Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authormeta-androcto <meta.androcto1@gmail.com>2017-06-15 15:06:00 +0300
committermeta-androcto <meta.androcto1@gmail.com>2017-06-15 15:06:00 +0300
commitc6676127556e5756e4c94f39784d27149f2eb86d (patch)
treea97b100b59224a3c3b8954b891968c4afa9bea79 /add_advanced_objects_panels
parent17d293687324e86b2e94e6ca3574e294f3da3667 (diff)
add advanced objects: split to 2 folders menu and panel
Diffstat (limited to 'add_advanced_objects_panels')
-rw-r--r--add_advanced_objects_panels/DelaunayVoronoi.py998
-rw-r--r--add_advanced_objects_panels/__init__.py467
-rw-r--r--add_advanced_objects_panels/delaunay_voronoi.py312
-rw-r--r--add_advanced_objects_panels/drop_to_ground.py347
-rw-r--r--add_advanced_objects_panels/object_laplace_lightning.py1440
-rw-r--r--add_advanced_objects_panels/object_mangle_tools.py208
-rw-r--r--add_advanced_objects_panels/oscurart_constellation.py141
-rw-r--r--add_advanced_objects_panels/unfold_transition.py346
8 files changed, 4259 insertions, 0 deletions
diff --git a/add_advanced_objects_panels/DelaunayVoronoi.py b/add_advanced_objects_panels/DelaunayVoronoi.py
new file mode 100644
index 00000000..dcce7f68
--- /dev/null
+++ b/add_advanced_objects_panels/DelaunayVoronoi.py
@@ -0,0 +1,998 @@
+# -*- coding: utf-8 -*-
+
+# Voronoi diagram calculator/ Delaunay triangulator
+#
+# - Voronoi Diagram Sweepline algorithm and C code by Steven Fortune,
+# 1987, http://ect.bell-labs.com/who/sjf/
+# - Python translation to file voronoi.py by Bill Simons, 2005, http://www.oxfish.com/
+# - Additional changes for QGIS by Carson Farmer added November 2010
+# - 2012 Ported to Python 3 and additional clip functions by domlysz at gmail.com
+#
+# Calculate Delaunay triangulation or the Voronoi polygons for a set of
+# 2D input points.
+#
+# Derived from code bearing the following notice:
+#
+# The author of this software is Steven Fortune. Copyright (c) 1994 by AT&T
+# Bell Laboratories.
+# Permission to use, copy, modify, and distribute this software for any
+# purpose without fee is hereby granted, provided that this entire notice
+# is included in all copies of any software which is or includes a copy
+# or modification of this software and in all copies of the supporting
+# documentation for such software.
+# THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+# WARRANTY. IN PARTICULAR, NEITHER THE AUTHORS NOR AT&T MAKE ANY
+# REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+# OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+#
+# Comments were incorporated from Shane O'Sullivan's translation of the
+# original code into C++ (http://mapviewer.skynet.ie/voronoi.html)
+#
+# Steve Fortune's homepage: http://netlib.bell-labs.com/cm/cs/who/sjf/index.html
+#
+# For programmatic use, two functions are available:
+#
+# computeVoronoiDiagram(points, xBuff, yBuff, polygonsOutput=False, formatOutput=False):
+# Takes :
+# - a list of point objects (which must have x and y fields).
+# - x and y buffer values which are the expansion percentages of the
+# bounding box rectangle including all input points.
+# Returns :
+# - With default options :
+# A list of 2-tuples, representing the two points of each Voronoi diagram edge.
+# Each point contains 2-tuples which are the x,y coordinates of point.
+# if formatOutput is True, returns :
+# - a list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices.
+# - and a list of 2-tuples (v1, v2) representing edges of the Voronoi diagram.
+# v1 and v2 are the indices of the vertices at the end of the edge.
+# - If polygonsOutput option is True, returns :
+# A dictionary of polygons, keys are the indices of the input points,
+# values contains n-tuples representing the n points of each Voronoi diagram polygon.
+# Each point contains 2-tuples which are the x,y coordinates of point.
+# if formatOutput is True, returns :
+# - A list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices.
+# - and a dictionary of input points indices. Values contains n-tuples representing
+# the n points of each Voronoi diagram polygon.
+# Each tuple contains the vertex indices of the polygon vertices.
+#
+# computeDelaunayTriangulation(points):
+# Takes a list of point objects (which must have x and y fields).
+# Returns a list of 3-tuples: the indices of the points that form a Delaunay triangle.
+
+import bpy
+import math
+
+# Globals
+TOLERANCE = 1e-9
+BIG_FLOAT = 1e38
+
+
+class Context(object):
+
+ def __init__(self):
+ self.doPrint = 0
+ self.debug = 0
+
+ # tuple (xmin, xmax, ymin, ymax)
+ self.extent = ()
+ self.triangulate = False
+ # list of vertex 2-tuples: (x,y)
+ self.vertices = []
+ # equation of line 3-tuple (a b c), for the equation of the line a*x+b*y = c
+ self.lines = []
+
+ # edge 3-tuple: (line index, vertex 1 index, vertex 2 index)
+ # if either vertex index is -1, the edge extends to infinity
+ self.edges = []
+ # 3-tuple of vertex indices
+ self.triangles = []
+ # a dict of site:[edges] pairs
+ self.polygons = {}
+
+
+# Clip functions #
+ def getClipEdges(self):
+ xmin, xmax, ymin, ymax = self.extent
+ clipEdges = []
+ for edge in self.edges:
+ equation = self.lines[edge[0]] # line equation
+ if edge[1] != -1 and edge[2] != -1: # finite line
+ x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1]
+ x2, y2 = self.vertices[edge[2]][0], self.vertices[edge[2]][1]
+ pt1, pt2 = (x1, y1), (x2, y2)
+ inExtentP1, inExtentP2 = self.inExtent(x1, y1), self.inExtent(x2, y2)
+ if inExtentP1 and inExtentP2:
+ clipEdges.append((pt1, pt2))
+ elif inExtentP1 and not inExtentP2:
+ pt2 = self.clipLine(x1, y1, equation, leftDir=False)
+ clipEdges.append((pt1, pt2))
+ elif not inExtentP1 and inExtentP2:
+ pt1 = self.clipLine(x2, y2, equation, leftDir=True)
+ clipEdges.append((pt1, pt2))
+ else: # infinite line
+ if edge[1] != -1:
+ x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1]
+ leftDir = False
+ else:
+ x1, y1 = self.vertices[edge[2]][0], self.vertices[edge[2]][1]
+ leftDir = True
+ if self.inExtent(x1, y1):
+ pt1 = (x1, y1)
+ pt2 = self.clipLine(x1, y1, equation, leftDir)
+ clipEdges.append((pt1, pt2))
+ return clipEdges
+
+ def getClipPolygons(self, closePoly):
+ xmin, xmax, ymin, ymax = self.extent
+ poly = {}
+ for inPtsIdx, edges in self.polygons.items():
+ clipEdges = []
+ for edge in edges:
+ equation = self.lines[edge[0]] # line equation
+ if edge[1] != -1 and edge[2] != -1: # finite line
+ x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1]
+ x2, y2 = self.vertices[edge[2]][0], self.vertices[edge[2]][1]
+ pt1, pt2 = (x1, y1), (x2, y2)
+ inExtentP1, inExtentP2 = self.inExtent(x1, y1), self.inExtent(x2, y2)
+ if inExtentP1 and inExtentP2:
+ clipEdges.append((pt1, pt2))
+ elif inExtentP1 and not inExtentP2:
+ pt2 = self.clipLine(x1, y1, equation, leftDir=False)
+ clipEdges.append((pt1, pt2))
+ elif not inExtentP1 and inExtentP2:
+ pt1 = self.clipLine(x2, y2, equation, leftDir=True)
+ clipEdges.append((pt1, pt2))
+ else: # infinite line
+ if edge[1] != -1:
+ x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1]
+ leftDir = False
+ else:
+ x1, y1 = self.vertices[edge[2]][0], self.vertices[edge[2]][1]
+ leftDir = True
+ if self.inExtent(x1, y1):
+ pt1 = (x1, y1)
+ pt2 = self.clipLine(x1, y1, equation, leftDir)
+ clipEdges.append((pt1, pt2))
+ # create polygon definition from edges and check if polygon is completely closed
+ polyPts, complete = self.orderPts(clipEdges)
+ if not complete:
+ startPt = polyPts[0]
+ endPt = polyPts[-1]
+ # if start & end points are collinear then they are along an extent border
+ if startPt[0] == endPt[0] or startPt[1] == endPt[1]:
+ polyPts.append(polyPts[0]) # simple close
+ else: # close at extent corner
+ # upper left
+ if (startPt[0] == xmin and endPt[1] == ymax) or (endPt[0] == xmin and startPt[1] == ymax):
+ polyPts.append((xmin, ymax)) # corner point
+ polyPts.append(polyPts[0]) # close polygon
+ # upper right
+ if (startPt[0] == xmax and endPt[1] == ymax) or (endPt[0] == xmax and startPt[1] == ymax):
+ polyPts.append((xmax, ymax))
+ polyPts.append(polyPts[0])
+ # bottom right
+ if (startPt[0] == xmax and endPt[1] == ymin) or (endPt[0] == xmax and startPt[1] == ymin):
+ polyPts.append((xmax, ymin))
+ polyPts.append(polyPts[0])
+ # bottom left
+ if (startPt[0] == xmin and endPt[1] == ymin) or (endPt[0] == xmin and startPt[1] == ymin):
+ polyPts.append((xmin, ymin))
+ polyPts.append(polyPts[0])
+ if not closePoly: # unclose polygon
+ polyPts = polyPts[:-1]
+ poly[inPtsIdx] = polyPts
+ return poly
+
+ def clipLine(self, x1, y1, equation, leftDir):
+ xmin, xmax, ymin, ymax = self.extent
+ a, b, c = equation
+ if b == 0: # vertical line
+ if leftDir: # left is bottom of vertical line
+ return (x1, ymax)
+ else:
+ return (x1, ymin)
+ elif a == 0: # horizontal line
+ if leftDir:
+ return (xmin, y1)
+ else:
+ return (xmax, y1)
+ else:
+ y2_at_xmin = (c - a * xmin) / b
+ y2_at_xmax = (c - a * xmax) / b
+ x2_at_ymin = (c - b * ymin) / a
+ x2_at_ymax = (c - b * ymax) / a
+ intersectPts = []
+ if ymin <= y2_at_xmin <= ymax: # valid intersect point
+ intersectPts.append((xmin, y2_at_xmin))
+ if ymin <= y2_at_xmax <= ymax:
+ intersectPts.append((xmax, y2_at_xmax))
+ if xmin <= x2_at_ymin <= xmax:
+ intersectPts.append((x2_at_ymin, ymin))
+ if xmin <= x2_at_ymax <= xmax:
+ intersectPts.append((x2_at_ymax, ymax))
+ # delete duplicate (happens if intersect point is at extent corner)
+ intersectPts = set(intersectPts)
+ # choose target intersect point
+ if leftDir:
+ pt = min(intersectPts) # smaller x value
+ else:
+ pt = max(intersectPts)
+ return pt
+
+ def inExtent(self, x, y):
+ xmin, xmax, ymin, ymax = self.extent
+ return x >= xmin and x <= xmax and y >= ymin and y <= ymax
+
+ def orderPts(self, edges):
+ poly = [] # returned polygon points list [pt1, pt2, pt3, pt4 ....]
+ pts = []
+ # get points list
+ for edge in edges:
+ pts.extend([pt for pt in edge])
+ # try to get start & end point
+ try:
+ startPt, endPt = [pt for pt in pts if pts.count(pt) < 2] # start and end point aren't duplicate
+ except: # all points are duplicate --> polygon is complete --> append some or other edge points
+ complete = True
+ firstIdx = 0
+ poly.append(edges[0][0])
+ poly.append(edges[0][1])
+ else: # incomplete --> append the first edge points
+ complete = False
+ # search first edge
+ for i, edge in enumerate(edges):
+ if startPt in edge: # find
+ firstIdx = i
+ break
+ poly.append(edges[firstIdx][0])
+ poly.append(edges[firstIdx][1])
+ if poly[0] != startPt:
+ poly.reverse()
+ # append next points in list
+ del edges[firstIdx]
+ while edges: # all points will be treated when edges list will be empty
+ currentPt = poly[-1] # last item
+ for i, edge in enumerate(edges):
+ if currentPt == edge[0]:
+ poly.append(edge[1])
+ break
+ elif currentPt == edge[1]:
+ poly.append(edge[0])
+ break
+ del edges[i]
+ return poly, complete
+
+ def setClipBuffer(self, xpourcent, ypourcent):
+ xmin, xmax, ymin, ymax = self.extent
+ witdh = xmax - xmin
+ height = ymax - ymin
+ xmin = xmin - witdh * xpourcent / 100
+ xmax = xmax + witdh * xpourcent / 100
+ ymin = ymin - height * ypourcent / 100
+ ymax = ymax + height * ypourcent / 100
+ self.extent = xmin, xmax, ymin, ymax
+
+ # End clip functions #
+
+ def outSite(self, s):
+ if(self.debug):
+ print("site (%d) at %f %f" % (s.sitenum, s.x, s.y))
+ elif(self.triangulate):
+ pass
+ elif(self.doPrint):
+ print("s %f %f" % (s.x, s.y))
+
+ def outVertex(self, s):
+ self.vertices.append((s.x, s.y))
+ if(self.debug):
+ print("vertex(%d) at %f %f" % (s.sitenum, s.x, s.y))
+ elif(self.triangulate):
+ pass
+ elif(self.doPrint):
+ print("v %f %f" % (s.x, s.y))
+
+ def outTriple(self, s1, s2, s3):
+ self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum))
+ if (self.debug):
+ print("circle through left=%d right=%d bottom=%d" % (s1.sitenum, s2.sitenum, s3.sitenum))
+ elif (self.triangulate and self.doPrint):
+ print("%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum))
+
+ def outBisector(self, edge):
+ self.lines.append((edge.a, edge.b, edge.c))
+ if (self.debug):
+ print("line(%d) %gx+%gy=%g, bisecting %d %d" % (edge.edgenum, edge.a, edge.b,
+ edge.c, edge.reg[0].sitenum,
+ edge.reg[1].sitenum)
+ )
+ elif(self.doPrint):
+ print("l %f %f %f" % (edge.a, edge.b, edge.c))
+
+ def outEdge(self, edge):
+ sitenumL = -1
+ if edge.ep[Edge.LE] is not None:
+ sitenumL = edge.ep[Edge.LE].sitenum
+ sitenumR = -1
+ if edge.ep[Edge.RE] is not None:
+ sitenumR = edge.ep[Edge.RE].sitenum
+
+ # polygons dict add by CF
+ if edge.reg[0].sitenum not in self.polygons:
+ self.polygons[edge.reg[0].sitenum] = []
+ if edge.reg[1].sitenum not in self.polygons:
+ self.polygons[edge.reg[1].sitenum] = []
+ self.polygons[edge.reg[0].sitenum].append((edge.edgenum, sitenumL, sitenumR))
+ self.polygons[edge.reg[1].sitenum].append((edge.edgenum, sitenumL, sitenumR))
+
+ self.edges.append((edge.edgenum, sitenumL, sitenumR))
+
+ if (not self.triangulate):
+ if (self.doPrint):
+ print("e %d" % edge.edgenum)
+ print(" %d " % sitenumL)
+ print("%d" % sitenumR)
+
+
+def voronoi(siteList, context):
+ context.extent = siteList.extent
+ edgeList = EdgeList(siteList.xmin, siteList.xmax, len(siteList))
+ priorityQ = PriorityQueue(siteList.ymin, siteList.ymax, len(siteList))
+ siteIter = siteList.iterator()
+
+ bottomsite = siteIter.next()
+ context.outSite(bottomsite)
+ newsite = siteIter.next()
+ minpt = Site(-BIG_FLOAT, -BIG_FLOAT)
+ while True:
+ if not priorityQ.isEmpty():
+ minpt = priorityQ.getMinPt()
+
+ if (newsite and (priorityQ.isEmpty() or newsite < minpt)):
+ # newsite is smallest - this is a site event
+ context.outSite(newsite)
+
+ # get first Halfedge to the LEFT and RIGHT of the new site
+ lbnd = edgeList.leftbnd(newsite)
+ rbnd = lbnd.right
+
+ # if this halfedge has no edge, bot = bottom site (whatever that is)
+ # create a new edge that bisects
+ bot = lbnd.rightreg(bottomsite)
+ edge = Edge.bisect(bot, newsite)
+ context.outBisector(edge)
+
+ # create a new Halfedge, setting its pm field to 0 and insert
+ # this new bisector edge between the left and right vectors in
+ # a linked list
+ bisector = Halfedge(edge, Edge.LE)
+ edgeList.insert(lbnd, bisector)
+
+ # if the new bisector intersects with the left edge, remove
+ # the left edge's vertex, and put in the new one
+ p = lbnd.intersect(bisector)
+ if p is not None:
+ priorityQ.delete(lbnd)
+ priorityQ.insert(lbnd, p, newsite.distance(p))
+
+ # create a new Halfedge, setting its pm field to 1
+ # insert the new Halfedge to the right of the original bisector
+ lbnd = bisector
+ bisector = Halfedge(edge, Edge.RE)
+ edgeList.insert(lbnd, bisector)
+
+ # if this new bisector intersects with the right Halfedge
+ p = bisector.intersect(rbnd)
+ if p is not None:
+ # push the Halfedge into the ordered linked list of vertices
+ priorityQ.insert(bisector, p, newsite.distance(p))
+
+ newsite = siteIter.next()
+
+ elif not priorityQ.isEmpty():
+ # intersection is smallest - this is a vector (circle) event
+ # pop the Halfedge with the lowest vector off the ordered list of
+ # vectors. Get the Halfedge to the left and right of the above HE
+ # and also the Halfedge to the right of the right HE
+ lbnd = priorityQ.popMinHalfedge()
+ llbnd = lbnd.left
+ rbnd = lbnd.right
+ rrbnd = rbnd.right
+
+ # get the Site to the left of the left HE and to the right of
+ # the right HE which it bisects
+ bot = lbnd.leftreg(bottomsite)
