Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorClemens Barth <barth@root-1.de>2019-03-28 12:37:49 +0300
committerClemens Barth <barth@root-1.de>2019-03-28 12:37:49 +0300
commit9791bd3a2233ace2d8a588c4f8b7fe6cb4c8fa7e (patch)
treebfd9c54d67676a8b992dbf50fdfc3ef69c9a1997 /io_mesh_atomic/pdb_import.py
parent6ee42b89a9cf2fae3320d037c606646c73c66f0d (diff)
The new ‘Atomic Blender PDB/XYZ’ importer. T62804
Comments ======== This is the fusion of the 3 atomic blender addons from Blender 2.79: 1. PDB (I/O addon for .pdb files, was in trunk before) 2. XYZ (I/O addon for .xyz files, was in contrib before) 3. Utilities (panel for modifying atomic structures, was in contrib before), into one single addon called ‘Atomic Blender PDB/XYZ’.
Diffstat (limited to 'io_mesh_atomic/pdb_import.py')
-rw-r--r--io_mesh_atomic/pdb_import.py1549
1 files changed, 1549 insertions, 0 deletions
diff --git a/io_mesh_atomic/pdb_import.py b/io_mesh_atomic/pdb_import.py
new file mode 100644
index 00000000..06a808c0
--- /dev/null
+++ b/io_mesh_atomic/pdb_import.py
@@ -0,0 +1,1549 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+import os
+import bpy
+import bmesh
+from math import pi, cos, sin, sqrt, ceil
+from mathutils import Vector, Matrix
+from copy import copy
+
+# -----------------------------------------------------------------------------
+# Atom, stick and element data
+
+
+# This is a list that contains some data of all possible elements. The structure
+# is as follows:
+#
+# 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54 means
+#
+# No., name, short name, color, radius (used), radius (covalent), radius (atomic),
+#
+# charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
+# charge states for any atom are listed, if existing.
+# The list is fixed and cannot be changed ... (see below)
+
+ELEMENTS_DEFAULT = (
+( 1, "Hydrogen", "H", ( 1.0, 1.0, 1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
+( 2, "Helium", "He", ( 0.85, 1.0, 1.0, 1.0), 0.93, 0.93, 0.49 ),
+( 3, "Lithium", "Li", ( 0.8, 0.50, 1.0, 1.0), 1.23, 1.23, 2.05 , 1 , 0.68 ),
+( 4, "Beryllium", "Be", ( 0.76, 1.0, 0.0, 1.0), 0.90, 0.90, 1.40 , 1 , 0.44 , 2 , 0.35 ),
+( 5, "Boron", "B", ( 1.0, 0.70, 0.70, 1.0), 0.82, 0.82, 1.17 , 1 , 0.35 , 3 , 0.23 ),
+( 6, "Carbon", "C", ( 0.56, 0.56, 0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 , 4 , 0.16 ),
+( 7, "Nitrogen", "N", ( 0.18, 0.31, 0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 , 1 , 0.25 , 3 , 0.16 , 5 , 0.13 ),
+( 8, "Oxygen", "O", ( 1.0, 0.05, 0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 , 1 , 0.22 , 6 , 0.09 ),
