Constants
   */
  vec_float4 onef = spu_splats(1.0f);
  vec_double2 one = spu_splats(1.0);
  vec_uint4 exp_mask = (vec_uint4) { 0x7FF00000, 0, 0x7FF00000, 0 };
  vec_uint4 sign_mask = (vec_uint4) { 0x80000000, 0, 0x80000000, 0};
  vec_uint4 sign_exp_mask = (vec_uint4) { 0xFFF00000, 0, 0xFFF00000,0};
  vec_uint4 frac_mask =(vec_uint4) { 0x000FFFFF, 0xFFFFFFFF, 0x000FFFFF, 0xFFFFFFFF };
  vec_uchar16 swap32 = (vec_uchar16) ((vec_uint4) { 0x04050607, 0x00010203, 0x0C0D0E0F, 0x08090A0B} );
  vec_uint4 zero = (vec_uint4) { 0, 0, 0, 0 };
  vec_int4 e1022 = (vec_int4) { 0x000003FE, 0, 0x000003FE, 0 };
  vec_int4 emax  = (vec_int4) { 0x000007FE, 0, 0x000007FE, 0 };
  vec_int4 e1    = (vec_int4) { 0x00000001, 0, 0x00000001, 0 };

  vec_uint4 nan  = (vec_uint4) { 0x7FF80000, 0, 0x7FF80000, 0};

  /* Extract exponents and underflow denorm arguments to signed zero.
   */
  exp_a = spu_and((vec_uint4)a, exp_mask);
  exp_b = spu_and((vec_uint4)b, exp_mask);

  sign_a = spu_and((vec_uint4)a, sign_mask);
  sign_b = spu_and((vec_uint4)b, sign_mask);

  a_exp_0 = spu_cmpeq (exp_a, 0);
  utmp = spu_shuffle (a_exp_0, a_exp_0, swap32);
  a_exp_0 = spu_and (a_exp_0, utmp);
  b_exp_0 = spu_cmpeq (exp_b, 0);
  utmp = spu_shuffle (b_exp_0, b_exp_0, swap32);
  b_exp_0 = spu_and (b_exp_0, utmp);

  a = spu_sel(a, (vec_double2)sign_a, (vec_ullong2)a_exp_0);
  b = spu_sel(b, (vec_double2)sign_b, (vec_ullong2)b_exp_0);

  /* Force the divisor and dividend into the range [1.0,2.0).
     (Unless they're zero.)
  */
  mant_a = spu_sel(a, one, (vec_ullong2)sign_exp_mask);
  mant_b = spu_sel(b, one, (vec_ullong2)sign_exp_mask);

  /* Approximate the single reciprocal of b by using
   * the single precision reciprocal estimate followed by one 
   * single precision iteration of Newton-Raphson.
   */
  mant_bf = spu_roundtf(mant_b);
  inv_bf = spu_re(mant_bf);
  inv_bf = spu_madd(spu_nmsub(mant_bf, inv_bf, onef), inv_bf, inv_bf);

  /* Perform 2 more Newton-Raphson iterations in double precision.
   */
  inv_b = spu_extend(inv_bf);
  inv_b = spu_madd(spu_nmsub(mant_b, inv_b, one), inv_b, inv_b);
  q0 = spu_mul(mant_a, inv_b);
  q1 = spu_madd(spu_nmsub(mant_b, q0, mant_a), inv_b, q0);

  /* Compute the quotient's expected exponent. If the exponent
   * is out of range, then force the resulting exponent to 0.
   * (1023 with the bias). We correct for the out of range 
   * values by computing a multiplier (mult) that will force the 
   * result to the correct out of range value and set the 
   * correct exception flag (UNF, OVF, or neither).
   */
  exp_q1 = spu_and((vec_uint4)q1, exp_mask);
  exp = spu_sub((vec_int4)exp_a, (vec_int4)exp_b);
  exp = spu_rlmaska(exp, -20);  // shift right to allow enough bits for working
  tmp = spu_rlmaska((vec_int4)exp_q1, -20);
  exp = spu_add(exp, tmp);  // biased exponent of result (right justified)