+ top = rbnd.rightreg(bottomsite)
+
+ # output the triple of sites, stating that a circle goes through them
+ mid = lbnd.rightreg(bottomsite)
+ context.outTriple(bot, top, mid)
+
+ # get the vertex that caused this event and set the vertex number
+ # couldn't do this earlier since we didn't know when it would be processed
+ v = lbnd.vertex
+ siteList.setSiteNumber(v)
+ context.outVertex(v)
+
+ # set the endpoint of the left and right Halfedge to be this vector
+ if lbnd.edge.setEndpoint(lbnd.pm, v):
+ context.outEdge(lbnd.edge)
+
+ if rbnd.edge.setEndpoint(rbnd.pm, v):
+ context.outEdge(rbnd.edge)
+
+ # delete the lowest HE, remove all vertex events to do with the
+ # right HE and delete the right HE
+ edgeList.delete(lbnd)
+ priorityQ.delete(rbnd)
+ edgeList.delete(rbnd)
+
+ # if the site to the left of the event is higher than the Site
+ # to the right of it, then swap them and set 'pm' to RIGHT
+ pm = Edge.LE
+ if bot.y > top.y:
+ bot, top = top, bot
+ pm = Edge.RE
+
+ # Create an Edge (or line) that is between the two Sites. This
+ # creates the formula of the line, and assigns a line number to it
+ edge = Edge.bisect(bot, top)
+ context.outBisector(edge)
+
+ # create a HE from the edge
+ bisector = Halfedge(edge, pm)
+
+ # insert the new bisector to the right of the left HE
+ # set one endpoint to the new edge to be the vector point 'v'
+ # If the site to the left of this bisector is higher than the right
+ # Site, then this endpoint is put in position 0; otherwise in pos 1
+ edgeList.insert(llbnd, bisector)
+ if edge.setEndpoint(Edge.RE - pm, v):
+ context.outEdge(edge)
+
+ # if left HE and the new bisector don't intersect, then delete
+ # the left HE, and reinsert it
+ p = llbnd.intersect(bisector)
+ if p is not None:
+ priorityQ.delete(llbnd)
+ priorityQ.insert(llbnd, p, bot.distance(p))
+
+ # if right HE and the new bisector don't intersect, then reinsert it
+ p = bisector.intersect(rrbnd)
+ if p is not None:
+ priorityQ.insert(bisector, p, bot.distance(p))
+ else:
+ break
+
+ he = edgeList.leftend.right
+ while he is not edgeList.rightend:
+ context.outEdge(he.edge)
+ he = he.right
+ Edge.EDGE_NUM = 0 # CF
+
+
+def isEqual(a, b, relativeError=TOLERANCE):
+ # is nearly equal to within the allowed relative error
+ norm = max(abs(a), abs(b))
+ return (norm < relativeError) or (abs(a - b) < (relativeError * norm))
+
+
+class Site(object):
+
+ def __init__(self, x=0.0, y=0.0, sitenum=0):
+ self.x = x
+ self.y = y
+ self.sitenum = sitenum
+
+ def dump(self):
+ print("Site #%d (%g, %g)" % (self.sitenum, self.x, self.y))
+
+ def __lt__(self, other):
+ if self.y < other.y:
+ return True
+ elif self.y > other.y:
+ return False
+ elif self.x < other.x:
+ return True
+ elif self.x > other.x:
+ return False
+ else:
+ return False
+
+ def __eq__(self, other):
+ if self.y == other.y and self.x == other.x:
+ return True
+
+ def distance(self, other):
+ dx = self.x - other.x
+ dy = self.y - other.y
+ return math.sqrt(dx * dx + dy * dy)
+
+
+class Edge(object):
+ LE = 0 # left end indice --> edge.ep[Edge.LE]
+ RE = 1 # right end indice
+ EDGE_NUM = 0
+ DELETED = {} # marker value
+
+ def __init__(self):
+ self.a = 0.0 # equation of the line a*x+b*y = c
+ self.b = 0.0
+ self.c = 0.0
+ self.ep = [None, None] # end point (2 tuples of site)
+ self.reg = [None, None]
+ self.edgenum = 0
+
+ def dump(self):
+ print("(#%d a=%g, b=%g, c=%g)" % (self.edgenum, self.a, self.b, self.c))
+ print("ep", self.ep)
+ print("reg", self.reg)
+
+ def setEndpoint(self, lrFlag, site):
+ self.ep[lrFlag] = site
+ if self.ep[Edge.RE - lrFlag] is None:
+ return False
+ return True
+
+ @staticmethod
+ def bisect(s1, s2):
+ newedge = Edge()
+ newedge.reg[0] = s1 # store the sites that this edge is bisecting
+ newedge.reg[1] = s2
+
+ # to begin with, there are no endpoints on the bisector - it goes to infinity
+ # ep[0] and ep[1] are None
+
+ # get the difference in x dist between the sites
+ dx = float(s2.x - s1.x)
+ dy = float(s2.y - s1.y)
+ adx = abs(dx) # make sure that the difference in positive
+ ady = abs(dy)
+
+ # get the slope of the line
+ newedge.c = float(s1.x * dx + s1.y * dy + (dx * dx + dy * dy) * 0.5)
+ if adx > ady:
+ # set formula of line, with x fixed to 1
+ newedge.a = 1.0
+ newedge.b = dy / dx
+ newedge.c /= dx
+ else:
+ # set formula of line, with y fixed to 1
+ newedge.b = 1.0
+ newedge.a = dx / dy
+ newedge.c /= dy
+
+ newedge.edgenum = Edge.EDGE_NUM
+ Edge.EDGE_NUM += 1
+ return newedge
+
+
+class Halfedge(object):
+
+ def __init__(self, edge=None, pm=Edge.LE):
+ self.left = None # left Halfedge in the edge list
+ self.right = None # right Halfedge in the edge list
+ self.qnext = None # priority queue linked list pointer
+ self.edge = edge # edge list Edge
+ self.pm = pm
+ self.vertex = None # Site()
+ self.ystar = BIG_FLOAT
+
+ def dump(self):
+ print("Halfedge--------------------------")
+ print("left: ", self.left)
+ print("right: ", self.right)
+ print("edge: ", self.edge)
+ print("pm: ", self.pm)
+ print("vertex: "),
+ if self.vertex:
+ self.vertex.dump()
+ else:
+ print("None")
+ print("ystar: ", self.ystar)
+
+ def __lt__(self, other):
+ if self.ystar < other.ystar:
+ return True
+ elif self.ystar > other.ystar:
+ return False
+ elif self.vertex.x < other.vertex.x:
+ return True
+ elif self.vertex.x > other.vertex.x:
+ return False
+ else:
+ return False
+
+ def __eq__(self, other):
+ if self.ystar == other.ystar and self.vertex.x == other.vertex.x:
+ return True
+
+ def leftreg(self, default):
+ if not self.edge:
+ return default
+ elif self.pm == Edge.LE:
+ return self.edge.reg[Edge.LE]
+ else:
+ return self.edge.reg[Edge.RE]
+
+ def rightreg(self, default):
+ if not self.edge:
+ return default
+ elif self.pm == Edge.LE:
+ return self.edge.reg[Edge.RE]
+ else:
+ return self.edge.reg[Edge.LE]
+
+ # returns True if p is to right of halfedge self
+ def isPointRightOf(self, pt):
+ e = self.edge
+ topsite = e.reg[1]
+ right_of_site = pt.x > topsite.x
+
+ if(right_of_site and self.pm == Edge.LE):
+ return True
+
+ if(not right_of_site and self.pm == Edge.RE):
+ return False
+
+ if(e.a == 1.0):
+ dyp = pt.y - topsite.y
+ dxp = pt.x - topsite.x
+ fast = 0
+ if ((not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0)):
+ above = dyp >= e.b * dxp
+ fast = above
+ else:
+ above = pt.x + pt.y * e.b > e.c
+ if(e.b < 0.0):
+ above = not above
+ if (not above):
+ fast = 1
+ if (not fast):
+ dxs = topsite.x - (e.reg[0]).x
+ above = e.b * (dxp * dxp - dyp * dyp) < dxs * dyp * (1.0 + 2.0 * dxp / dxs + e.b * e.b)
+ if(e.b < 0.0):
+ above = not above
+ else: # e.b == 1.0
+ yl = e.c - e.a * pt.x
+ t1 = pt.y - yl
+ t2 = pt.x - topsite.x
+ t3 = yl - topsite.y
+ above = t1 * t1 > t2 * t2 + t3 * t3
+
+ if(self.pm == Edge.LE):
+ return above
+ else:
+ return not above
+
+ # create a new site where the Halfedges el1 and el2 intersect
+ def intersect(self, other):
+ e1 = self.edge
+ e2 = other.edge
+ if (e1 is None) or (e2 is None):
+ return None
+
+ # if the two edges bisect the same parent return None
+ if e1.reg[1] is e2.reg[1]:
+ return None
+
+ d = e1.a * e2.b - e1.b * e2.a
+ if isEqual(d, 0.0):
+ return None
+
+ xint = (e1.c * e2.b - e2.c * e1.b) / d
+ yint = (e2.c * e1.a - e1.c * e2.a) / d
+ if e1.reg[1] < e2.reg[1]:
+ he = self
+ e = e1
+ else:
+ he = other
+ e = e2
+
+ rightOfSite = xint >= e.reg[1].x
+ if((rightOfSite and he.pm == Edge.LE) or
+ (not rightOfSite and he.pm == Edge.RE)):
+ return None
+
+ # create a new site at the point of intersection - this is a new
+ # vector event waiting to happen
+ return Site(xint, yint)
+
+
+class EdgeList(object):
+
+ def __init__(self, xmin, xmax, nsites):
+ if xmin > xmax:
+ xmin, xmax = xmax, xmin
+ self.hashsize = int(2 * math.sqrt(nsites + 4))
+
+ self.xmin = xmin
+ self.deltax = float(xmax - xmin)
+ self.hash = [None] * self.hashsize
+
+ self.leftend = Halfedge()
+ self.rightend = Halfedge()
+ self.leftend.right = self.rightend
+ self.rightend.left = self.leftend
+ self.hash[0] = self.leftend
+ self.hash[-1] = self.rightend
+
+ def insert(self, left, he):
+ he.left = left
+ he.right = left.right
+ left.right.left = he
+ left.right = he
+
+ def delete(self, he):
+ he.left.right = he.right
+ he.right.left = he.left
+ he.edge = Edge.DELETED
+
+ # Get entry from hash table, pruning any deleted nodes
+ def gethash(self, b):
+ if(b < 0 or b >= self.hashsize):
+ return None
+ he = self.hash[b]
+ if he is None or he.edge is not Edge.DELETED:
+ return he
+
+ # Hash table points to deleted half edge. Patch as necessary.
+ self.hash[b] = None
+ return None
+
+ def leftbnd(self, pt):
+ # Use hash table to get close to desired halfedge
+ bucket = int(((pt.x - self.xmin) / self.deltax * self.hashsize))
+
+ if(bucket < 0):
+ bucket = 0
+
+ if(bucket >= self.hashsize):
+ bucket = self.hashsize - 1
+
+ he = self.gethash(bucket)
+ if(he is None):
+ i = 1
+ while True:
+ he = self.gethash(bucket - i)
+ if (he is not None):
+ break
+ he = self.gethash(bucket + i)
+ if (he is not None):
+ break
+ i += 1
+
+ # Now search linear list of halfedges for the corect one
+ if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)):
+ he = he.right
+ while he is not self.rightend and he.isPointRightOf(pt):
+ he = he.right
+ he = he.left
+ else:
+ he = he.left
+ while (he is not self.leftend and not he.isPointRightOf(pt)):
+ he = he.left
+
+ # Update hash table and reference counts
+ if(bucket > 0 and bucket < self.hashsize - 1):
+ self.hash[bucket] = he
+ return he
+
+
+class PriorityQueue(object):
+
+ def __init__(self, ymin, ymax, nsites):
+ self.ymin = ymin
+ self.deltay = ymax - ymin
+ self.hashsize = int(4 * math.sqrt(nsites))
+ self.count = 0
+ self.minidx = 0
+ self.hash = []
+ for i in range(self.hashsize):
+ self.hash.append(Halfedge())
+
+ def __len__(self):
+ return self.count
+
+ def isEmpty(self):
+ return self.count == 0
+
+ def insert(self, he, site, offset):
+ he.vertex = site
+ he.ystar = site.y + offset
+ last = self.hash[self.getBucket(he)]
+ next = last.qnext
+ while((next is not None) and he > next):
+ last = next
+ next = last.qnext
+ he.qnext = last.qnext
+ last.qnext = he
+ self.count += 1
+
+ def delete(self, he):
+ if (he.vertex is not None):
+ last = self.hash[self.getBucket(he)]
+ while last.qnext is not he:
+ last = last.qnext
+ last.qnext = he.qnext
+ self.count -= 1
+ he.vertex = None
+
+ def getBucket(self, he):
+ bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize)
+ if bucket < 0:
+ bucket = 0
+ if bucket >= self.hashsize:
+ bucket = self.hashsize - 1
+ if bucket < self.minidx:
+ self.minidx = bucket
+ return bucket
+
+ def getMinPt(self):
+ while(self.hash[self.minidx].qnext is None):
+ self.minidx += 1
+ he = self.hash[self.minidx].qnext
+ x = he.vertex.x
+ y = he.ystar
+ return Site(x, y)
+
+ def popMinHalfedge(self):
+ curr = self.hash[self.minidx].qnext
+ self.hash[self.minidx].qnext = curr.qnext
+ self.count -= 1
+ return curr
+
+
+class SiteList(object):
+
+ def __init__(self, pointList):
+ self.__sites = []
+ self.__sitenum = 0
+
+ self.__xmin = min([pt.x for pt in pointList])
+ self.__ymin = min([pt.y for pt in pointList])
+ self.__xmax = max([pt.x for pt in pointList])
+ self.__ymax = max([pt.y for pt in pointList])
+ self.__extent = (self.__xmin, self.__xmax, self.__ymin, self.__ymax)
+
+ for i, pt in enumerate(pointList):
+ self.__sites.append(Site(pt.x, pt.y, i))
+ self.__sites.sort()
+
+ def setSiteNumber(self, site):
+ site.sitenum = self.__sitenum
+ self.__sitenum += 1
+
+ class Iterator(object):
+
+ def __init__(this, lst):
+ this.generator = (s for s in lst)
+
+ def __iter__(this):
+ return this
+
+ def next(this):
+ try:
+ # Note: Blender is Python 3.x so no need for 2.x checks
+ return this.generator.__next__()
+ except StopIteration:
+ return None
+
+ def iterator(self):
+ return SiteList.Iterator(self.__sites)
+
+ def __iter__(self):
+ return SiteList.Iterator(self.__sites)
+
+ def __len__(self):
+ return len(self.__sites)
+
+ def _getxmin(self):
+ return self.__xmin
+
+ def _getymin(self):
+ return self.__ymin
+
+ def _getxmax(self):
+ return self.__xmax
+
+ def _getymax(self):
+ return self.__ymax
+
+ def _getextent(self):
+ return self.__extent
+
+ xmin = property(_getxmin)
+ ymin = property(_getymin)
+ xmax = property(_getxmax)
+ ymax = property(_getymax)
+ extent = property(_getextent)
+
+
+def computeVoronoiDiagram(points, xBuff=0, yBuff=0, polygonsOutput=False,
+ formatOutput=False, closePoly=True):
+ """
+ Takes :
+ - a list of point objects (which must have x and y fields).
+ - x and y buffer values which are the expansion percentages of the bounding box
+ rectangle including all input points.
+ Returns :
+ - With default options :
+ A list of 2-tuples, representing the two points of each Voronoi diagram edge.
+ Each point contains 2-tuples which are the x,y coordinates of point.
+ if formatOutput is True, returns :
+ - a list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices.
+ - and a list of 2-tuples (v1, v2) representing edges of the Voronoi diagram.
+ v1 and v2 are the indices of the vertices at the end of the edge.
+ - If polygonsOutput option is True, returns :
+ A dictionary of polygons, keys are the indices of the input points,
+ values contains n-tuples representing the n points of each Voronoi diagram polygon.
+ Each point contains 2-tuples which are the x,y coordinates of point.
+ if formatOutput is True, returns :
+ - A list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices.
+ - and a dictionary of input points indices. Values contains n-tuples representing
+ the n points of each Voronoi diagram polygon.
+ Each tuple contains the vertex indices of the polygon vertices.
+ - if closePoly is True then, in the list of points of a polygon, last point will be the same of first point
+ """
+ siteList = SiteList(points)
+ context = Context()
+ voronoi(siteList, context)
+ context.setClipBuffer(xBuff, yBuff)
+ if not polygonsOutput:
+ clipEdges = context.getClipEdges()
+ if formatOutput:
+ vertices, edgesIdx = formatEdgesOutput(clipEdges)
+ return vertices, edgesIdx
+ else:
+ return clipEdges
+ else:
+ clipPolygons = context.getClipPolygons(closePoly)
+ if formatOutput:
+ vertices, polyIdx = formatPolygonsOutput(clipPolygons)
+ return vertices, polyIdx
+ else:
+ return clipPolygons
+
+
+def formatEdgesOutput(edges):
+ # get list of points
+ pts = []
+ for edge in edges:
+ pts.extend(edge)
+ # get unique values
+ pts = set(pts) # unique values (tuples are hashable)
+ # get dict {values:index}
+ valuesIdxDict = dict(zip(pts, range(len(pts))))
+ # get edges index reference
+ edgesIdx = []
+ for edge in edges:
+ edgesIdx.append([valuesIdxDict[pt] for pt in edge])
+ return list(pts), edgesIdx
+
+
+def formatPolygonsOutput(polygons):
+ # get list of points
+ pts = []
+ for poly in polygons.values():
+ pts.extend(poly)
+ # get unique values
+ pts = set(pts) # unique values (tuples are hashable)
+ # get dict {values:index}
+ valuesIdxDict = dict(zip(pts, range(len(pts))))
+ # get polygons index reference
+ polygonsIdx = {}
+ for inPtsIdx, poly in polygons.items():
+ polygonsIdx[inPtsIdx] = [valuesIdxDict[pt] for pt in poly]
+ return list(pts), polygonsIdx
+
+
+def computeDelaunayTriangulation(points):
+ """ Takes a list of point objects (which must have x and y fields).
+ Returns a list of 3-tuples: the indices of the points that form a
+ Delaunay triangle.