+( 9, "Fluorine", "F", ( 0.56, 0.87, 0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 , 7 , 0.08 ),
+(10, "Neon", "Ne", ( 0.70, 0.89, 0.96, 1.0), 0.71, 0.71, 0.51 , 1 , 1.12 ),
+(11, "Sodium", "Na", ( 0.67, 0.36, 0.94, 1.0), 1.54, 1.54, 2.23 , 1 , 0.97 ),
+(12, "Magnesium", "Mg", ( 0.54, 1.0, 0.0, 1.0), 1.36, 1.36, 1.72 , 1 , 0.82 , 2 , 0.66 ),
+(13, "Aluminium", "Al", ( 0.74, 0.65, 0.65, 1.0), 1.18, 1.18, 1.82 , 3 , 0.51 ),
+(14, "Silicon", "Si", ( 0.94, 0.78, 0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 , 1 , 0.65 , 4 , 0.42 ),
+(15, "Phosphorus", "P", ( 1.0, 0.50, 0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 , 3 , 0.44 , 5 , 0.35 ),
+(16, "Sulfur", "S", ( 1.0, 1.0, 0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 , 2 , 2.19 , 4 , 0.37 , 6 , 0.30 ),
+(17, "Chlorine", "Cl", ( 0.12, 0.94, 0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 , 5 , 0.34 , 7 , 0.27 ),
+(18, "Argon", "Ar", ( 0.50, 0.81, 0.89, 1.0), 0.98, 0.98, 0.88 , 1 , 1.54 ),
+(19, "Potassium", "K", ( 0.56, 0.25, 0.83, 1.0), 2.03, 2.03, 2.77 , 1 , 0.81 ),
+(20, "Calcium", "Ca", ( 0.23, 1.0, 0.0, 1.0), 1.74, 1.74, 2.23 , 1 , 1.18 , 2 , 0.99 ),
+(21, "Scandium", "Sc", ( 0.90, 0.90, 0.90, 1.0), 1.44, 1.44, 2.09 , 3 , 0.73 ),
+(22, "Titanium", "Ti", ( 0.74, 0.76, 0.78, 1.0), 1.32, 1.32, 2.00 , 1 , 0.96 , 2 , 0.94 , 3 , 0.76 , 4 , 0.68 ),
+(23, "Vanadium", "V", ( 0.65, 0.65, 0.67, 1.0), 1.22, 1.22, 1.92 , 2 , 0.88 , 3 , 0.74 , 4 , 0.63 , 5 , 0.59 ),
+(24, "Chromium", "Cr", ( 0.54, 0.6, 0.78, 1.0), 1.18, 1.18, 1.85 , 1 , 0.81 , 2 , 0.89 , 3 , 0.63 , 6 , 0.52 ),
+(25, "Manganese", "Mn", ( 0.61, 0.47, 0.78, 1.0), 1.17, 1.17, 1.79 , 2 , 0.80 , 3 , 0.66 , 4 , 0.60 , 7 , 0.46 ),
+(26, "Iron", "Fe", ( 0.87, 0.4, 0.2, 1.0), 1.17, 1.17, 1.72 , 2 , 0.74 , 3 , 0.64 ),
+(27, "Cobalt", "Co", ( 0.94, 0.56, 0.62, 1.0), 1.16, 1.16, 1.67 , 2 , 0.72 , 3 , 0.63 ),
+(28, "Nickel", "Ni", ( 0.31, 0.81, 0.31, 1.0), 1.15, 1.15, 1.62 , 2 , 0.69 ),
+(29, "Copper", "Cu", ( 0.78, 0.50, 0.2, 1.0), 1.17, 1.17, 1.57 , 1 , 0.96 , 2 , 0.72 ),
+(30, "Zinc", "Zn", ( 0.49, 0.50, 0.69, 1.0), 1.25, 1.25, 1.53 , 1 , 0.88 , 2 , 0.74 ),
+(31, "Gallium", "Ga", ( 0.76, 0.56, 0.56, 1.0), 1.26, 1.26, 1.81 , 1 , 0.81 , 3 , 0.62 ),
+(32, "Germanium", "Ge", ( 0.4, 0.56, 0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 , 2 , 0.73 , 4 , 0.53 ),
+(33, "Arsenic", "As", ( 0.74, 0.50, 0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 , 3 , 0.58 , 5 , 0.46 ),
+(34, "Selenium", "Se", ( 1.0, 0.63, 0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 , 1 , 0.66 , 4 , 0.50 , 6 , 0.42 ),
+(35, "Bromine", "Br", ( 0.65, 0.16, 0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 , 5 , 0.47 , 7 , 0.39 ),