  /* The default multiplier is 1.0. If an underflow is detected (the computed 
   * exponent is less than or equal to a biased 0), force the multiplier to 0.0.
   * If exp<=0 set mult = 2**(unbiased exp + 1022) and unbiased exp = -1022
   * = biased 1, the smallest normalized exponent.  If exp<-51 set 
   * mult = 2**(-1074) to ensure underflowing result.  Otherwise mult=1.
   */
  normal = spu_cmpgt(exp, 0);
  nounderflow = spu_cmpgt(exp, -52);
  tmp = spu_add(exp, e1022);
  mult = (vec_double2)spu_sl(tmp, 20);
  mult = spu_sel(mult, one, (vec_ullong2)normal);
  mult = spu_sel((vec_double2)e1, mult, (vec_ullong2)nounderflow);
  exp = spu_sel(e1, exp, normal);  // unbiased -1022 is biased 1

  /* Force the multiplier to positive infinity (exp_mask) and the biased 
   * exponent to 1022, if the computed biased exponent is > emax.
   */
  overflow = spu_cmpgt(exp, (vec_int4)emax);
  exp = spu_sel(exp, (vec_int4)e1022, overflow);
  mult = spu_sel(mult, (vec_double2)exp_mask, (vec_ullong2)overflow);

  /* Determine if a, b are Inf, NaN, or zero.
   * Since these are rare, it would improve speed if these could be detected
   * quickly and a branch used to avoid slowing down the main path.  However
   * most of the work seems to be in the detection.
   */
  a_exp_ones = spu_cmpeq (exp_a, exp_mask);
  utmp = spu_shuffle (a_exp_ones, a_exp_ones, swap32);
  a_exp_ones = spu_and (a_exp_ones, utmp);

  a_frac = spu_and ((vec_uint4)a, frac_mask);
  a_frac_0 = spu_cmpeq (a_frac, 0);
  utmp = spu_shuffle (a_frac_0, a_frac_0, swap32);
  a_frac_0 = spu_and (a_frac_0, utmp);

  a_zero = spu_and (a_exp_0, a_frac_0);
  a_inf = spu_and (a_exp_ones, a_frac_0);
  a_nan = spu_andc (a_exp_ones, a_frac_0);

  b_exp_ones = spu_cmpeq (exp_b, exp_mask);
  utmp = spu_shuffle (b_exp_ones, b_exp_ones, swap32);
  b_exp_ones = spu_and (b_exp_ones, utmp);

  b_frac = spu_and ((vec_uint4)b, frac_mask);
  b_frac_0 = spu_cmpeq (b_frac, 0);
  utmp = spu_shuffle (b_frac_0, b_frac_0, swap32);
  b_frac_0 = spu_and (b_frac_0, utmp);

  b_zero = spu_and (b_exp_0, b_frac_0);
  b_inf = spu_and (b_exp_ones, b_frac_0);
  b_nan = spu_andc (b_exp_ones, b_frac_0);

  /* Handle exception cases */

  /* Result is 0 for 0/x, x!=0, or x/Inf, x!=Inf.
   * Set mult=0 for 0/0 or Inf/Inf now, since it will be replaced 
   * with NaN later.
   */
  utmp = spu_or (a_zero, b_inf);
  mult = spu_sel(mult, (vec_double2)zero, (vec_ullong2)utmp);

  /* Result is Inf for x/0, x!=0.  Set mult=Inf for 0/0 now, since it
   * will be replaced with NaN later.
   */
  mult = spu_sel(mult, (vec_double2)exp_mask, (vec_ullong2)b_zero);

  /* Result is NaN if either operand is, or Inf/Inf, or 0/0.
   */
  res_nan = spu_or (a_nan, b_nan);
  utmp = spu_and (a_inf, b_inf);
  res_nan = spu_or (res_nan, utmp);
  utmp = spu_and (a_zero, b_zero);
  res_nan = spu_or (res_nan, utmp);
  mult = spu_sel(mult, (vec_double2)nan, (vec_ullong2)res_nan);
  
  /* Insert sign of result into mult.
   */
  sign_res = spu_xor (sign_a, sign_b);
  mult = spu_or (mult, (vec_double2)sign_res);

  /* Insert the sign and exponent into the result and perform the
   * final multiplication.
   */
  exp = spu_sl(exp, 20);
  q2 = spu_sel(q1, (vec_double2)exp, (vec_ullong2)exp_mask);
  q2 = spu_mul(q2, mult);

  return (q2);
}

#endif /* _DIVD2_H_ */
#endif /* __SPU__ */