+ """
+ siteList = SiteList(points)
+ context = Context()
+ context.triangulate = True
+ voronoi(siteList, context)
+ return context.triangles
diff --git a/add_advanced_objects_panels/__init__.py b/add_advanced_objects_panels/__init__.py
new file mode 100644
index 00000000..81950727
--- /dev/null
+++ b/add_advanced_objects_panels/__init__.py
@@ -0,0 +1,467 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+# Contributed to by:
+# meta-androcto, Bill Currie, Jorge Hernandez - Melenedez Jacob Morris, Oscurart #
+# Rebellion, Antonis Karvelas, Eleanor Howick, lijenstina, Daniel Schalla, Domlysz #
+# Unnikrishnan(kodemax), Florian Meyer, Omar ahmed, Brian Hinton (Nichod), liero #
+# Atom, Dannyboy, Mano-Wii, Kursad Karatas, teldredge, Phil Cote #
+
+bl_info = {
+ "name": "Add Advanced Object Panels",
+ "author": "meta-androcto,",
+ "version": (1, 1, 4),
+ "blender": (2, 7, 7),
+ "description": "Individual Create Panel Activation List",
+ "location": "Addons Preferences",
+ "warning": "",
+ "wiki_url": "https://wiki.blender.org/index.php/Extensions:2.6/Py/"
+ "Scripts/3D_interaction/viewport_pies",
+ "category": "Object"
+ }
+
+import bpy
+from bpy.types import (
+ Menu,
+ AddonPreferences,
+ PropertyGroup,
+ )
+from bpy.props import (
+ BoolProperty,
+ BoolVectorProperty,
+ EnumProperty,
+ FloatProperty,
+ FloatVectorProperty,
+ IntProperty,
+ StringProperty,
+ PointerProperty,
+ )
+
+sub_modules_names = (
+ "drop_to_ground",
+ "object_laplace_lightning",
+ "object_mangle_tools",
+ "unfold_transition",
+ "delaunay_voronoi",
+ "oscurart_constellation",
+ )
+
+
+sub_modules = [__import__(__package__ + "." + submod, {}, {}, submod) for submod in sub_modules_names]
+sub_modules.sort(key=lambda mod: (mod.bl_info['category'], mod.bl_info['name']))
+
+
+#Addons Preferences
+def _get_pref_class(mod):
+ import inspect
+
+ for obj in vars(mod).values():
+ if inspect.isclass(obj) and issubclass(obj, PropertyGroup):
+ if hasattr(obj, 'bl_idname') and obj.bl_idname == mod.__name__:
+ return obj
+
+
+def get_addon_preferences(name=''):
+ """Acquisition and registration"""
+ addons = bpy.context.user_preferences.addons
+ if __name__ not in addons: # wm.read_factory_settings()
+ return None
+ addon_prefs = addons[__name__].preferences
+ if name:
+ if not hasattr(addon_prefs, name):
+ for mod in sub_modules:
+ if mod.__name__.split('.')[-1] == name:
+ cls = _get_pref_class(mod)
+ if cls:
+ prop = PointerProperty(type=cls)
+ setattr(AdvancedObjPreferences1, name, prop)
+ bpy.utils.unregister_class(AdvancedObjPreferences1)
+ bpy.utils.register_class(AdvancedObjPreferences1)
+ return getattr(addon_prefs, name, None)
+ else:
+ return addon_prefs
+
+
+def register_submodule(mod):
+ if not hasattr(mod, '__addon_enabled__'):
+ mod.__addon_enabled__ = False
+ if not mod.__addon_enabled__:
+ mod.register()
+ mod.__addon_enabled__ = True
+
+
+def unregister_submodule(mod):
+ if mod.__addon_enabled__:
+ mod.unregister()
+ mod.__addon_enabled__ = False
+
+ prefs = get_addon_preferences()
+ name = mod.__name__.split('.')[-1]
+ if hasattr(AdvancedObjPreferences1, name):
+ delattr(AdvancedObjPreferences1, name)
+ if prefs:
+ bpy.utils.unregister_class(AdvancedObjPreferences1)
+ bpy.utils.register_class(AdvancedObjPreferences1)
+ if name in prefs:
+ del prefs[name]
+
+
+class AdvancedObjPreferences1(AddonPreferences):
+ bl_idname = __name__
+
+ def draw(self, context):
+ layout = self.layout
+
+ for mod in sub_modules:
+ mod_name = mod.__name__.split('.')[-1]
+ info = mod.bl_info
+ column = layout.column()
+ box = column.box()
+
+ # first stage
+ expand = getattr(self, 'show_expanded_' + mod_name)
+ icon = 'TRIA_DOWN' if expand else 'TRIA_RIGHT'
+ col = box.column()
+ row = col.row()
+ sub = row.row()
+ sub.context_pointer_set('addon_prefs', self)
+ op = sub.operator('wm.context_toggle', text='', icon=icon,
+ emboss=False)
+ op.data_path = 'addon_prefs.show_expanded_' + mod_name
+ sub.label('{}: {}'.format(info['category'], info['name']))
+ sub = row.row()
+ sub.alignment = 'RIGHT'
+ if info.get('warning'):
+ sub.label('', icon='ERROR')
+ sub.prop(self, 'use_' + mod_name, text='')
+
+ # The second stage
+ if expand:
+ if info.get('description'):
+ split = col.row().split(percentage=0.15)
+ split.label('Description:')
+ split.label(info['description'])
+ if info.get('location'):
+ split = col.row().split(percentage=0.15)
+ split.label('Location:')
+ split.label(info['location'])
+ if info.get('author') and info.get('author') != 'chromoly':
+ split = col.row().split(percentage=0.15)
+ split.label('Author:')
+ split.label(info['author'])
+ if info.get('version'):
+ split = col.row().split(percentage=0.15)
+ split.label('Version:')
+ split.label('.'.join(str(x) for x in info['version']),
+ translate=False)
+ if info.get('warning'):
+ split = col.row().split(percentage=0.15)
+ split.label('Warning:')
+ split.label(' ' + info['warning'], icon='ERROR')
+
+ tot_row = int(bool(info.get('wiki_url')))
+ if tot_row:
+ split = col.row().split(percentage=0.15)
+ split.label(text='Internet:')
+ if info.get('wiki_url'):
+ op = split.operator('wm.url_open',
+ text='Documentation', icon='HELP')
+ op.url = info.get('wiki_url')
+ for i in range(4 - tot_row):
+ split.separator()
+
+ # Details and settings
+ if getattr(self, 'use_' + mod_name):
+ prefs = get_addon_preferences(mod_name)
+
+ if prefs and hasattr(prefs, 'draw'):
+ box = box.column()
+ prefs.layout = box
+ try:
+ prefs.draw(context)
+ except:
+ traceback.print_exc()
+ box.label(text='Error (see console)', icon='ERROR')
+ del prefs.layout
+
+ row = layout.row()
+ row.label("End of Panel Activations")
+
+
+for mod in sub_modules:
+ info = mod.bl_info
+ mod_name = mod.__name__.split('.')[-1]
+
+ def gen_update(mod):
+ def update(self, context):
+ if getattr(self, 'use_' + mod.__name__.split('.')[-1]):
+ if not mod.__addon_enabled__:
+ register_submodule(mod)
+ else:
+ if mod.__addon_enabled__:
+ unregister_submodule(mod)
+ return update
+
+ prop = BoolProperty(
+ name=info['name'],
+ description=info.get('description', ''),
+ update=gen_update(mod),
+ )
+ setattr(AdvancedObjPreferences1, 'use_' + mod_name, prop)
+ prop = BoolProperty()
+ setattr(AdvancedObjPreferences1, 'show_expanded_' + mod_name, prop)
+
+
+class AdvancedObjProperties1(PropertyGroup):
+
+ # main properties
+
+ # object_laplace_lighting props
+ ORIGIN = FloatVectorProperty(
+ name="Origin charge"
+ )
+ GROUNDZ = IntProperty(
+ name="Ground Z coordinate"
+ )
+ HORDER = IntProperty(
+ name="Secondary paths orders",
+ default=1
+ )
+ # object_laplace_lighting UI props
+ TSTEPS = IntProperty(
+ name="Iterations",
+ default=350,
+ description="Number of cells to create\n"
+ "Will end early if hits ground plane or cloud"
+ )
+ GSCALE = FloatProperty(
+ name="Grid unit size",
+ default=0.12,
+ description="scale of cells, .25 = 4 cells per blenderUnit"
+ )
+ BIGVAR = FloatProperty(
+ name="Straightness",
+ default=6.3,
+ description="Straightness/branchiness of bolt, \n"
+ "<2 is mush, >12 is staight line, 6.3 is good"
+ )
+ GROUNDBOOL = BoolProperty(
+ name="Use Ground object",
+ description="Use ground plane or not",
+ default=True
+ )
+ GROUNDC = IntProperty(
+ name="Ground charge",
+ default=-250,
+ description="Charge of the ground plane"
+ )
+ CLOUDBOOL = BoolProperty(
+ name="Use Cloud object",
+ default=False,
+ description="Use cloud object - attracts and terminates like ground but\n"
+ "any obj instead of z plane\n"
+ "Can slow down loop if obj is large, overrides ground"
+ )
+ CLOUDC = IntProperty(
+ name="Cloud charge",
+ default=-1,
+ description="Charge of a cell in cloud object\n"
+ "(so total charge also depends on obj size)"
+ )
+ VMMESH = BoolProperty(
+ name="Multi mesh",
+ default=True,
+ description="Output to multi-meshes for different materials on main/sec/side branches"
+ )
+ VSMESH = BoolProperty(
+ name="Single mesh",
+ default=False,
+ description="Output to single mesh for using build modifier and particles for effects"
+ )
+ VCUBE = BoolProperty(
+ name="Cubes",
+ default=False,
+ description="CTRL-J after run to JOIN\n"
+ "Outputs a bunch of cube objects, mostly for testing"
+ )
+ VVOX = BoolProperty(
+ name="Voxel (experimental)",
+ default=False,
+ description="Output to a voxel file to bpy.data.filepath\FSLGvoxels.raw\n"
+ "(doesn't work well right now)"
+ )
+ IBOOL = BoolProperty(
+ name="Use Insulator object",
+ default=False,
+ description="Use insulator mesh object to prevent growth of bolt in areas"
+ )
+ OOB = StringProperty(
+ name="Select",
+ default="",
+ description="Origin of bolt, can be an Empty\n"
+ "if object is a mesh will use all verts as charges")
+ GOB = StringProperty(
+ name="Select",
+ default="",
+ description="Object to use as ground plane, uses z coord only"
+ )
+ COB = StringProperty(
+ name="Select",
+ default="",
+ description="Object to use as cloud, best to use a cube"
+ )
+ IOB = StringProperty(
+ name="Select",
+ default="",
+ description="Object to use as insulator, 'voxelized'\n"
+ "before generating bolt (can be slow)"
+ )
+ # object_mangle_tools properties
+ mangle_constraint_vector = BoolVectorProperty(
+ name="Mangle Constraint",
+ default=(True, True, True),
+ subtype='XYZ',
+ description="Constrains Mangle Direction"
+ )
+ mangle_random_magnitude = IntProperty(
+ name="Mangle Severity",
+ default=5,
+ min=1, max=30,
+ description="Severity of mangling"
+ )
+ mangle_name = StringProperty(
+ name="Shape Key Name",
+ default="mangle",
+ description="Name given for mangled shape keys"
+ )
+ # unfold_transition properties
+ unfold_arm_name = StringProperty(
+ default=""
+ )
+ unfold_modo = EnumProperty(
+ name="",
+ items=[("cursor", "3D Cursor", "Use the Distance to 3D Cursor"),
+ ("weight", "Weight Map", "Use a Painted Weight map"),
+ ("index", "Mesh Indices", "Use Faces and Vertices index")],
+ description="How to Sort Bones for animation", default="cursor"
+ )
+ unfold_flip = BoolProperty(
+ name="Flipping Faces",
+ default=False,
+ description="Rotate faces around the Center and skip Scaling - "
+ "keep checked for both operators"
+ )
+ unfold_fold_duration = IntProperty(
+ name="Total Time",
+ min=5, soft_min=25,
+ max=10000, soft_max=2500,
+ default=200,
+ description="Total animation length"
+ )
+ unfold_sca_time = IntProperty(
+ name="Scale Time",
+ min=1,
+ max=5000, soft_max=500,
+ default=10,
+ description="Faces scaling time"
+ )
+ unfold_rot_time = IntProperty(
+ name="Rotation Time",
+ min=1, soft_min=5,
+ max=5000, soft_max=500,
+ default=15,
+ description="Faces rotation time"
+ )
+ unfold_rot_max = IntProperty(
+ name="Angle",
+ min=-180,
+ max=180,
+ default=135,
+ description="Faces rotation angle"
+ )
+ unfold_fold_noise = IntProperty(
+ name="Noise",
+ min=0,
+ max=500, soft_max=50,
+ default=0,
+ description="Offset some faces animation"
+ )
+ unfold_bounce = FloatProperty(
+ name="Bounce",
+ min=0,
+ max=10, soft_max=2.5,
+ default=0,
+ description="Add some bounce to rotation"
+ )
+ unfold_from_point = BoolProperty(
+ name="Point",
+ default=False,
+ description="Scale faces from a Point instead of from an Edge"
+ )
+ unfold_wiggle_rot = BoolProperty(
+ name="Wiggle",
+ default=False,
+ description="Use all Axis + Random Rotation instead of X Aligned"
+ )
+ # oscurart_constellation
+ constellation_limit = FloatProperty(
+ name="Inital Threshold",
+ description="Edges will be created only if the distance\n"
+ "between vertices is smaller than this value\n"
+ "This is a starting value on Operator Invoke",
+ default=2,
+ min=0
+ )
+
+
+# Class list
+classes = (
+ AdvancedObjPreferences1,
+ AdvancedObjProperties1,
+ )
+
+
+def register():
+ for cls in classes:
+ bpy.utils.register_class(cls)
+
+ bpy.types.Scene.advanced_objects1 = PointerProperty(
+ type=AdvancedObjProperties1
+ )
+
+ prefs = get_addon_preferences()
+ for mod in sub_modules:
+ if not hasattr(mod, '__addon_enabled__'):
+ mod.__addon_enabled__ = False
+ name = mod.__name__.split('.')[-1]
+ if getattr(prefs, 'use_' + name):
+ register_submodule(mod)
+
+
+def unregister():
+ for mod in sub_modules:
+ if mod.__addon_enabled__:
+ unregister_submodule(mod)
+ del bpy.types.Scene.advanced_objects1
+
+ for cls in reversed(classes):
+ bpy.utils.unregister_class(cls)
+
+
+if __name__ == "__main__":
+ register()
diff --git a/add_advanced_objects_panels/delaunay_voronoi.py b/add_advanced_objects_panels/delaunay_voronoi.py
new file mode 100644
index 00000000..ec8f330a
--- /dev/null
+++ b/add_advanced_objects_panels/delaunay_voronoi.py
@@ -0,0 +1,312 @@
+# -*- coding:utf-8 -*-
+
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+bl_info = {
+ "name": "Delaunay Voronoi",
+ "description": "Points cloud Delaunay triangulation in 2.5D "
+ "(suitable for terrain modelling) or Voronoi diagram in 2D",
+ "author": "Domlysz, Oscurart",
+ "version": (1, 3),
+ "blender": (2, 7, 0),
+ "location": "View3D > Tools > GIS",
+ "warning": "",
+ "wiki_url": "https://github.com/domlysz/BlenderGIS/wiki",
+ "category": "Add Mesh"
+ }
+
+
+
+import bpy
+from .DelaunayVoronoi import (
+ computeVoronoiDiagram,
+ computeDelaunayTriangulation,
+ )
+from bpy.types import (
+ Operator,
+ Panel,
+ )
+from bpy.props import EnumProperty
+
+
+# Globals
+# set to True to enable debug_prints
+DEBUG = False
+
+
+def debug_prints(text=""):
+ global DEBUG
+ if DEBUG and text:
+ print(text)
+
+
+class Point:
+ def __init__(self, x, y, z):
+ self.x, self.y, self.z = x, y, z
+
+
+def unique(L):
+ """Return a list of unhashable elements in s, but without duplicates.
+ [[1, 2], [2, 3], [1, 2]] >>> [[1, 2], [2, 3]]"""
+ # For unhashable objects, you can sort the sequence and
+ # then scan from the end of the list, deleting duplicates as you go
+ nDupli = 0
+ nZcolinear = 0
+ # sort() brings the equal elements together; then duplicates
+ # are easy to weed out in a single pass
+ L.sort()
+ last = L[-1]
+ for i in range(len(L) - 2, -1, -1):
+ if last[:2] == L[i][:2]: # XY coordinates compararison
+ if last[2] == L[i][2]: # Z coordinates compararison
+ nDupli += 1 # duplicates vertices
+ else: # Z colinear
+ nZcolinear += 1
+ del L[i]
+ else:
+ last = L[i]
+ # list data type is mutable, input list will automatically update
+ # and doesn't need to be returned
+ return (nDupli, nZcolinear)
+
+
+def checkEqual(lst):
+ return lst[1:] == lst[:-1]
+
+
+class ToolsPanelDelaunay(Panel):
+ bl_category = "Create"
+ bl_label = "Delaunay Voronoi"
+ bl_space_type = "VIEW_3D"
+ bl_context = "objectmode"
+ bl_region_type = "TOOLS"
+ bl_options = {"DEFAULT_CLOSED"}
+
+ def draw(self, context):
+ layout = self.layout
+ adv_obj = context.scene.advanced_objects
+
+ box = layout.box()
+ col = box.column(align=True)
+ col.label("Point Cloud:")
+ col.operator("delaunay.triangulation")
+ col.operator("voronoi.tesselation")
+
+
+class OBJECT_OT_TriangulateButton(Operator):
+ bl_idname = "delaunay.triangulation"
+ bl_label = "Triangulation"
+ bl_description = ("Terrain points cloud Delaunay triangulation in 2.5D\n"
+ "Needs an existing Active Mesh Object")
+ bl_options = {"REGISTER", "UNDO"}
+
+ @classmethod
+ def poll(cls, context):
+ obj = context.active_object
+ return (obj is not None and obj.type == "MESH")
+
+ def execute(self, context):
+ # move the check into the poll
+ obj = context.active_object
+
+ # Get points coodinates
+ r = obj.rotation_euler
+ s = obj.scale
+ mesh = obj.data
+ vertsPts = [vertex.co for vertex in mesh.vertices]
+
+ # Remove duplicate
+ verts = [[vert.x, vert.y, vert.z] for vert in vertsPts]
+ nDupli, nZcolinear = unique(verts)
+ nVerts = len(verts)
+
+ debug_prints(text=str(nDupli) + " duplicate points ignored")
+ debug_prints(str(nZcolinear) + " z colinear points excluded")
+
+ if nVerts < 3:
+ self.report({"WARNING"},
+ "Not enough points to continue. Operation Cancelled")
+
+ return {"CANCELLED"}
+
+ # Check colinear
+ xValues = [pt[0] for pt in verts]
+ yValues = [pt[1] for pt in verts]
+
+ if checkEqual(xValues) or checkEqual(yValues):
+ self.report({'ERROR'}, "Points are colinear")
+ return {'FINISHED'}
+
+ # Triangulate
+ debug_prints(text="Triangulate " + str(nVerts) + " points...")