+(36, "Krypton", "Kr", ( 0.36, 0.72, 0.81, 1.0), 1.31, 1.31, 1.24 ),
+(37, "Rubidium", "Rb", ( 0.43, 0.18, 0.69, 1.0), 2.16, 2.16, 2.98 , 1 , 1.47 ),
+(38, "Strontium", "Sr", ( 0.0, 1.0, 0.0, 1.0), 1.91, 1.91, 2.45 , 2 , 1.12 ),
+(39, "Yttrium", "Y", ( 0.58, 1.0, 1.0, 1.0), 1.62, 1.62, 2.27 , 3 , 0.89 ),
+(40, "Zirconium", "Zr", ( 0.58, 0.87, 0.87, 1.0), 1.45, 1.45, 2.16 , 1 , 1.09 , 4 , 0.79 ),
+(41, "Niobium", "Nb", ( 0.45, 0.76, 0.78, 1.0), 1.34, 1.34, 2.08 , 1 , 1.00 , 4 , 0.74 , 5 , 0.69 ),
+(42, "Molybdenum", "Mo", ( 0.32, 0.70, 0.70, 1.0), 1.30, 1.30, 2.01 , 1 , 0.93 , 4 , 0.70 , 6 , 0.62 ),
+(43, "Technetium", "Tc", ( 0.23, 0.61, 0.61, 1.0), 1.27, 1.27, 1.95 , 7 , 0.97 ),
+(44, "Ruthenium", "Ru", ( 0.14, 0.56, 0.56, 1.0), 1.25, 1.25, 1.89 , 4 , 0.67 ),
+(45, "Rhodium", "Rh", ( 0.03, 0.49, 0.54, 1.0), 1.25, 1.25, 1.83 , 3 , 0.68 ),
+(46, "Palladium", "Pd", ( 0.0, 0.41, 0.52, 1.0), 1.28, 1.28, 1.79 , 2 , 0.80 , 4 , 0.65 ),
+(47, "Silver", "Ag", ( 0.75, 0.75, 0.75, 1.0), 1.34, 1.34, 1.75 , 1 , 1.26 , 2 , 0.89 ),
+(48, "Cadmium", "Cd", ( 1.0, 0.85, 0.56, 1.0), 1.48, 1.48, 1.71 , 1 , 1.14 , 2 , 0.97 ),
+(49, "Indium", "In", ( 0.65, 0.45, 0.45, 1.0), 1.44, 1.44, 2.00 , 3 , 0.81 ),
+(50, "Tin", "Sn", ( 0.4, 0.50, 0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 , 2 , 0.93 , 4 , 0.71 ),
+(51, "Antimony", "Sb", ( 0.61, 0.38, 0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 , 3 , 0.76 , 5 , 0.62 ),
+(52, "Tellurium", "Te", ( 0.83, 0.47, 0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 , 1 , 0.82 , 4 , 0.70 , 6 , 0.56 ),
+(53, "Iodine", "I", ( 0.58, 0.0, 0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 , 5 , 0.62 , 7 , 0.50 ),
+(54, "Xenon", "Xe", ( 0.25, 0.61, 0.69, 1.0), 1.31, 1.31, 1.24 ),
+(55, "Caesium", "Cs", ( 0.34, 0.09, 0.56, 1.0), 2.35, 2.35, 3.35 , 1 , 1.67 ),
+(56, "Barium", "Ba", ( 0.0, 0.78, 0.0, 1.0), 1.98, 1.98, 2.78 , 1 , 1.53 , 2 , 1.34 ),
+(57, "Lanthanum", "La", ( 0.43, 0.83, 1.0, 1.0), 1.69, 1.69, 2.74 , 1 , 1.39 , 3 , 1.06 ),
+(58, "Cerium", "Ce", ( 1.0, 1.0, 0.78, 1.0), 1.65, 1.65, 2.70 , 1 , 1.27 , 3 , 1.03 , 4 , 0.92 ),
+(59, "Praseodymium", "Pr", ( 0.85, 1.0, 0.78, 1.0), 1.65, 1.65, 2.67 , 3 , 1.01 , 4 , 0.90 ),
+(60, "Neodymium", "Nd", ( 0.78, 1.0, 0.78, 1.0), 1.64, 1.64, 2.64 , 3 , 0.99 ),
+(61, "Promethium", "Pm", ( 0.63, 1.0, 0.78, 1.0), 1.63, 1.63, 2.62 , 3 , 0.97 ),
+(62, "Samarium", "Sm", ( 0.56, 1.0, 0.78, 1.0), 1.62, 1.62, 2.59 , 3 , 0.96 ),
+(63, "Europium", "Eu", ( 0.38, 1.0, 0.78, 1.0), 1.85, 1.85, 2.56 , 2 , 1.09 , 3 , 0.95 ),
+(64, "Gadolinium", "Gd", ( 0.27, 1.0, 0.78, 1.0), 1.61, 1.61, 2.54 , 3 , 0.93 ),
