Welcome to mirror list, hosted at ThFree Co, Russian Federation.

s_sine.c « mathfp « libm « newlib - cygwin.com/git/newlib-cygwin.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9642f4a562b53ea115cb09b37e2951e218f7d838 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

/* @(#)z_sine.c 1.0 98/08/13 */
/******************************************************************
 * The following routines are coded directly from the algorithms
 * and coefficients given in "Software Manual for the Elementary
 * Functions" by William J. Cody, Jr. and William Waite, Prentice
 * Hall, 1980.
 ******************************************************************/

/*
FUNCTION
        <<sin>>, <<cos>>, <<sine>>, <<sinf>>, <<cosf>>, <<sinef>>---sine or cosine
INDEX
sin
INDEX
sinf
INDEX
cos
INDEX
cosf
ANSI_SYNOPSIS
        #include <math.h>
        double sin(double <[x]>);
        float  sinf(float <[x]>);
        double cos(double <[x]>);
        float cosf(float <[x]>);

TRAD_SYNOPSIS
        #include <math.h>
        double sin(<[x]>)
        double <[x]>;
        float  sinf(<[x]>)
        float <[x]>;

        double cos(<[x]>)
        double <[x]>;
        float cosf(<[x]>)
        float <[x]>;

DESCRIPTION
        <<sin>> and <<cos>> compute (respectively) the sine and cosine
        of the argument <[x]>.  Angles are specified in radians.
RETURNS
        The sine or cosine of <[x]> is returned.

PORTABILITY
        <<sin>> and <<cos>> are ANSI C.
        <<sinf>> and <<cosf>> are extensions.

QUICKREF
        sin ansi pure
        sinf - pure
*/

/******************************************************************
 * sine
 *
 * Input:
 *   x - floating point value
 *   cosine - indicates cosine value
 *
 * Output:
 *   Sine of x.
 *
 * Description:
 *   This routine calculates sines and cosines.
 *
 *****************************************************************/

#include "fdlibm.h"
#include "zmath.h"

#ifndef _DOUBLE_IS_32BITS

static const double HALF_PI = 1.57079632679489661923;
static const double ONE_OVER_PI = 0.31830988618379067154;
static const double r[] = { -0.16666666666666665052,
                             0.83333333333331650314e-02,
                            -0.19841269841201840457e-03,
                             0.27557319210152756119e-05,
                            -0.25052106798274584544e-07,
                             0.16058936490371589114e-09,
                            -0.76429178068910467734e-12,
                             0.27204790957888846175e-14 };

double
_DEFUN (sine, (double, int),
        double x _AND
        int cosine)
{
  int sgn, N;
  double y, XN, g, R, res;
  double YMAX = 210828714.0;

  switch (numtest (x))
    {
      case NAN:
        errno = EDOM;
        return (x);
      case INF:
        errno = EDOM;
        return (z_notanum.d); 
    }

  /* Use sin and cos properties to ease computations. */
  if (cosine)
    {
      sgn = 1;
      y = fabs (x) + HALF_PI;
    }
  else
    {
      if (x < 0.0)
        {
          sgn = -1;
          y = -x;
        }
      else
        {
          sgn = 1;
          y = x;
        }
    }

  /* Check for values of y that will overflow here. */
  if (y > YMAX)
    {
      errno = ERANGE;
      return (x);
    }

  /* Calculate the exponent. */
  if (y < 0.0)
    N = (int) (y * ONE_OVER_PI - 0.5);
  else
    N = (int) (y * ONE_OVER_PI + 0.5);
  XN = (double) N;

  if (N & 1)
    sgn = -sgn;

  if (cosine)
    XN -= 0.5;

  y = fabs (x) - XN * __PI;

  if (-z_rooteps < y && y < z_rooteps)
    res = y;

  else
    {
      g = y * y;

      /* Calculate the Taylor series. */
      R = (((((((r[6] * g + r[5]) * g + r[4]) * g + r[3]) * g + r[2]) * g + r[1]) * g + r[0]) * g);

      /* Finally, compute the result. */
      res = y + y * R;
    }
 
  res *= sgn;

  return (res);
}

#endif /* _DOUBLE_IS_32BITS */