+
+ vertsPts = [Point(vert[0], vert[1], vert[2]) for vert in verts]
+ triangles = computeDelaunayTriangulation(vertsPts)
+ # reverse point order --> if all triangles are specified anticlockwise then all faces up
+ triangles = [tuple(reversed(tri)) for tri in triangles]
+
+ debug_prints(text=str(len(triangles)) + " triangles")
+
+ # Create new mesh structure
+ debug_prints(text="Create mesh...")
+ tinMesh = bpy.data.meshes.new("TIN") # create a new mesh
+ tinMesh.from_pydata(verts, [], triangles) # Fill the mesh with triangles
+ tinMesh.update(calc_edges=True) # Update mesh with new data
+
+ # Create an object with that mesh
+ tinObj = bpy.data.objects.new("TIN", tinMesh)
+
+ # Place object
+ tinObj.location = obj.location.copy()
+ tinObj.rotation_euler = r
+ tinObj.scale = s
+
+ # Update scene
+ bpy.context.scene.objects.link(tinObj) # Link object to scene
+ bpy.context.scene.objects.active = tinObj
+ tinObj.select = True
+ obj.select = False
+
+ self.report({"INFO"},
+ "Mesh created (" + str(len(triangles)) + " triangles)")
+
+ return {'FINISHED'}
+
+
+class OBJECT_OT_VoronoiButton(Operator):
+ bl_idname = "voronoi.tesselation"
+ bl_label = "Diagram"
+ bl_description = ("Points cloud Voronoi diagram in 2D\n"
+ "Needs an existing Active Mesh Object")
+ bl_options = {"REGISTER", "UNDO"}
+
+ meshType = EnumProperty(
+ items=[('Edges', "Edges", "Edges Only - do not fill Faces"),
+ ('Faces', "Faces", "Fill Faces in the new Object")],
+ name="Mesh type",
+ description="Type of geometry to generate"
+ )
+
+ @classmethod
+ def poll(cls, context):
+ obj = context.active_object
+ return (obj is not None and obj.type == "MESH")
+
+ def execute(self, context):
+ # move the check into the poll
+ obj = context.active_object
+
+ # Get points coodinates
+ r = obj.rotation_euler
+ s = obj.scale
+ mesh = obj.data
+ vertsPts = [vertex.co for vertex in mesh.vertices]
+
+ # Remove duplicate
+ verts = [[vert.x, vert.y, vert.z] for vert in vertsPts]
+ nDupli, nZcolinear = unique(verts)
+ nVerts = len(verts)
+
+ debug_prints(text=str(nDupli) + " duplicates points ignored")
+ debug_prints(text=str(nZcolinear) + " z colinear points excluded")
+
+ if nVerts < 3:
+ self.report({"WARNING"},
+ "Not enough points to continue. Operation Cancelled")
+
+ return {"CANCELLED"}
+
+ # Check colinear
+ xValues = [pt[0] for pt in verts]
+ yValues = [pt[1] for pt in verts]
+
+ if checkEqual(xValues) or checkEqual(yValues):
+ self.report({"WARNING"},
+ "Points are colinear. Operation Cancelled")
+
+ return {"CANCELLED"}
+
+ # Create diagram
+ debug_prints(text="Tesselation... (" + str(nVerts) + " points)")
+
+ xbuff, ybuff = 5, 5
+ zPosition = 0
+ vertsPts = [Point(vert[0], vert[1], vert[2]) for vert in verts]
+
+ if self.meshType == "Edges":
+ pts, edgesIdx = computeVoronoiDiagram(
+ vertsPts, xbuff, ybuff,
+ polygonsOutput=False, formatOutput=True
+ )
+ else:
+ pts, polyIdx = computeVoronoiDiagram(
+ vertsPts, xbuff, ybuff, polygonsOutput=True,
+ formatOutput=True, closePoly=False
+ )
+
+ pts = [[pt[0], pt[1], zPosition] for pt in pts]
+
+ # Create new mesh structure
+ voronoiDiagram = bpy.data.meshes.new("VoronoiDiagram") # create a new mesh
+
+ if self.meshType == "Edges":
+ # Fill the mesh with triangles
+ voronoiDiagram.from_pydata(pts, edgesIdx, [])
+ else:
+ # Fill the mesh with triangles
+ voronoiDiagram.from_pydata(pts, [], list(polyIdx.values()))
+
+ voronoiDiagram.update(calc_edges=True) # Update mesh with new data
+ # create an object with that mesh
+ voronoiObj = bpy.data.objects.new("VoronoiDiagram", voronoiDiagram)
+ # place object
+ voronoiObj.location = obj.location.copy()
+ voronoiObj.rotation_euler = r
+ voronoiObj.scale = s
+
+ # update scene
+ bpy.context.scene.objects.link(voronoiObj) # Link object to scene
+ bpy.context.scene.objects.active = voronoiObj
+ voronoiObj.select = True
+ obj.select = False
+
+ # Report
+ if self.meshType == "Edges":
+ self.report({"INFO"}, "Mesh created (" + str(len(edgesIdx)) + " edges)")
+ else:
+ self.report({"INFO"}, "Mesh created (" + str(len(polyIdx)) + " polygons)")
+
+ return {'FINISHED'}
+
+# Register
+def register():
+ bpy.utils.register_class(OBJECT_OT_VoronoiButton)
+ bpy.utils.register_class(OBJECT_OT_TriangulateButton)
+ bpy.utils.register_class(ToolsPanelDelaunay)
+
+
+def unregister():
+ bpy.utils.unregister_class(OBJECT_OT_VoronoiButton)
+ bpy.utils.unregister_class(OBJECT_OT_TriangulateButton)
+ bpy.utils.unregister_class(ToolsPanelDelaunay)
+
+
+if __name__ == "__main__":
+ register()
+
diff --git a/add_advanced_objects_panels/drop_to_ground.py b/add_advanced_objects_panels/drop_to_ground.py
new file mode 100644
index 00000000..35020020
--- /dev/null
+++ b/add_advanced_objects_panels/drop_to_ground.py
@@ -0,0 +1,347 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+bl_info = {
+ "name": "Drop to Ground1",
+ "author": "Unnikrishnan(kodemax), Florian Meyer(testscreenings)",
+ "blender": (2, 71, 0),
+ "location": "3D View > Toolshelf > Tools Tab",
+ "description": "Drop selected objects on active object",
+ "warning": "",
+ "category": "Object"}
+
+
+import bpy
+import bmesh
+from mathutils import (
+ Vector,
+ Matrix,
+ )
+from bpy.types import (
+ Operator,
+ Panel,
+ )
+from bpy.props import BoolProperty
+
+
+def get_align_matrix(location, normal):
+ up = Vector((0, 0, 1))
+ angle = normal.angle(up)
+ axis = up.cross(normal)
+ mat_rot = Matrix.Rotation(angle, 4, axis)
+ mat_loc = Matrix.Translation(location)
+ mat_align = mat_rot * mat_loc
+ return mat_align
+
+
+def transform_ground_to_world(sc, ground):
+ tmpMesh = ground.to_mesh(sc, True, 'PREVIEW')
+ tmpMesh.transform(ground.matrix_world)
+ tmp_ground = bpy.data.objects.new('tmpGround', tmpMesh)
+ sc.objects.link(tmp_ground)
+ sc.update()
+
+ return tmp_ground
+
+
+def get_lowest_world_co_from_mesh(ob, mat_parent=None):
+ bme = bmesh.new()
+ bme.from_mesh(ob.data)
+ mat_to_world = ob.matrix_world.copy()
+ if mat_parent:
+ mat_to_world = mat_parent * mat_to_world
+ lowest = None
+ for v in bme.verts:
+ if not lowest:
+ lowest = v
+ if (mat_to_world * v.co).z < (mat_to_world * lowest.co).z:
+ lowest = v
+ lowest_co = mat_to_world * lowest.co
+ bme.free()
+
+ return lowest_co
+
+
+def get_lowest_world_co(context, ob, mat_parent=None):
+ if ob.type == 'MESH':
+ return get_lowest_world_co_from_mesh(ob)
+
+ elif ob.type == 'EMPTY' and ob.dupli_type == 'GROUP':
+ if not ob.dupli_group:
+ return None
+
+ else:
+ lowest_co = None
+ for ob_l in ob.dupli_group.objects:
+ if ob_l.type == 'MESH':
+ lowest_ob_l = get_lowest_world_co_from_mesh(ob_l, ob.matrix_world)
+ if not lowest_co:
+ lowest_co = lowest_ob_l
+ if lowest_ob_l.z < lowest_co.z:
+ lowest_co = lowest_ob_l
+
+ return lowest_co
+
+
+def drop_objectsall(self, context):
+ ground = bpy.context.active_object
+ name = ground.name
+
+ for obs in bpy.context.scene.objects:
+ obs.select = True
+ if obs.name == name:
+ obs.select = False
+
+ obs2 = context.selected_objects
+
+ tmp_ground = transform_ground_to_world(context.scene, ground)
+ down = Vector((0, 0, -10000))
+
+ for ob in obs2:
+ if self.use_origin:
+ lowest_world_co = ob.location
+ else:
+ lowest_world_co = get_lowest_world_co(context, ob)
+
+ if not lowest_world_co:
+ message = "Type {} is not supported. Failed to drop {}".format(ob.type, ob.name)
+ self.reported.append(message)
+ continue
+ is_hit, hit_location, hit_normal, hit_index = tmp_ground.ray_cast(lowest_world_co, down)
+
+ if not is_hit:
+ message = ob.name + " did not hit the Ground"
+ self.reported.append(message)
+ continue
+
+ # simple drop down
+ to_ground_vec = hit_location - lowest_world_co
+ ob.location += to_ground_vec
+
+ # drop with align to hit normal
+ if self.align:
+ to_center_vec = ob.location - hit_location # vec: hit_loc to origin
+ # rotate object to align with face normal
+ mat_normal = get_align_matrix(hit_location, hit_normal)
+ rot_euler = mat_normal.to_euler()
+ mat_ob_tmp = ob.matrix_world.copy().to_3x3()
+ mat_ob_tmp.rotate(rot_euler)
+ mat_ob_tmp = mat_ob_tmp.to_4x4()
+ ob.matrix_world = mat_ob_tmp
+ # move_object to hit_location
+ ob.location = hit_location
+ # move object above surface again
+ to_center_vec.rotate(rot_euler)
+ ob.location += to_center_vec
+
+ # cleanup
+ bpy.ops.object.select_all(action='DESELECT')
+ tmp_ground.select = True
+ bpy.ops.object.delete('EXEC_DEFAULT')
+ for ob in obs2:
+ ob.select = True
+ ground.select = True
+
+
+def drop_objects(self, context):
+ ground = context.object
+ obs = context.selected_objects
+ obs.remove(ground)
+ tmp_ground = transform_ground_to_world(context.scene, ground)
+ down = Vector((0, 0, -10000))
+
+ for ob in obs:
+ if self.use_origin:
+ lowest_world_co = ob.location
+ else:
+ lowest_world_co = get_lowest_world_co(context, ob)
+
+ if not lowest_world_co:
+ message = "Type {} is not supported. Failed to drop {}".format(ob.type, ob.name)
+ self.reported.append(message)
+ continue
+
+ is_hit, hit_location, hit_normal, hit_index = tmp_ground.ray_cast(lowest_world_co, down)
+ if not is_hit:
+ message = ob.name + " did not hit the Ground"
+ self.reported.append(message)
+ continue
+
+ # simple drop down
+ to_ground_vec = hit_location - lowest_world_co
+ ob.location += to_ground_vec
+
+ # drop with align to hit normal
+ if self.align:
+ to_center_vec = ob.location - hit_location # vec: hit_loc to origin
+ # rotate object to align with face normal
+ mat_normal = get_align_matrix(hit_location, hit_normal)
+ rot_euler = mat_normal.to_euler()
+ mat_ob_tmp = ob.matrix_world.copy().to_3x3()
+ mat_ob_tmp.rotate(rot_euler)
+ mat_ob_tmp = mat_ob_tmp.to_4x4()
+ ob.matrix_world = mat_ob_tmp
+ # move_object to hit_location
+ ob.location = hit_location
+ # move object above surface again
+ to_center_vec.rotate(rot_euler)
+ ob.location += to_center_vec
+
+ # cleanup
+ bpy.ops.object.select_all(action='DESELECT')
+ tmp_ground.select = True
+ bpy.ops.object.delete('EXEC_DEFAULT')
+ for ob in obs:
+ ob.select = True
+ ground.select = True
+
+
+class OBJECT_OT_drop_to_ground(Operator):
+ bl_idname = "object.drop_on_active"
+ bl_label = "Drop to Ground"
+ bl_description = "Drop selected objects on the active object"
+ bl_options = {'REGISTER', 'UNDO'}
+
+ align = BoolProperty(
+ name="Align to ground",
+ description="Aligns the object to the ground",
+ default=True)
+ use_origin = BoolProperty(
+ name="Use Center",
+ description="Drop to objects origins",
+ default=False)
+ reported = []
+
+ @classmethod
+ def poll(cls, context):
+ return len(context.selected_objects) >= 2
+
+ def execute(self, context):
+ drop_objects(self, context)
+
+ if self.reported:
+ self.report({"INFO"},
+ "Operation failed on some objects. See the Console for more Info")
+ report_items = " \n".join(self.reported)
+ print("\n[Drop to Ground Report]\n{}\n".format(report_items))
+
+ self.reported = []
+
+ return {'FINISHED'}
+
+
+class OBJECT_OT_drop_all_ground(Operator):
+ bl_idname = "object.drop_all_active"
+ bl_label = "Drop All to Ground (Active Object)"
+ bl_description = "Drop selected objects on active object"
+ bl_options = {'REGISTER', 'UNDO'}
+
+ align = BoolProperty(
+ name="Align to ground",
+ description="Aligns the object to the ground",
+ default=True)
+ use_origin = BoolProperty(
+ name="Use Center",
+ description="Drop to objects origins",
+ default=False)
+ reported = []
+
+ @classmethod
+ def poll(cls, context):
+ return context.active_object is not None
+
+ def execute(self, context):
+ drop_objectsall(self, context)
+
+ if self.reported:
+ self.report({"INFO"},
+ "Operation failed on some objects. See the Console for more Info")
+ report_items = " \n".join(self.reported)
+ print("\n[Drop All to Ground Report]\n{}\n".format(report_items))
+
+ self.reported = []
+
+ return {'FINISHED'}
+
+
+class Drop_help(Operator):
+ bl_idname = "help.drop"
+ bl_label = ""
+
+ is_all = BoolProperty(
+ default=True,
+ options={"HIDDEN"}
+ )
+
+ def draw(self, context):
+ layout = self.layout
+ layout.label("To use:")
+
+ if self.is_all is False:
+ layout.label("Name the base object 'Ground'")
+ layout.label("Select the object's to drop")
+ layout.label("Then Shift Select 'Ground'")
+ else:
+ layout.label("Select the ground mesh and press Drop all")
+
+ def execute(self, context):
+ return {'FINISHED'}
+
+ def invoke(self, context, event):
+ return context.window_manager.invoke_popup(self, width=300)
+
+
+class Drop_Operator_Panel(Panel):
+ bl_label = "Drop To Ground"
+ bl_region_type = "TOOLS"
+ bl_space_type = "VIEW_3D"
+ bl_options = {'DEFAULT_CLOSED'}
+ bl_context = "objectmode"
+ bl_category = "Create"
+
+ def draw(self, context):
+ layout = self.layout
+
+ row = layout.split(percentage=0.8, align=True)
+ row.operator(OBJECT_OT_drop_to_ground.bl_idname,
+ text="Drop Selected")
+ row.operator("help.drop", icon="LAYER_USED").is_all = False
+
+ row = layout.split(percentage=0.8, align=True)
+ row.operator(OBJECT_OT_drop_all_ground.bl_idname,
+ text="Drop All")
+ row.operator("help.drop", icon="LAYER_USED").is_all = True
+
+
+# Register
+def register():
+ bpy.utils.register_class(OBJECT_OT_drop_all_ground)
+ bpy.utils.register_class(OBJECT_OT_drop_to_ground)
+ bpy.utils.register_class(Drop_Operator_Panel)
+ bpy.utils.register_class(Drop_help)
+
+
+def unregister():
+ bpy.utils.unregister_class(OBJECT_OT_drop_all_ground)
+ bpy.utils.unregister_class(OBJECT_OT_drop_to_ground)
+ bpy.utils.unregister_class(Drop_Operator_Panel)
+ bpy.utils.unregister_class(Drop_help)
+
+
+if __name__ == "__main__":
+ register()
diff --git a/add_advanced_objects_panels/object_laplace_lightning.py b/add_advanced_objects_panels/object_laplace_lightning.py
new file mode 100644
index 00000000..2f3b2498
--- /dev/null
+++ b/add_advanced_objects_panels/object_laplace_lightning.py
@@ -0,0 +1,1440 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+# NOTE: moved the winmgr properties to __init__ and scene
+# search for context.scene.advanced_objects
+
+bl_info = {
+ "name": "Laplacian Lightning",
+ "author": "teldredge",
+ "blender": (2, 78, 0),
+ "location": "View3D > Toolshelf > Create Tab",
+ "description": "Lightning mesh generator using laplacian growth algorithm",
+ "warning": "",
+ "category": "Object"}
+
+# BLENDER LAPLACIAN LIGHTNING
+# teldredge
+# www.funkboxing.com
+# https://developer.blender.org/T27189
+
+# using algorithm from
+# FAST SIMULATION OF LAPLACIAN GROWTH (FSLG)
+# http://gamma.cs.unc.edu/FRAC/
+
+# and a few ideas ideas from
+# FAST ANIMATION OF LIGHTNING USING AN ADAPTIVE MESH (FALUAM)
+# http://gamma.cs.unc.edu/FAST_LIGHTNING/
+
+
+"""
+----- RELEASE LOG/NOTES/PONTIFICATIONS -----
+v0.1.0 - 04.11.11
+ basic generate functions and UI
+ object creation report (Custom Properties: FSLG_REPORT)
+v0.2.0 - 04.15.11
+ started spelling laplacian right.
+ add curve function (not in UI) ...twisting problem
+ classify stroke by MAIN path, h-ORDER paths, TIP paths
+ jitter cells for mesh creation
+ add materials if present
+v0.2.1 - 04.16.11
+ mesh classification speedup
+v0.2.2 - 04.21.11
+ fxns to write/read array to file
+ restrict growth to insulator cells (object bounding box)
+ origin/ground defineable by object
+ gridunit more like 'resolution'
+v0.2.3 - 04.24.11
+ cloud attractor object (termintates loop if hit)
+ secondary path orders (hOrder) disabled in UI (set to 1)
+v0.2.4 - 04.26.11
+ fixed object selection in UI
+ will not run if required object not selected
+ moved to view 3d > toolbox
+v0.2.5 - 05.08.11
+ testing for 2.57b
+ single mesh output (for build modifier)
+ speedups (dist fxn)
+v0.2.6 - 06.20.11
+ scale/pos on 'write to cubes' works now
+ if origin obj is mesh, uses all verts as initial charges
+ semi-helpful tooltips
+ speedups, faster dedupe fxn, faster classification
+ use any shape mesh obj as insulator mesh
+ must have rot=0, scale=1, origin set to geometry
+ often fails to block bolt with curved/complex shapes
+ separate single and multi mesh creation
+v0.2.7 - 01.05.13
+ fixed the issue that prevented enabling the add-on
+ fixed makeMeshCube fxn
+ disabled visualization for voxels
+
+v0.x -
+ -prevent create_setup_objects from generating duplicates
+ -fix vis fxn to only buildCPGraph once for VM or VS
+ -improve list fxns (rid of ((x,y,z),w) and use (x,y,z,w)), use 'sets'
+ -create python cmodule for a few of most costly fxns
+ i have pretty much no idea how to do this yet
+ -cloud and insulator can be groups of MESH objs
+ -text output, possibly to save on interrupt, allow continue from text
+ -?hook modifiers from tips->sides->main, weight w/ vert groups
+ -user defined 'attractor' path
+ -fix add curve function
+ -animated arcs via. ionization path
+ -environment map boundary conditions - requires Eqn. 15 from FSLG.
+ -assign wattage at each segment for HDRI
+ -?default settings for -lightning, -teslacoil, -spark/arc
+ -fix hOrder functionality
+ -multiple 'MAIN' brances for non-lightning discharges
+ -n-symmetry option, create mirror images, snowflakes, etc...
+"""
+
+import bpy
+import time
+import random
+from bpy.types import (
+ Operator,
+ Panel,
+ )
+# from math import sqrt
+from mathutils import Vector
+import struct
+import bisect
+import os.path
+
+# -- Globals --
+notZero = 0.0000000001
+# set to True to enable debug prints
+DEBUG = False
+
+
+# Utility Functions
+
+# func - function name, text - message, var - variable to print
+# it can have one variable to observe
+def debug_prints(func="", text="Message", var=None):
+ global DEBUG
+ if DEBUG:
+ print("\n[{}]\nmessage: {}".format(func, text))
+ if var:
+ print("variable: ", var)
+
+
+# pass variables just like for the regular prints
+def debug_print_vars(*args, **kwargs):
+ global DEBUG
+ if DEBUG:
+ print(*args, **kwargs)
+
+
+def within(x, y, d):
+ # CHECK IF x - d <= y <= x + d
+ if x - d <= y and x + d >= y:
+ return True
+ else:
+ return False
+
+
+def dist(ax, ay, az, bx, by, bz):
+ dv = Vector((ax, ay, az)) - Vector((bx, by, bz))
+ d = dv.length
+ return d
+
+
+def splitList(aList, idx):
+ ll = []
+ for x in aList:
+ ll.append(x[idx])
+ return ll
+
+
+def splitListCo(aList):
+ ll = []
+ for p in aList:
+ ll.append((p[0], p[1], p[2]))
+ return ll
+
+
+def getLowHigh(aList):
+ tLow = aList[0]
+ tHigh = aList[0]
+ for a in aList:
+ if a < tLow:
+ tLow = a
+ if a > tHigh:
+ tHigh = a
+ return tLow, tHigh
+
+
+def weightedRandomChoice(aList):
+ tL = []
+ tweight = 0
+ for a in range(len(aList)):
+ idex = a
+ weight = aList[a]
+ if weight > 0.0:
+ tweight += weight
+ tL.append((tweight, idex))
+ i = bisect.bisect(tL, (random.uniform(0, tweight), None))
+ r = tL[i][1]
+ return r
+
+
+def getStencil3D_26(x, y, z):
+ nL = []
+ for xT in range(x - 1, x + 2):
+ for yT in range(y - 1, y + 2):
+ for zT in range(z - 1, z + 2):
+ nL.append((xT, yT, zT))
+ nL.remove((x, y, z))
+ return nL
+
+
+def jitterCells(aList, jit):
+ j = jit / 2
+ bList = []
+ for a in aList:
+ ax = a[0] + random.uniform(-j, j)
+ ay = a[1] + random.uniform(-j, j)
+ az = a[2] + random.uniform(-j, j)
+ bList.append((ax, ay, az))
+ return bList
+
+
+def deDupe(seq, idfun=None):
+ # Thanks to this guy - http://www.peterbe.com/plog/uniqifiers-benchmark
+ if idfun is None:
+ def idfun(x):
+ return x
+ seen = {}
+ result = []
+ for item in seq:
+ marker = idfun(item)
+ if marker in seen:
+ continue
+ seen[marker] = 1
+ result.append(item)
+ return result
+
+
+# Visulization functions
+
+def writeArrayToVoxel(arr, filename):
+ gridS = 64
+ half = int(gridS / 2)
+ bitOn = 255
+ aGrid = [[[0 for z in range(gridS)] for y in range(gridS)] for x in range(gridS)]
+ for a in arr:
+ try:
+ aGrid[a[0] + half][a[1] + half][a[2] + half] = bitOn
+ except:
+ debug_prints(func="writeArrayToVoxel", text="Particle beyond voxel domain")
+
+ file = open(filename, "wb")
+ for z in range(gridS):
+ for y in range(gridS):
+ for x in range(gridS):
+ file.write(struct.pack('B', aGrid[x][y][z]))
+ file.flush()
+ file.close()
+
+
+def writeArrayToFile(arr, filename):
+ file = open(filename, "w")
+ for a in arr:
+ tstr = str(a[0]) + ',' + str(a[1]) + ',' + str(a[2]) + '\n'
+ file.write(tstr)
+ file.close
+
+
+def readArrayFromFile(filename):
+ file = open(filename, "r")
+ arr = []
+ for f in file:
+ pt = f[0:-1].split(',')
+ arr.append((int(pt[0]), int(pt[1]), int(pt[2])))
+ return arr
+
+
+def makeMeshCube_OLD(msize):
+ msize = msize / 2
+ mmesh = bpy.data.meshes.new('q')
+ mmesh.vertices.add(8)
+ mmesh.vertices[0].co = [-msize, -msize, -msize]
+ mmesh.vertices[1].co = [-msize, msize, -msize]
+ mmesh.vertices[2].co = [msize, msize, -msize]
+ mmesh.vertices[3].co = [msize, -msize, -msize]
+ mmesh.vertices[4].co = [-msize, -msize, msize]
+ mmesh.vertices[5].co = [-msize, msize, msize]
+ mmesh.vertices[6].co = [msize, msize, msize]
+ mmesh.vertices[7].co = [msize, -msize, msize]
+ mmesh.faces.add(6)
+ mmesh.faces[0].vertices_raw = [0, 1, 2, 3]
+ mmesh.faces[1].vertices_raw = [0, 4, 5, 1]
+ mmesh.faces[2].vertices_raw = [2, 1, 5, 6]
+ mmesh.faces[3].vertices_raw = [3, 2, 6, 7]
+ mmesh.faces[4].vertices_raw = [0, 3, 7, 4]
+ mmesh.faces[5].vertices_raw = [5, 4, 7, 6]
+ mmesh.update(calc_edges=True)
+
+ return(mmesh)
+
+
+def makeMeshCube(msize):
+ m2 = msize / 2
+ # verts = [(0,0,0),(0,5,0),(5,5,0),(5,0,0),(0,0,5),(0,5,5),(5,5,5),(5,0,5)]
+ verts = [(-m2, -m2, -m2), (-m2, m2, -m2), (m2, m2, -m2), (m2, -m2, -m2),
+ (-m2, -m2, m2), (-m2, m2, m2), (m2, m2, m2), (m2, -m2, m2)]
+ faces = [
+ (0, 1, 2, 3), (4, 5, 6, 7), (0, 4, 5, 1),
+ (1, 5, 6, 2), (2, 6, 7, 3), (3, 7, 4, 0)
+ ]
+ # Define mesh and object
+ mmesh = bpy.data.meshes.new("Cube")
+
+ # Create mesh
+ mmesh.from_pydata(verts, [], faces)
+ mmesh.update(calc_edges=True)
+ return(mmesh)
+
+
+def writeArrayToCubes(arr, gridBU, orig, cBOOL=False, jBOOL=True):
+ for a in arr:
+ x = a[0]
+ y = a[1]
+ z = a[2]
+ me = makeMeshCube(gridBU)
+ ob = bpy.data.objects.new('xCUBE', me)
+ ob.location.x = (x * gridBU) + orig[0]
+ ob.location.y = (y * gridBU) + orig[1]
+ ob.location.z = (z * gridBU) + orig[2]
+
+ if cBOOL: # mostly unused
+ # pos + blue, neg - red, zero: black
+ col = (1.0, 1.0, 1.0, 1.0)
+ if a[3] == 0:
+ col = (0.0, 0.0, 0.0, 1.0)
+ if a[3] < 0:
+ col = (-a[3], 0.0, 0.0, 1.0)
+ if a[3] > 0:
+ col = (0.0, 0.0, a[3], 1.0)
+ ob.color = col
+ bpy.context.scene.objects.link(ob)
+ bpy.context.scene.update()
+
+ if jBOOL:
+ # Selects all cubes w/ ?bpy.ops.object.join() b/c
+ # Can't join all cubes to a single mesh right... argh...
+ for q in bpy.context.scene.objects:
+ q.select = False
+ if q.name[0:5] == 'xCUBE':
+ q.select = True
+ bpy.context.scene.objects.active = q
+
+
+def addVert(ob, pt, conni=-1):
+ mmesh = ob.data
+ mmesh.vertices.add(1)
+ vcounti = len(mmesh.vertices) - 1
+ mmesh.vertices[vcounti].co = [pt[0], pt[1], pt[2]]
+ if conni > -1:
+ mmesh.edges.add(1)
+ ecounti = len(mmesh.edges) - 1
+ mmesh.edges[ecounti].vertices = [conni, vcounti]
+ mmesh.update()
+
+
+def addEdge(ob, va, vb):
+ mmesh = ob.data
+ mmesh.edges.add(1)
+ ecounti = len(mmesh.edges) - 1
+ mmesh.edges[ecounti].vertices = [va, vb]
+ mmesh.update()
+
+
+def newMesh(mname):
+ mmesh = bpy.data.meshes.new(mname)
+ omesh = bpy.data.objects.new(mname, mmesh)
+ bpy.context.scene.objects.link(omesh)
+ return omesh
+
+
+def writeArrayToMesh(mname, arr, gridBU, rpt=None):
+ mob = newMesh(mname)
+ mob.scale = (gridBU, gridBU, gridBU)
+ if rpt:
+ addReportProp(mob, rpt)
+ addVert(mob, arr[0], -1)
+ for ai in range(1, len(arr)):
+ a = arr[ai]
+ addVert(mob, a, ai - 1)
+ return mob
+
+
+# out of order - some problem with it adding (0,0,0)
+def writeArrayToCurves(cname, arr, gridBU, bd=.05, rpt=None):
+ cur = bpy.data.curves.new('fslg_curve', 'CURVE')
+ cur.use_fill_front = False
+ cur.use_fill_back = False
+ cur.bevel_depth = bd
+ cur.bevel_resolution = 2
+ cob = bpy.data.objects.new(cname, cur)
+ cob.scale = (gridBU, gridBU, gridBU)
+
+ if rpt:
+ addReportProp(cob, rpt)
+ bpy.context.scene.objects.link(cob)
+ cur.splines.new('BEZIER')
+ cspline = cur.splines[0]
+ div = 1 # spacing for handles (2 - 1/2 way, 1 - next bezier)
+
+ for a in range(len(arr)):
+ cspline.bezier_points.add(1)
+ bp = cspline.bezier_points[len(cspline.bezier_points) - 1]
+ if a - 1 < 0:
+ hL = arr[a]
+ else:
+ hx = arr[a][0] - ((arr[a][0] - arr[a - 1][0]) / div)
+ hy = arr[a][1] - ((arr[a][1] - arr[a - 1][1]) / div)
+ hz = arr[a][2] - ((arr[a][2] - arr[a - 1][2]) / div)
+ hL = (hx, hy, hz)
+
+ if a + 1 > len(arr) - 1:
+ hR = arr[a]
+ else:
+ hx = arr[a][0] + ((arr[a + 1][0] - arr[a][0]) / div)
+ hy = arr[a][1] + ((arr[a + 1][1] - arr[a][1]) / div)
+ hz = arr[a][2] + ((arr[a + 1][2] - arr[a][2]) / div)
+ hR = (hx, hy, hz)
+ bp.co = arr[a]
+ bp.handle_left = hL
+ bp.handle_right = hR
+
+
+def addArrayToMesh(mob, arr):
+ addVert(mob, arr[0], -1)
+ mmesh = mob.data
+ vcounti = len(mmesh.vertices) - 1
+ for ai in range(1, len(arr)):
+ a = arr[ai]
+ addVert(mob, a, len(mmesh.vertices) - 1)
+
+
+def addMaterial(ob, matname):
+ mat = bpy.data.materials[matname]
+ ob.active_material = mat
+
+
+def writeStokeToMesh(arr, jarr, MAINi, HORDERi, TIPSi, orig, gs, rpt=None):
+ # main branch
+ debug_prints(func="writeStokeToMesh", text='Writing main branch')
+ llmain = []
+
+ for x in MAINi:
+ llmain.append(jarr[x])
+ mob = writeArrayToMesh('la0MAIN', llmain, gs)
+ mob.location = orig
+
+ # horder branches
+ for hOi in range(len(HORDERi)):
+ debug_prints(func="writeStokeToMesh", text="Writing order", var=hOi)
+ hO = HORDERi[hOi]
+ hob = newMesh('la1H' + str(hOi))
+
+ for y in hO:
+ llHO = []
+ for x in y:
+ llHO.append(jarr[x])
+ addArrayToMesh(hob, llHO)
+ hob.scale = (gs, gs, gs)
+ hob.location = orig
+
+ # tips
+ debug_prints(func="writeStokeToMesh", text="Writing tip paths")
+ tob = newMesh('la2TIPS')
+ for y in TIPSi:
+ llt = []
+ for x in y:
+ llt.append(jarr[x])
+ addArrayToMesh(tob, llt)
+ tob.scale = (gs, gs, gs)
+ tob.location = orig
+
+ # add materials to objects (if they exist)
+ try:
+ addMaterial(mob, 'edgeMAT-h0')
+ addMaterial(hob, 'edgeMAT-h1')
+ addMaterial(tob, 'edgeMAT-h2')
+ debug_prints(func="writeStokeToMesh", text="Added materials")
+
+ except:
+ debug_prints(func="writeStokeToMesh", text="Materials not found")
+
+ # add generation report to all meshes
+ if rpt:
+ addReportProp(mob, rpt)
+ addReportProp(hob, rpt)
+ addReportProp(tob, rpt)
+
+
+def writeStokeToSingleMesh(arr, jarr, orig, gs, mct, rpt=None):
+ sgarr = buildCPGraph(arr, mct)
+ llALL = []
+
+ Aob = newMesh('laALL')
+ for pt in jarr:
+ addVert(Aob, pt)
+ for cpi in range(len(sgarr)):
+ ci = sgarr[cpi][0]
+ pi = sgarr[cpi][1]
+ addEdge(Aob, pi, ci)
+ Aob.location = orig
+ Aob.scale = ((gs, gs, gs))
+
+ if rpt:
+ addReportProp(Aob, rpt)
+
+
+def visualizeArray(cg, oob, gs, vm, vs, vc, vv, rst):
+ winmgr = bpy.context.scene.advanced_objects
+ # IN: (cellgrid, origin, gridscale,
+ # mulimesh, single mesh, cubes, voxels, report sting)
+ origin = oob.location
+
+ # deal with vert multi-origins
+ oct = 2
+ if oob.type == 'MESH':
+ oct = len(oob.data.vertices)
+
+ # jitter cells
+ if vm or vs:
+ cjarr = jitterCells(cg, 1)
+
+ if vm: # write array to multi mesh
+
+ aMi, aHi, aTi = classifyStroke(cg, oct, winmgr.HORDER)
+ debug_prints(func="visualizeArray", text="Writing to multi-mesh")
+ writeStokeToMesh(cg, cjarr, aMi, aHi, aTi, origin, gs, rst)
+ debug_prints(func="visualizeArray", text="Multi-mesh written")
+
+ if vs: # write to single mesh
+ debug_prints(func="visualizeArray", text="Writing to single mesh")
+ writeStokeToSingleMesh(cg, cjarr, origin, gs, oct, rst)
+ debug_prints(func="visualizeArray", text="Single mesh written")
+
+ if vc: # write array to cube objects
+ debug_prints(func="visualizeArray", text="Writing to cubes")
+ writeArrayToCubes(cg, gs, origin)
+ debug_prints(func="visualizeArray", text="Cubes written")
+
+ if vv: # write array to voxel data file
+ debug_prints(func="visualizeArray", text="Writing to voxels")
+ fname = "FSLGvoxels.raw"
+ path = os.path.dirname(bpy.data.filepath)
+ writeArrayToVoxel(cg, path + "\\" + fname)
+
+ debug_prints(func="visualizeArray",
+ text="Voxel data written to:", var=path + "\\" + fname)
+
+ # read/write array to file (might not be necessary)
+ # tfile = 'c:\\testarr.txt'
+ # writeArrayToFile(cg, tfile)
+ # cg = readArrayFromFile(tfile)
+
+ # read/write array to curves (out of order)
+ # writeArrayToCurves('laMAIN', llmain, .10, .25)
+
+
+# Algorithm functions
+# from faluam paper
+# plus some stuff i made up
+
+def buildCPGraph(arr, sti=2):
+ # in -xyz array as built by generator
+ # out -[(childindex, parentindex)]
+ # sti - start index, 2 for empty, len(me.vertices) for mesh
+ sgarr = []
+ sgarr.append((1, 0))
+
+ for ai in range(sti, len(arr)):
+ cs = arr[ai]
+ cpts = arr[0:ai]
+ cslap = getStencil3D_26(cs[0], cs[1], cs[2])
+
+ for nc in cslap:
+ ct = cpts.count(nc)
+ if ct > 0:
+ cti = cpts.index(nc)
+ sgarr.append((ai, cti))
+
+ return sgarr
+
+
+def buildCPGraph_WORKINPROGRESS(arr, sti=2):
+ # in -xyz array as built by generator
+ # out -[(childindex, parentindex)]
+ # sti - start index, 2 for empty, len(me.vertices) for mesh
+ sgarr = []
+ sgarr.append((1, 0))
+ ctix = 0
+ for ai in range(sti, len(arr)):
+ cs = arr[ai]
+ # cpts = arr[0:ai]
+ cpts = arr[ctix:ai]
+ cslap = getStencil3D_26(cs[0], cs[1], cs[2])
+ for nc in cslap:
+ ct = cpts.count(nc)
+ if ct > 0:
+ # cti = cpts.index(nc)
+ cti = ctix + cpts.index(nc)
+ ctix = cpts.index(nc)
+
+ sgarr.append((ai, cti))
+
+ return sgarr
+
+
+def findChargePath(oc, fc, ngraph, restrict=[], partial=True):
+ # oc -origin charge index, fc -final charge index
+ # ngraph -node graph, restrict- index of sites cannot traverse
+ # partial -return partial path if restriction encounterd
+ cList = splitList(ngraph, 0)
+ pList = splitList(ngraph, 1)
+ aRi = []
+ cNODE = fc
+ for x in range(len(ngraph)):
+ pNODE = pList[cList.index(cNODE)]
+ aRi.append(cNODE)
+ cNODE = pNODE
+ npNODECOUNT = cList.count(pNODE)
+ if cNODE == oc: # stop if origin found
+ aRi.append(cNODE) # return path
+ return aRi
+ if npNODECOUNT == 0: # stop if no parents
+ return [] # return []
+ if pNODE in restrict: # stop if parent is in restriction
+ if partial: # return partial or []
+ aRi.append(cNODE)
+ return aRi
+ else:
+ return []
+
+
+def findTips(arr):
+ lt = []
+ for ai in arr[0: len(arr) - 1]:
+ a = ai[0]
+ cCOUNT = 0
+ for bi in arr:
+ b = bi[1]
+ if a == b:
+ cCOUNT += 1
+ if cCOUNT == 0:
+ lt.append(a)
+
+ return lt
+
+
+def findChannelRoots(path, ngraph, restrict=[]):
+ roots = []
+ for ai in range(len(ngraph)):
+ chi = ngraph[ai][0]
+ par = ngraph[ai][1]
+ if par in path and chi not in path and chi not in restrict:
+ roots.append(par)
+ droots = deDupe(roots)
+
+ return droots
+
+
+def findChannels(roots, tips, ngraph, restrict):
+ cPATHS = []
+ for ri in range(len(roots)):
+ r = roots[ri]
+ sL = 1
+ sPATHi = []
+ for ti in range(len(tips)):
+ t = tips[ti]
+ if t < r:
+ continue
+ tPATHi = findChargePath(r, t, ngraph, restrict, False)
+ tL = len(tPATHi)
+ if tL > sL:
+ if countChildrenOnPath(tPATHi, ngraph) > 1:
+ sL = tL
+ sPATHi = tPATHi
+ tTEMP = t
+ tiTEMP = ti
+ if len(sPATHi) > 0:
+ debug_print_vars(
+ "\n[findChannels]\n",
+ "found path/idex from", ri, 'of',
+ len(roots), "possible | tips:", tTEMP, tiTEMP
+ )
+ cPATHS.append(sPATHi)
+ tips.remove(tTEMP)
+
+ return cPATHS
+
+
+def findChannels_WORKINPROGRESS(roots, ttips, ngraph, restrict):
+ cPATHS = []
+ tips = list(ttips)
+ for ri in range(len(roots)):
+ r = roots[ri]
+ sL = 1
+ sPATHi = []
+ tipREMOVE = [] # checked tip indexes, to be removed for next loop
+ for ti in range(len(tips)):
+ t = tips[ti]
+ if ti < ri:
+ continue
+
+ tPATHi = findChargePath(r, t, ngraph, restrict, False)
+ tL = len(tPATHi)
+ if tL > sL:
+ if countChildrenOnPath(tPATHi, ngraph) > 1:
+ sL = tL
+ sPATHi = tPATHi
+ tTEMP = t
+ tiTEMP = ti
+ if tL > 0:
+ tipREMOVE.append(t)
+ if len(sPATHi) > 0:
+ debug_print_vars(
+ "\n[findChannels_WORKINPROGRESS]\n",
+ "found path from root idex", ri, 'of',
+ len(roots), "possible roots | of tips= ", len(tips)
+ )
+ cPATHS.append(sPATHi)
+
+ for q in tipREMOVE:
+ tips.remove(q)
+
+ return cPATHS
+
+
+def countChildrenOnPath(aPath, ngraph, quick=True):
+ # return how many branches
+ # count when node is a parent >1 times
+ # quick -stop and return after first
+ cCOUNT = 0
+ pList = splitList(ngraph, 1)
+
+ for ai in range(len(aPath) - 1):
+ ap = aPath[ai]
+ pc = pList.count(ap)
+
+ if quick and pc > 1:
+ return pc
+
+ return cCOUNT
+
+
+# classify channels into 'main', 'hORDER/secondary' and 'side'
+def classifyStroke(sarr, mct, hORDER=1):
+ debug_prints(func="classifyStroke", text="Classifying stroke")
+ # build child/parent graph (indexes of sarr)
+ sgarr = buildCPGraph(sarr, mct)
+
+ # find main channel
+ debug_prints(func="classifyStroke", text="Finding MAIN")
+ oCharge = sgarr[0][1]
+ fCharge = sgarr[len(sgarr) - 1][0]
+ aMAINi = findChargePath(oCharge, fCharge, sgarr)
+
+ # find tips
+ debug_prints(func="classifyStroke", text="Finding TIPS")
+ aTIPSi = findTips(sgarr)
+
+ # find horder channel roots
+ # hcount = orders bewteen main and side/tips
+ # !!!still buggy!!!
+ hRESTRICT = list(aMAINi) # add to this after each time
+ allHPATHSi = [] # all ho paths: [[h0], [h1]...]
+ curPATHSi = [aMAINi] # list of paths find roots on
+
+ for h in range(hORDER):
+ allHPATHSi.append([])
+ for pi in range(len(curPATHSi)): # loop through all paths in this order
+ p = curPATHSi[pi]
+ # get roots for this path
+ aHROOTSi = findChannelRoots(p, sgarr, hRESTRICT)
+ debug_print_vars(
+ "\n[classifyStroke]\n",
+ "found", len(aHROOTSi), "roots in ORDER", h, ":paths:", len(curPATHSi)
+ )
+ # get channels for these roots
+ if len(aHROOTSi) == 0:
+ debug_prints(func="classifyStroke", text="No roots for found for channel")
+ aHPATHSi = []
+ continue
+ else:
+ aHPATHSiD = findChannels(aHROOTSi, aTIPSi, sgarr, hRESTRICT)
+ aHPATHSi = aHPATHSiD
+ allHPATHSi[h] += aHPATHSi
+ # set these channels as restrictions for next iterations
+ for hri in aHPATHSi:
+ hRESTRICT += hri
+ curPATHSi = aHPATHSi
+
+ # side branches, final order of heirarchy
+ # from tips that are not in an existing path
+ # back to any other point that is already on a path
+ aDRAWNi = []
+ aDRAWNi += aMAINi
+ for oH in allHPATHSi:
+ for o in oH:
+ aDRAWNi += o
+ aTPATHSi = []
+ for a in aTIPSi:
+ if a not in aDRAWNi:
+ aPATHi = findChargePath(oCharge, a, sgarr, aDRAWNi)
+ aDRAWNi += aPATHi
+ aTPATHSi.append(aPATHi)
+
+ return aMAINi, allHPATHSi, aTPATHSi
+
+
+def voxelByVertex(ob, gs):
+ # 'voxelizes' verts in a mesh to list [(x,y,z),(x,y,z)]
+ # w/ respect gscale and ob origin (b/c should be origin obj)
+ # orig = ob.location
+ ll = []
+ for v in ob.data.vertices:
+ x = int(v.co.x / gs)
+ y = int(v.co.y / gs)
+ z = int(v.co.z / gs)
+ ll.append((x, y, z))
+
+ return ll
+
+
+def voxelByRays(ob, orig, gs):
+ # mesh into a 3dgrid w/ respect gscale and bolt origin
+ # - does not take object rotation/scale into account
+ # - this is a horrible, inefficient function
+ # maybe the raycast/grid thing are a bad idea. but i
+ # have to 'voxelize the object w/ resct to gscale/origin
+ bbox = ob.bound_box
+ bbxL = bbox[0][0]
+ bbxR = bbox[4][0]
+ bbyL = bbox[0][1]
+ bbyR = bbox[2][1]
+ bbzL = bbox[0][2]
+ bbzR = bbox[1][2]
+ xct = int((bbxR - bbxL) / gs)
+ yct = int((bbyR - bbyL) / gs)
+ zct = int((bbzR - bbzL) / gs)
+ xs = int(xct / 2)
+ ys = int(yct / 2)
+ zs = int(zct / 2)
+
+ debug_print_vars(
+ "\n[voxelByRays]\n",
+ "Casting", xct, '/', yct, '/', zct, 'cells, total:',
+ xct * yct * zct, 'in obj-', ob.name
+ )
+ ll = []
+ rc = 100 # distance to cast from
+ # raycast top/bottom
+ debug_prints(func="voxelByRays", text="Raycasting top/bottom")
+
+ for x in range(xct):
+ for y in range(yct):
+ xco = bbxL + (x * gs)
+ yco = bbyL + (y * gs)
+ v1 = ((xco, yco, rc))
+ v2 = ((xco, yco, -rc))
+ vz1 = ob.ray_cast(v1, v2)
+ vz2 = ob.ray_cast(v2, v1)
+
+ debug_print_vars(
+ "\n[voxelByRays]\n", "vz1 is: ", vz1, "\nvz2 is: ", vz2
+ )
+ # Note: the API raycast return has changed now it is
+ # (result, location, normal, index) - result is a boolean
+ if vz1[0] is True:
+ ll.append((x - xs, y - ys, int(vz1[1][2] * (1 / gs))))
+ if vz2[0] is True:
+ ll.append((x - xs, y - ys, int(vz2[1][2] * (1 / gs))))
+
+ # raycast front/back
+ debug_prints(func="voxelByRays", text="Raycasting front/back")
+
+ for x in range(xct):
+ for z in range(zct):
+ xco = bbxL + (x * gs)
+ zco = bbzL + (z * gs)
+ v1 = ((xco, rc, zco))
+ v2 = ((xco, -rc, zco))
+ vy1 = ob.ray_cast(v1, v2)
+ vy2 = ob.ray_cast(v2, v1)
+ if vy1[0] is True:
+ ll.append((x - xs, int(vy1[1][1] * (1 / gs)), z - zs))
+ if vy2[0] is True:
+ ll.append((x - xs, int(vy2[1][1] * (1 / gs)), z - zs))
+
+ # raycast left/right
+ debug_prints(func="voxelByRays", text="Raycasting left/right")
+
+ for y in range(yct):
+ for z in range(zct):
+ yco = bbyL + (y * gs)
+ zco = bbzL + (z * gs)
+ v1 = ((rc, yco, zco))
+ v2 = ((-rc, yco, zco))
+ vx1 = ob.ray_cast(v1, v2)
+ vx2 = ob.ray_cast(v2, v1)
+ if vx1[0] is True:
+ ll.append((int(vx1[1][0] * (1 / gs)), y - ys, z - zs))
+ if vx2[0] is True:
+ ll.append((int(vx2[1][0] * (1 / gs)), y - ys, z - zs))
+
+ # add in neighbors so bolt wont go through
+ nlist = []
+ for l in ll:
+ nl = getStencil3D_26(l[0], l[1], l[2])
+ nlist += nl
+
+ # dedupe
+ debug_prints(func="voxelByRays", text="Added neighbors, deduping...")
+ rlist = deDupe(ll + nlist)
+ qlist = []
+
+ # relocate grid w/ respect gscale and bolt origin
+ # !!!need to add in obj rot/scale here somehow...
+ od = Vector(
+ ((ob.location[0] - orig[0]) / gs,
+ (ob.location[1] - orig[1]) / gs,
+ (ob.location[2] - orig[2]) / gs)
+ )
+ for r in rlist:
+ qlist.append((r[0] + int(od[0]), r[1] + int(od[1]), r[2] + int(od[2])))
+
+ return qlist
+
+
+def fakeGroundChargePlane(z, charge):
+ eCL = []
+ xy = abs(z) / 2
+ eCL += [(0, 0, z, charge)]
+ eCL += [(xy, 0, z, charge)]
+ eCL += [(0, xy, z, charge)]
+ eCL += [(-xy, 0, z, charge)]
+ eCL += [(0, -xy, z, charge)]
+
+ return eCL
+
+
+def addCharges(ll, charge):
+ # in: ll - [(x,y,z), (x,y,z)], charge - w
+ # out clist - [(x,y,z,w), (x,y,z,w)]
+ clist = []
+ for l in ll:
+ clist.append((l[0], l[1], l[2], charge))
+ return clist
+
+
+# algorithm functions #
+# from fslg #
+
+def getGrowthProbability_KEEPFORREFERENCE(uN, aList):
+ # in: un -user term, clist -candidate sites, olist -candidate site charges
+ # out: list of [(xyz), pot, prob]
+ cList = splitList(aList, 0)
+ oList = splitList(aList, 1)
+ Omin, Omax = getLowHigh(oList)
+ if Omin == Omax:
+ Omax += notZero
+ Omin -= notZero
+ PdL = []
+ E = 0
+ E = notZero # divisor for (fslg - eqn. 12)
+ for o in oList:
+ Uj = (o - Omin) / (Omax - Omin) # (fslg - eqn. 13)
+ E += pow(Uj, uN)
+ for oi in range(len(oList)):
+ o = oList[oi]
+ Ui = (o - Omin) / (Omax - Omin)
+ Pd = (pow(Ui, uN)) / E # (fslg - eqn. 12)
+ PdINT = Pd * 100
+ PdL.append(Pd)
+
+ return PdL
+
+
+# work in progress, trying to speed these up
+def fslg_e13(x, min, max, u):
+ return pow((x - min) / (max - min), u)
+
+
+def addit(x, y):
+ return x + y
+
+
+def fslg_e12(x, min, max, u, e):
+ return (fslg_e13(x, min, max, u) / e) * 100
+
+
+def getGrowthProbability(uN, aList):
+ # In: uN - user_term, cList - candidate sites, oList - candidate site charges
+ # Out: list of prob
+ cList = splitList(aList, 0)
+ oList = splitList(aList, 1)
+ Omin, Omax = getLowHigh(oList)
+
+ if Omin == Omax:
+ Omax += notZero
+ Omin -= notZero
+
+ PdL = []
+ E = notZero
+ minL = [Omin for q in range(len(oList))]
+ maxL = [Omax for q in range(len(oList))]
+ uNL = [uN for q in range(len(oList))]
+ E = sum(map(fslg_e13, oList, minL, maxL, uNL))
+ EL = [E for q in range(len(oList))]
+ mp = map(fslg_e12, oList, minL, maxL, uNL, EL)
+
+ for m in mp:
+ PdL.append(m)
+
+ return PdL
+
+
+def updatePointCharges(p, cList, eList=[]):
+ # In: pNew - new growth cell
+ # cList - old candidate sites, eList -SAME
+ # Out: list of new charge at candidate sites
+ r1 = 1 / 2 # (FSLG - Eqn. 10)
+ nOiL = []
+ for oi in range(len(cList)):
+ o = cList[oi][1]
+ c = cList[oi][0]
+ iOe = 0
+ rit = dist(c[0], c[1], c[2], p[0], p[1], p[2])
+ iOe += (1 - (r1 / rit))
+ Oit = o + iOe
+ nOiL.append((c, Oit))
+
+ return nOiL
+
+
+def initialPointCharges(pList, cList, eList=[]):
+ # In: p -CHARGED CELL (XYZ), cList -candidate sites (XYZ, POT, PROB)
+ # Out: cList -with potential calculated
+ r1 = 1 / 2 # (FSLG - Eqn. 10)
+ npList = []
+ for p in pList:
+ npList.append(((p[0], p[1], p[2]), 1.0))
+ for e in eList:
+ npList.append(((e[0], e[1], e[2]), e[3]))
+ OiL = []
+ for i in cList:
+ Oi = 0
+ for j in npList:
+ if i != j[0]:
+ rij = dist(i[0], i[1], i[2], j[0][0], j[0][1], j[0][2])
+ Oi += (1 - (r1 / rij)) * j[1] # charge influence
+ OiL.append(((i[0], i[1], i[2]), Oi))
+
+ return OiL
+
+
+def getCandidateSites(aList, iList=[]):
+ # In: aList -(X,Y,Z) of charged cell sites, iList - insulator sites
+ # Out: candidate list of growth sites [(X,Y,Z)]
+ cList = []
+ for c in aList:
+ tempList = getStencil3D_26(c[0], c[1], c[2])
+ for t in tempList:
+ if t not in aList and t not in iList:
+ cList.append(t)
+ ncList = deDupe(cList)
+
+ return ncList
+
+
+# Setup functions
+
+def setupObjects():
+ winmgr = bpy.context.scene.advanced_objects
+ oOB = bpy.data.objects.new('ELorigin', None)
+ oOB.location = ((0, 0, 10))
+ bpy.context.scene.objects.link(oOB)
+
+ gOB = bpy.data.objects.new('ELground', None)
+ gOB.empty_draw_type = 'ARROWS'
+ bpy.context.scene.objects.link(gOB)
+
+ cME = makeMeshCube(1)
+ cOB = bpy.data.objects.new('ELcloud', cME)
+ cOB.location = ((-2, 8, 12))
+ cOB.hide_render = True
+ bpy.context.scene.objects.link(cOB)
+
+ iME = makeMeshCube(1)
+ for v in iME.vertices:
+ xyl = 6.5
+ zl = .5
+ v.co[0] = v.co[0] * xyl
+ v.co[1] = v.co[1] * xyl
+ v.co[2] = v.co[2] * zl
+ iOB = bpy.data.objects.new('ELinsulator', iME)
+ iOB.location = ((0, 0, 5))
+ iOB.hide_render = True
+ bpy.context.scene.objects.link(iOB)
+
+ try:
+ winmgr.OOB = 'ELorigin'
+ winmgr.GOB = 'ELground'
+ winmgr.COB = 'ELcloud'
+ winmgr.IOB = 'ELinsulator'
+ except:
+ pass
+
+
+def checkSettings():
+ check = True
+ winmgr = bpy.context.scene.advanced_objects
+ message = ""
+ if winmgr.OOB == "":
+ message = "Error: no origin object selected"
+ check = False
+
+ if winmgr.GROUNDBOOL and winmgr.GOB == "":
+ message = "Error: no ground object selected"
+ check = False
+
+ if winmgr.CLOUDBOOL and winmgr.COB == "":
+ message = "Error: no cloud object selected"
+ check = False
+
+ if winmgr.IBOOL and winmgr.IOB == "":
+ message = "Error: no insulator object selected"
+ check = False
+
+ if check is False:
+ debug_prints(func="checkSettings", text=message)
+
+ # return state and the message for the operator report
+ return check, message
+
+
+# Main
+
+def FSLG():
+ winmgr = bpy.context.scene.advanced_objects
+ # fast simulation of laplacian growth
+ debug_prints(func="FSLG",
+ text="Go go gadget: fast simulation of laplacian growth")
+ tc1 = time.clock()
+ TSTEPS = winmgr.TSTEPS
+
+ obORIGIN = bpy.context.scene.objects[winmgr.OOB]
+ obGROUND = bpy.context.scene.objects[winmgr.GOB]
+ winmgr.ORIGIN = obORIGIN.location
+ winmgr.GROUNDZ = int((obGROUND.location[2] - winmgr.ORIGIN[2]) / winmgr.GSCALE)
+
+ # 1) insert intial charge(s) point (uses verts if mesh)
+ cgrid = [(0, 0, 0)]
+
+ if obORIGIN.type == 'MESH':
+ debug_prints(
+ func="FSLG",
+ text="Origin object is mesh, 'voxelizing' intial charges from verts"
+ )
+ cgrid = voxelByVertex(obORIGIN, winmgr.GSCALE)
+
+ if winmgr.VMMESH:
+ debug_prints(
+ func="FSLG",
+ text="Cannot classify stroke from vert origins yet, no multi-mesh output"
+ )
+ winmgr.VMMESH = False
+ winmgr.VSMESH = True
+
+ # ground charge cell / insulator lists (echargelist/iclist)
+ eChargeList = []
+ icList = []
+ if winmgr.GROUNDBOOL:
+ eChargeList = fakeGroundChargePlane(winmgr.GROUNDZ, winmgr.GROUNDC)
+
+ if winmgr.CLOUDBOOL:
+ debug_prints(
+ func="FSLG",
+ text="'Voxelizing' cloud object (could take some time)"
+ )
+ obCLOUD = bpy.context.scene.objects[winmgr.COB]
+ eChargeListQ = voxelByRays(obCLOUD, winmgr.ORIGIN, winmgr.GSCALE)
+ eChargeList = addCharges(eChargeListQ, winmgr.CLOUDC)
+ debug_prints(
+ func="FSLG",
+ text="cloud object cell count", var=len(eChargeList)
+ )
+
+ if winmgr.IBOOL:
+ debug_prints(
+ func="FSLG",
+ text="'Voxelizing' insulator object (could take some time)"
+ )
+ obINSULATOR = bpy.context.scene.objects[winmgr.IOB]
+ icList = voxelByRays(obINSULATOR, winmgr.ORIGIN, winmgr.GSCALE)
+
+ debug_prints(
+ func="FSLG",
+ text="Insulator object cell count", var=len(icList)
+ )
+
+ # 2) locate candidate sites around charge
+ cSites = getCandidateSites(cgrid, icList)
+
+ # 3) calc potential at each site (eqn. 10)
+ cSites = initialPointCharges(cgrid, cSites, eChargeList)
+
+ ts = 1
+ while ts <= TSTEPS:
+ # 1) select new growth site (eqn. 12)
+ # get probabilities at candidate sites
+ gProbs = getGrowthProbability(winmgr.BIGVAR, cSites)
+ # choose new growth site based on probabilities
+ gSitei = weightedRandomChoice(gProbs)
+ gsite = cSites[gSitei][0]
+
+ # 2) add new point charge at growth site
+ # add new growth cell to grid
+ cgrid.append(gsite)
+ # remove new growth cell from candidate sites
+ cSites.remove(cSites[gSitei])
+
+ # 3) update potential at candidate sites (eqn. 11)
+ cSites = updatePointCharges(gsite, cSites, eChargeList)
+
+ # 4) add new candidates surrounding growth site
+ # get candidate 'stencil'
+ ncSitesT = getCandidateSites([gsite], icList)
+ # remove candidates already in candidate list or charge grid
+ ncSites = []
+ cSplit = splitList(cSites, 0)
+ for cn in ncSitesT:
+ if cn not in cSplit and cn not in cgrid:
+ ncSites.append((cn, 0))
+
+ # 5) calc potential at new candidate sites (eqn. 10)
+ ncSplit = splitList(ncSites, 0)
+ ncSites = initialPointCharges(cgrid, ncSplit, eChargeList)
+
+ # add new candidate sites to candidate list
+ for ncs in ncSites:
+ cSites.append(ncs)
+
+ # iteration complete
+ istr1 = ':::T-STEP: ' + str(ts) + '/' + str(TSTEPS)
+ istr12 = ' | GROUNDZ: ' + str(winmgr.GROUNDZ) + ' | '
+ istr2 = 'CANDS: ' + str(len(cSites)) + ' | '
+ istr3 = 'GSITE: ' + str(gsite)
+ debug_prints(
+ func="FSLG",
+ text="Iteration complete",
+ var=istr1 + istr12 + istr2 + istr3
+ )
+ ts += 1
+
+ # early termination for ground/cloud strike
+ if winmgr.GROUNDBOOL:
+ if gsite[2] == winmgr.GROUNDZ:
+ ts = TSTEPS + 1
+ debug_prints(
+ func="FSLG",
+ text="Early termination due to groundstrike"
+ )
+ continue
+
+ if winmgr.CLOUDBOOL:
+ if gsite in splitListCo(eChargeList):
+ ts = TSTEPS + 1
+ debug_prints(
+ func="FSLG",
+ text="Early termination due to cloudstrike"
+ )
+ continue
+
+ tc2 = time.clock()
+ tcRUN = tc2 - tc1
+ debug_prints(
+ func="FSLG",
+ text="Laplacian growth loop completed",
+ var=str(len(cgrid)) + " / " + str(tcRUN)[0:5] + " Seconds"
+ )
+ debug_prints(func="FSLG", text="Visualizing data")
+
+ reportSTRING = getReportString(tcRUN)
+
+ # Visualize array
+ visualizeArray(
+ cgrid, obORIGIN, winmgr.GSCALE,
+ winmgr.VMMESH, winmgr.VSMESH,
+ winmgr.VCUBE, winmgr.VVOX, reportSTRING
+ )
+
+ debug_prints(func="FSLG", text="COMPLETE")
+
+
+# GUI #
+
+class runFSLGLoopOperator(Operator):
+ bl_idname = "object.runfslg_operator"
+ bl_label = "run FSLG Loop Operator"
+ bl_description = "By The Mighty Hammer Of Thor!!!"
+
+ def execute(self, context):
+ # tuple - state, report text
+ is_conditions, message = checkSettings()
+
+ if is_conditions:
+ FSLG()
+ else:
+ self.report({'WARNING'}, message + " Operation Cancelled")
+
+ return {'CANCELLED'}
+
+ return {'FINISHED'}
+
+
+class setupObjectsOperator(Operator):
+ bl_idname = "object.setup_objects_operator"
+ bl_label = "Setup Objects Operator"
+ bl_description = "Create origin/ground/cloud/insulator objects"
+
+ def execute(self, context):
+ setupObjects()
+
+ return {'FINISHED'}
+
+
+class OBJECT_PT_fslg(Panel):
+ bl_label = "Laplacian Lightning"
+ bl_space_type = "VIEW_3D"
+ bl_region_type = "TOOLS"
+ bl_context = "objectmode"
+ bl_category = "Create"
+ bl_options = {'DEFAULT_CLOSED'}
+
+ def draw(self, context):
+ layout = self.layout
+ winmgr = context.scene.advanced_objects
+
+ col = layout.column(align=True)
+ col.prop(winmgr, "TSTEPS")
+ col.prop(winmgr, "GSCALE")
+ col.prop(winmgr, "BIGVAR")
+
+ col = layout.column()
+ col.operator("object.setup_objects_operator", text="Create Setup objects")
+ col.label("Origin object")
+ col.prop_search(winmgr, "OOB", context.scene, "objects")
+
+ box = layout.box()
+ col = box.column()
+ col.prop(winmgr, "GROUNDBOOL")
+ if winmgr.GROUNDBOOL:
+ col.prop_search(winmgr, "GOB", context.scene, "objects")
+ col.prop(winmgr, "GROUNDC")
+
+ box = layout.box()
+ col = box.column()
+ col.prop(winmgr, "CLOUDBOOL")
+ if winmgr.CLOUDBOOL:
+ col.prop_search(winmgr, "COB", context.scene, "objects")
+ col.prop(winmgr, "CLOUDC")
+
+ box = layout.box()
+ col = box.column()
+ col.prop(winmgr, "IBOOL")
+ if winmgr.IBOOL:
+ col.prop_search(winmgr, "IOB", context.scene, "objects")
+
+ col = layout.column()
+ col.operator("object.runfslg_operator",
+ text="Generate Lightning", icon="RNDCURVE")
+
+ row = layout.row(align=True)
+ row.prop(winmgr, "VMMESH", toggle=True)
+ row.prop(winmgr, "VSMESH", toggle=True)
+ row.prop(winmgr, "VCUBE", toggle=True)
+
+
+def getReportString(rtime):
+ winmgr = bpy.context.scene.advanced_objects
+ rSTRING1 = 't:' + str(winmgr.TSTEPS) + ',sc:' + str(winmgr.GSCALE)[0:4] + ',uv:' + str(winmgr.BIGVAR)[0:4] + ','
+ rSTRING2 = 'ori:' + str(winmgr. ORIGIN[0]) + '/' + str(winmgr. ORIGIN[1]) + '/' + str(winmgr. ORIGIN[2]) + ','
+ rSTRING3 = 'gz:' + str(winmgr.GROUNDZ) + ',gc:' + str(winmgr.GROUNDC) + ',rtime:' + str(int(rtime))
+ return rSTRING1 + rSTRING2 + rSTRING3
+
+
+def addReportProp(ob, str):
+ bpy.types.Object.FSLG_REPORT = bpy.props.StringProperty(
+ name='fslg_report', default='')
+ ob.FSLG_REPORT = str
+
+
+def register():
+ bpy.utils.register_class(runFSLGLoopOperator)
+ bpy.utils.register_class(setupObjectsOperator)
+ bpy.utils.register_class(OBJECT_PT_fslg)
+
+
+def unregister():
+ bpy.utils.unregister_class(runFSLGLoopOperator)
+ bpy.utils.unregister_class(setupObjectsOperator)
+ bpy.utils.unregister_class(OBJECT_PT_fslg)
+
+
+if __name__ == "__main__":
+ register()
+ pass
+
+
+# Benchmarks Function
+
+def BENCH():
+ debug_prints(func="BENCH", text="BEGIN BENCHMARK")
+ bt0 = time.clock()
+ # make a big list
+ tsize = 25
+ tlist = []
+ for x in range(tsize):
+ for y in range(tsize):
+ for z in range(tsize):
+ tlist.append((x, y, z))
+ tlist.append((x, y, z))
+
+ # function to test
+ bt1 = time.clock()
+ bt2 = time.clock()
+ btRUNb = bt2 - bt1
+ btRUNa = bt1 - bt0
+
+ debug_prints(func="BENCH", text="SETUP TIME", var=btRUNa)
+ debug_prints(func="BENCH", text="BENCHMARK TIME", var=btRUNb)
+ debug_print_vars(
+ "\n[BENCH]\n",
+ "GRIDSIZE: ", tsize, ' - ', tsize * tsize * tsize
+ )
diff --git a/add_advanced_objects_panels/object_mangle_tools.py b/add_advanced_objects_panels/object_mangle_tools.py
new file mode 100644
index 00000000..c36bb224
--- /dev/null
+++ b/add_advanced_objects_panels/object_mangle_tools.py
@@ -0,0 +1,208 @@
+# mangle_tools.py (c) 2011 Phil Cote (cotejrp1)
+
+# ###### BEGIN GPL LICENSE BLOCK ######
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ###### END GPL LICENCE BLOCK ######
+
+# Note: properties are moved into __init__
+
+bl_info = {
+ "name": "Mangle Tools",
+ "author": "Phil Cote",
+ "blender": (2, 71, 0),
+ "location": "View3D > Toolshelf > Tools Tab",
+ "description": "Set of tools to mangle curves, meshes, and shape keys",
+ "warning": "",
+ "wiki_url": "",
+ "category": "Object"}
+
+
+import bpy
+import random
+from bpy.types import (
+ Operator,
+ Panel,
+ )
+import time
+from math import pi
+import bmesh
+
+
+def move_coordinate(context, co, is_curve=False):
+ advanced_objects = context.scene.advanced_objects
+ xyz_const = advanced_objects.mangle_constraint_vector
+ random.seed(time.time())
+ multiplier = 1
+
+ # For curves, we base the multiplier on the circumference formula.
+ # This helps make curve changes more noticable.
+ if is_curve:
+ multiplier = 2 * pi
+ random_mag = advanced_objects.mangle_random_magnitude
+ if xyz_const[0]:
+ co.x += .01 * random.randrange(-random_mag, random_mag) * multiplier
+ if xyz_const[1]:
+ co.y += .01 * random.randrange(-random_mag, random_mag) * multiplier
+ if xyz_const[2]:
+ co.z += .01 * random.randrange(-random_mag, random_mag) * multiplier
+
+
+class MeshManglerOperator(Operator):
+ bl_idname = "ba.mesh_mangler"
+ bl_label = "Mangle Mesh"
+ bl_description = ("Push vertices on the selected object around in random\n"
+ "directions to create a crumpled look")
+ bl_options = {"REGISTER", "UNDO"}
+
+ @classmethod
+ def poll(cls, context):
+ ob = context.active_object
+ return ob is not None and ob.type == 'MESH'
+
+ def execute(self, context):
+ mesh = context.active_object.data
+ bm = bmesh.new()
+ bm.from_mesh(mesh)
+ verts = bm.verts
+ advanced_objects = context.scene.advanced_objects
+ randomMag = advanced_objects.mangle_random_magnitude
+ random.seed(time.time())
+
+ if mesh.shape_keys is not None:
+ self.report({'INFO'},
+ "Cannot mangle mesh: Shape keys present. Operation Cancelled")
+ return {'CANCELLED'}
+
+ for vert in verts:
+ xVal = .01 * random.randrange(-randomMag, randomMag)
+ yVal = .01 * random.randrange(-randomMag, randomMag)
+ zVal = .01 * random.randrange(-randomMag, randomMag)
+
+ vert.co.x = vert.co.x + xVal
+ vert.co.y = vert.co.y + yVal
+ vert.co.z = vert.co.z + zVal
+
+ del verts
+
+ bm.to_mesh(mesh)
+ mesh.update()
+
+ return {'FINISHED'}
+
+
+class AnimanglerOperator(Operator):
+ bl_idname = "ba.ani_mangler"
+ bl_label = "Mangle Shape Key"
+ bl_description = ("Make a shape key and pushes the verts around on it\n"
+ "to set up for random pulsating animation")
+
+ @classmethod
+ def poll(cls, context):
+ ob = context.active_object
+ return ob is not None and ob.type in ['MESH', 'CURVE']
+
+ def execute(self, context):
+ scn = context.scene.advanced_objects
+ mangleName = scn.mangle_name
+ ob = context.object
+ shapeKey = ob.shape_key_add(name=mangleName)
+ verts = shapeKey.data
+
+ for vert in verts:
+ move_coordinate(context, vert.co, is_curve=ob.type == 'CURVE')
+
+ return {'FINISHED'}
+
+
+class CurveManglerOp(Operator):
+ bl_idname = "ba.curve_mangler"
+ bl_label = "Mangle Curve"
+ bl_description = "Mangle a curve to the degree the user specifies"
+ bl_options = {'REGISTER', 'UNDO'}
+
+ @classmethod
+ def poll(cls, context):
+ ob = context.active_object
+ return ob is not None and ob.type == "CURVE"
+
+ def execute(self, context):
+ ob = context.active_object
+ if ob.data.shape_keys is not None:
+ self.report({'INFO'},
+ "Cannot mangle curve. Shape keys present. Operation Cancelled")
+ return {'CANCELLED'}
+
+ splines = context.object.data.splines
+
+ for spline in splines:
+ if spline.type == 'BEZIER':
+ points = spline.bezier_points
+ elif spline.type in {'POLY', 'NURBS'}:
+ points = spline.points
+
+ for point in points:
+ move_coordinate(context, point.co, is_curve=True)
+
+ return {'FINISHED'}
+
+
+class MangleToolsPanel(Panel):
+ bl_label = "Mangle Tools"
+ bl_space_type = "VIEW_3D"
+ bl_context = "objectmode"
+ bl_region_type = "TOOLS"
+ bl_category = "Create"
+ bl_options = {'DEFAULT_CLOSED'}
+
+ def draw(self, context):
+ scn = context.scene.advanced_objects
+ obj = context.object
+
+ if obj and obj.type in ['MESH']:
+ layout = self.layout
+
+ row = layout.row(align=True)
+ row.prop(scn, "mangle_constraint_vector", toggle=True)
+
+ col = layout.column()
+ col.prop(scn, "mangle_random_magnitude")
+ col.operator("ba.mesh_mangler")
+ col.separator()
+
+ col.prop(scn, "mangle_name")
+ col.operator("ba.ani_mangler")
+ else:
+ layout = self.layout
+ layout.label(text="Please select a Mesh Object", icon="INFO")
+
+
+def register():
+ bpy.utils.register_class(AnimanglerOperator)
+ bpy.utils.register_class(MeshManglerOperator)
+ bpy.utils.register_class(CurveManglerOp)
+ bpy.utils.register_class(MangleToolsPanel)
+
+
+def unregister():
+ bpy.utils.unregister_class(AnimanglerOperator)
+ bpy.utils.unregister_class(MeshManglerOperator)
+ bpy.utils.unregister_class(MangleToolsPanel)
+ bpy.utils.unregister_class(CurveManglerOp)
+
+
+if __name__ == "__main__":
+ register()
diff --git a/add_advanced_objects_panels/oscurart_constellation.py b/add_advanced_objects_panels/oscurart_constellation.py
new file mode 100644
index 00000000..6e840974
--- /dev/null
+++ b/add_advanced_objects_panels/oscurart_constellation.py
@@ -0,0 +1,141 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+bl_info = {
+ "name": "Mesh: Constellation",
+ "author": "Oscurart",
+ "blender": (2, 67, 0),
+ "location": "Add > Mesh > Constellation",
+ "description": "Create a new Mesh From Selected",
+ "warning": "",
+ "wiki_url": "",
+ "category": "Add Mesh"}
+
+# Note the setting is moved to __init__ search for
+# the adv_obj and advanced_objects patterns
+
+import bpy
+from bpy.props import FloatProperty
+from math import sqrt
+from bpy.types import (
+ Operator,
+ Panel,
+ )
+
+def VertDis(a, b):
+ dst = sqrt(pow(a.co.x - b.co.x, 2) +
+ pow(a.co.y - b.co.y, 2) +
+ pow(a.co.z - b.co.z, 2))
+ return(dst)
+
+
+def OscConstellation(limit):
+ actobj = bpy.context.object
+ vertlist = []
+ edgelist = []
+ edgei = 0
+
+ for ind, verta in enumerate(actobj.data.vertices[:]):
+ for vertb in actobj.data.vertices[ind:]:
+ if VertDis(verta, vertb) <= limit:
+ vertlist.append(verta.co[:])
+ vertlist.append(vertb.co[:])
+ edgelist.append((edgei, edgei + 1))
+ edgei += 2
+
+ mesh = bpy.data.meshes.new("rsdata")
+ obj = bpy.data.objects.new("rsObject", mesh)
+ bpy.context.scene.objects.link(obj)
+ mesh.from_pydata(vertlist, edgelist, [])
+
+
+class Oscurart_Constellation(Operator):
+ bl_idname = "mesh.constellation"
+ bl_label = "Constellation"
+ bl_description = ("Create a Constellation Mesh - Cloud of Vertices\n"
+ "Note: can produce a lot of geometry\n"
+ "Needs an existing Active Mesh Object")
+ bl_options = {'REGISTER', 'UNDO'}
+
+ limit = FloatProperty(
+ name="Threshold",
+ description="Edges will be created only if the distance\n"
+ "between vertices is smaller than this value",
+ default=2,
+ min=0
+ )
+
+ @classmethod
+ def poll(cls, context):
+ obj = context.active_object
+ return (obj and obj.type == "MESH")
+
+ def invoke(self, context, event):
+ adv_obj = context.scene.advanced_objects
+ self.limit = adv_obj.constellation_limit
+
+ return self.execute(context)
+
+ def draw(self, context):
+ layout = self.layout
+
+ layout.prop(self, "limit")
+
+ def execute(self, context):
+ try:
+ OscConstellation(self.limit)
+ except Exception as e:
+ print("\n[Add Advanced Objects]\nOperator: mesh.constellation\n{}".format(e))
+
+ self.report({"WARNING"},
+ "Constellation Operation could not be Completed (See Console for more Info)")
+
+ return {"CANCELLED"}
+
+ return {'FINISHED'}
+
+class Constellation_Operator_Panel(Panel):
+ bl_label = "Constellation"
+ bl_region_type = "TOOLS"
+ bl_space_type = "VIEW_3D"
+ bl_options = {'DEFAULT_CLOSED'}
+ bl_context = "objectmode"
+ bl_category = "Create"
+
+ def draw(self, context):
+ layout = self.layout
+ adv_obj = context.scene.advanced_objects
+
+ box = layout.box()
+ col = box.column(align=True)
+ col.label("Constellation:")
+ col.operator("mesh.constellation", text="Cross Section")
+ col.prop(adv_obj, "constellation_limit")
+# Register
+
+def register():
+ bpy.utils.register_class(Oscurart_Constellation)
+ bpy.utils.register_class(Constellation_Operator_Panel)
+
+
+def unregister():
+ bpy.utils.unregister_class(Oscurart_Constellation)
+ bpy.utils.unregister_class(Constellation_Operator_Panel)
+
+if __name__ == "__main__":
+ register()
diff --git a/add_advanced_objects_panels/unfold_transition.py b/add_advanced_objects_panels/unfold_transition.py
new file mode 100644
index 00000000..60e612dd
--- /dev/null
+++ b/add_advanced_objects_panels/unfold_transition.py
@@ -0,0 +1,346 @@
+# gpl: authors Liero, Atom
+
+bl_info = {
+ "name": "Unfold transition",
+ "author": "Liero, Atom",
+ "location": "Tool bar > Animation tab > UnFold Transition",
+ "description": "Simple unfold transition / animation, will "
+ "separate faces and set up an armature",
+ "category": "Animation"}
+
+# Note the properties are moved to __init__
+# search for patterns advanced_objects, adv_obj
+
+import bpy
+from bpy.types import (
+ Operator,
+ Panel,
+ )
+from random import (
+ randint,
+ uniform,
+ )
+from mathutils import Vector
+from mathutils.geometry import intersect_point_line
+
+
+class Set_Up_Fold(Operator):
+ bl_idname = "object.set_up_fold"
+ bl_label = "Set Up Unfold"
+ bl_description = ("Set up Faces and Bones for animation\n"
+ "Needs an existing Active Mesh Object")
+ bl_options = {"REGISTER", "UNDO"}
+
+ @classmethod
+ def poll(cls, context):
+ obj = context.active_object
+ return (obj is not None and obj.type == "MESH")
+
+ def execute(self, context):
+ bpy.ops.object.mode_set()
+ scn = bpy.context.scene
+ adv_obj = scn.advanced_objects
+ obj = bpy.context.object
+ dat = obj.data
+ fac = dat.polygons
+ ver = dat.vertices
+
+ # try to cleanup traces of previous actions
+ bpy.ops.object.mode_set(mode="EDIT")
+ bpy.ops.mesh.remove_doubles(threshold=0.0001, use_unselected=True)
+ bpy.ops.object.mode_set()
+ old_vg = [vg for vg in obj.vertex_groups if vg.name.startswith("bone.")]
+ for vg in old_vg:
+ obj.vertex_groups.remove(vg)
+
+ if "UnFold" in obj.modifiers:
+ arm = obj.modifiers["UnFold"].object
+ rig = arm.data
+ try:
+ scn.objects.unlink(arm)
+ bpy.data.objects.remove(arm)
+ bpy.data.armatures.remove(rig)
+ except:
+ pass
+ obj.modifiers.remove(obj.modifiers["UnFold"])
+
+ # try to obtain the face sequence from the vertex weights
+ if adv_obj.unfold_modo == "weight":
+ if len(obj.vertex_groups):
+ i = obj.vertex_groups.active.index
+ W = []
+ for f in fac:
+ v_data = []
+ for v in f.vertices:
+ try:
+ w = ver[v].groups[i].weight
+ v_data.append((w, v))
+ except:
+ v_data.append((0, v))
+ v_data.sort(reverse=True)
+ v1 = ver[v_data[0][1]].co
+ v2 = ver[v_data[1][1]].co
+ cen = Vector(f.center)
+ its = intersect_point_line(cen, v2, v1)
+ head = v2.lerp(v1, its[1])
+ peso = sum([x[0] for x in v_data])
+ W.append((peso, f.index, cen, head))
+ W.sort(reverse=True)
+ S = [x[1:] for x in W]
+ else:
+ self.report({"INFO"}, "First paint a Weight Map for this object")
+
+ return {"FINISHED"}
+
+ # separate the faces and sort them
+ bpy.ops.object.mode_set(mode="EDIT")
+ bpy.ops.mesh.select_all(action="SELECT")
+ bpy.ops.mesh.edge_split()
+ bpy.ops.mesh.select_all(action="SELECT")
+
+ if adv_obj.unfold_modo == "cursor":
+ bpy.context.tool_settings.mesh_select_mode = [True, True, True]
+ bpy.ops.mesh.sort_elements(
+ type="CURSOR_DISTANCE", elements={"VERT", "EDGE", "FACE"}
+ )
+ bpy.context.tool_settings.mesh_select_mode = [False, False, True]
+ bpy.ops.object.mode_set()
+
+ # Get sequence of faces and edges from the face / vertex indices
+ if adv_obj.unfold_modo != "weight":
+ S = []
+ for f in fac:
+ E = list(f.edge_keys)
+ E.sort()
+ v1 = ver[E[0][0]].co
+ v2 = ver[E[0][1]].co
+ cen = Vector(f.center)
+ its = intersect_point_line(cen, v2, v1)
+ head = v2.lerp(v1, its[1])
+ S.append((f.index, f.center, head))
+
+ # create the armature and the modifier
+ arm = bpy.data.armatures.new("arm")
+ rig = bpy.data.objects.new("rig_" + obj.name, arm)
+
+ # store the name for checking the right rig
+ adv_obj.unfold_arm_name = rig.name
+ rig.matrix_world = obj.matrix_world
+ scn.objects.link(rig)
+ scn.objects.active = rig
+ bpy.ops.object.mode_set(mode="EDIT")
+ arm.draw_type = "WIRE"
+ rig.show_x_ray = True
+ mod = obj.modifiers.new("UnFold", "ARMATURE")
+ mod.show_in_editmode = True
+ mod.object = rig
+
+ # create bones and vertex groups
+ root = arm.edit_bones.new("bone.000")
+ root.tail = (0, 0, 0)
+ root.head = (0, 0, 1)
+ root.select = True
+ vis = [False, True] + [False] * 30
+
+ for fb in S:
+ f = fac[fb[0]]
+ b = arm.edit_bones.new("bone.000")
+ if adv_obj.unfold_flip:
+ b.tail, b.head = fb[2], fb[1]
+ else:
+ b.tail, b.head = fb[1], fb[2]
+
+ b.align_roll(f.normal)
+ b.select = False
+ b.layers = vis
+ b.parent = root
+ vg = obj.vertex_groups.new(b.name)
+ vg.add(f.vertices, 1, "ADD")
+
+ bpy.ops.object.mode_set()
+
+ if adv_obj.unfold_modo == "weight":
+ obj.vertex_groups.active_index = 0
+ scn.objects.active = rig
+ obj.select = False
+
+ return {"FINISHED"}
+
+
+class Animate_Fold(Operator):
+ bl_idname = "object.animate_fold"
+ bl_label = "Animate Unfold"
+ bl_description = ("Animate bones to simulate unfold. Starts on current frame\n"
+ "Needs an existing Active Armature Object created in the previous step")
+ bl_options = {"REGISTER", "UNDO"}
+
+ is_not_undo = False
+
+ @classmethod
+ def poll(cls, context):
+ obj = context.active_object
+ return (obj is not None and obj.type == "ARMATURE" and obj.is_visible(bpy.context.scene))
+
+ def draw(self, context):
+ layout = self.layout
+ adv_obj = context.scene.advanced_objects
+
+ if self.is_not_undo is True:
+ layout.label(text="Warning:", icon="INFO")
+ layout.label(text="The generated Armature was not selected or it was renamed")
+ layout.label(text="The animation can fail if it is not generated by the previous step")
+ layout.separator()
+ layout.label(text="Expected Armature name:", icon="BONE_DATA")
+ layout.label(text=str(adv_obj.unfold_arm_name), icon="TRIA_RIGHT")
+ layout.label(text="To Continue press OK, to Cancel click Outside the Pop-up")
+ layout.separator()
+ else:
+ return
+
+ def invoke(self, context, event):
+ obj = bpy.context.object
+ scn = bpy.context.scene
+ adv_obj = scn.advanced_objects
+
+ if obj.name != adv_obj.unfold_arm_name:
+ self.is_not_undo = True
+ return context.window_manager.invoke_props_dialog(self, width=400)
+ else:
+ return self.execute(context)
+
+ def execute(self, context):
+ obj = bpy.context.object
+ scn = bpy.context.scene
+ adv_obj = scn.advanced_objects
+ fra = scn.frame_current
+ if obj.name != adv_obj.unfold_arm_name:
+ self.report({"INFO"},
+ "The generated rig was not selected or renamed. The animation can fail")
+ # clear the animation and get the list of bones
+ if obj.animation_data:
+ obj.animation_data_clear()
+ bpy.ops.object.mode_set(mode="POSE")
+ bones = obj.pose.bones[0].children_recursive
+
+ if adv_obj.unfold_flip:
+ rot = -3.141592
+ else:
+ rot = adv_obj.unfold_rot_max / 57.3
+
+ extra = adv_obj.unfold_rot_time * adv_obj.unfold_bounce
+ ruido = max(adv_obj.unfold_rot_time + extra,
+ adv_obj.unfold_sca_time) + adv_obj.unfold_fold_noise
+
+ len_bones = len(bones) if len(bones) != 0 else 1 # possible division by zero
+ vel = (adv_obj.unfold_fold_duration - ruido) / len_bones
+
+ # introduce scale and rotation keyframes
+ for a, b in enumerate(bones):
+ t = fra + a * vel + randint(0, adv_obj.unfold_fold_noise)
+
+ if adv_obj.unfold_flip:
+ b.scale = (1, 1, 1)
+ elif adv_obj.unfold_from_point:
+ b.scale = (0, 0, 0)
+ else:
+ b.scale = (1, 0, 0)
+
+ if not adv_obj.unfold_flip:
+ b.keyframe_insert("scale", frame=t)
+ b.scale = (1, 1, 1)
+ b.keyframe_insert("scale", frame=t + adv_obj.unfold_sca_time)
+
+ if adv_obj.unfold_rot_max:
+ b.rotation_mode = "XYZ"
+ if adv_obj.unfold_wiggle_rot:
+ euler = (uniform(-rot, rot), uniform(-rot, rot), uniform(-rot, rot))
+ else:
+ euler = (rot, 0, 0)
+
+ b.rotation_euler = euler
+ b.keyframe_insert("rotation_euler", frame=t)
+
+ if adv_obj.unfold_bounce:
+ val = adv_obj.unfold_bounce * -.10
+ b.rotation_euler = (val * euler[0], val * euler[1], val * euler[2])
+ b.keyframe_insert(
+ "rotation_euler", frame=t + adv_obj.unfold_rot_time + .25 * extra
+ )
+
+ val = adv_obj.unfold_bounce * .05
+ b.rotation_euler = (val * euler[0], val * euler[1], val * euler[2])
+ b.keyframe_insert(
+ "rotation_euler", frame=t + adv_obj.unfold_rot_time + .50 * extra
+ )
+
+ val = adv_obj.unfold_bounce * -.025
+ b.rotation_euler = (val * euler[0], val * euler[1], val * euler[2])
+ b.keyframe_insert(
+ "rotation_euler", frame=t + adv_obj.unfold_rot_time + .75 * extra
+ )
+
+ b.rotation_euler = (0, 0, 0)
+ b.keyframe_insert(
+ "rotation_euler", frame=t + adv_obj.unfold_rot_time + extra
+ )
+ self.is_not_undo = False
+
+ return {"FINISHED"}
+
+
+class PanelFOLD(Panel):
+ bl_label = "Unfold Transition"
+ bl_space_type = "VIEW_3D"
+ bl_region_type = "TOOLS"
+ bl_category = "Create"
+ bl_context = "objectmode"
+ bl_options = {"DEFAULT_CLOSED"}
+
+ def draw(self, context):
+ layout = self.layout
+ adv_obj = context.scene.advanced_objects
+
+ box = layout.box()
+ col = box.column()
+ col.operator("object.set_up_fold", text="1. Set Up Unfold")
+ col.separator()
+ col.label("Unfold Mode:")
+ col.prop(adv_obj, "unfold_modo")
+ col.prop(adv_obj, "unfold_flip")
+
+ box = layout.box()
+ col = box.column(align=True)
+ col.operator("object.animate_fold", text="2. Animate Unfold")
+ col.separator()
+ col.prop(adv_obj, "unfold_fold_duration")
+ col.prop(adv_obj, "unfold_sca_time")
+ col.prop(adv_obj, "unfold_rot_time")
+ col.prop(adv_obj, "unfold_rot_max")
+
+ row = col.row(align=True)
+ row.prop(adv_obj, "unfold_fold_noise")
+ row.prop(adv_obj, "unfold_bounce")
+ row = col.row(align=True)
+ row.prop(adv_obj, "unfold_wiggle_rot")
+
+ if not adv_obj.unfold_flip:
+ row.prop(adv_obj, "unfold_from_point")
+
+classes = (
+ Set_Up_Fold,
+ Animate_Fold,
+ PanelFOLD,
+ )
+
+def register():
+ for cls in classes:
+ bpy.utils.register_class(cls)
+
+
+def unregister():
+ for cls in classes:
+ bpy.utils.unregister_class(cls)
+
+
+if __name__ == "__main__":
+ register()