+(65, "Terbium", "Tb", ( 0.18, 1.0, 0.78, 1.0), 1.59, 1.59, 2.51 , 3 , 0.92 , 4 , 0.84 ),
+(66, "Dysprosium", "Dy", ( 0.12, 1.0, 0.78, 1.0), 1.59, 1.59, 2.49 , 3 , 0.90 ),
+(67, "Holmium", "Ho", ( 0.0, 1.0, 0.61, 1.0), 1.58, 1.58, 2.47 , 3 , 0.89 ),
+(68, "Erbium", "Er", ( 0.0, 0.90, 0.45, 1.0), 1.57, 1.57, 2.45 , 3 , 0.88 ),
+(69, "Thulium", "Tm", ( 0.0, 0.83, 0.32, 1.0), 1.56, 1.56, 2.42 , 3 , 0.87 ),
+(70, "Ytterbium", "Yb", ( 0.0, 0.74, 0.21, 1.0), 1.74, 1.74, 2.40 , 2 , 0.93 , 3 , 0.85 ),
+(71, "Lutetium", "Lu", ( 0.0, 0.67, 0.14, 1.0), 1.56, 1.56, 2.25 , 3 , 0.85 ),
+(72, "Hafnium", "Hf", ( 0.30, 0.76, 1.0, 1.0), 1.44, 1.44, 2.16 , 4 , 0.78 ),
+(73, "Tantalum", "Ta", ( 0.30, 0.65, 1.0, 1.0), 1.34, 1.34, 2.09 , 5 , 0.68 ),
+(74, "Tungsten", "W", ( 0.12, 0.58, 0.83, 1.0), 1.30, 1.30, 2.02 , 4 , 0.70 , 6 , 0.62 ),
+(75, "Rhenium", "Re", ( 0.14, 0.49, 0.67, 1.0), 1.28, 1.28, 1.97 , 4 , 0.72 , 7 , 0.56 ),
+(76, "Osmium", "Os", ( 0.14, 0.4, 0.58, 1.0), 1.26, 1.26, 1.92 , 4 , 0.88 , 6 , 0.69 ),
+(77, "Iridium", "Ir", ( 0.09, 0.32, 0.52, 1.0), 1.27, 1.27, 1.87 , 4 , 0.68 ),
+(78, "Platinum", "Pt", ( 0.81, 0.81, 0.87, 1.0), 1.30, 1.30, 1.83 , 2 , 0.80 , 4 , 0.65 ),
+(79, "Gold", "Au", ( 1.0, 0.81, 0.13, 1.0), 1.34, 1.34, 1.79 , 1 , 1.37 , 3 , 0.85 ),
+(80, "Mercury", "Hg", ( 0.72, 0.72, 0.81, 1.0), 1.49, 1.49, 1.76 , 1 , 1.27 , 2 , 1.10 ),
+(81, "Thallium", "Tl", ( 0.65, 0.32, 0.30, 1.0), 1.48, 1.48, 2.08 , 1 , 1.47 , 3 , 0.95 ),
+(82, "Lead", "Pb", ( 0.34, 0.34, 0.38, 1.0), 1.47, 1.47, 1.81 , 2 , 1.20 , 4 , 0.84 ),
+(83, "Bismuth", "Bi", ( 0.61, 0.30, 0.70, 1.0), 1.46, 1.46, 1.63 , 1 , 0.98 , 3 , 0.96 , 5 , 0.74 ),
+(84, "Polonium", "Po", ( 0.67, 0.36, 0.0, 1.0), 1.46, 1.46, 1.53 , 6 , 0.67 ),
+(85, "Astatine", "At", ( 0.45, 0.30, 0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 , 3 , 0.85 , 5 , 0.46 ),
+(86, "Radon", "Rn", ( 0.25, 0.50, 0.58, 1.0), 1.00, 1.00, 1.34 ),
+(87, "Francium", "Fr", ( 0.25, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 , 1 , 1.80 ),
+(88, "Radium", "Ra", ( 0.0, 0.49, 0.0, 1.0), 1.00, 1.00, 1.00 , 2 , 1.43 ),
+(89, "Actinium", "Ac", ( 0.43, 0.67, 0.98, 1.0), 1.00, 1.00, 1.00 , 3 , 1.18 ),
+(90, "Thorium", "Th", ( 0.0, 0.72, 1.0, 1.0), 1.65, 1.65, 1.00 , 4 , 1.02 ),
+(91, "Protactinium", "Pa", ( 0.0, 0.63, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.13 , 4 , 0.98 , 5 , 0.89 ),
+(92, "Uranium", "U", ( 0.0, 0.56, 1.0, 1.0), 1.42, 1.42, 1.00 , 4 , 0.97 , 6 , 0.80 ),
+(93, "Neptunium", "Np", ( 0.0, 0.50, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.10 , 4 , 0.95 , 7 , 0.71 ),
+(94, "Plutonium", "Pu", ( 0.0, 0.41, 1.0, 1.0), 1.00, 1.00, 1.00 , 3 , 1.08 , 4 , 0.93 ),
+(95, "Americium", "Am", ( 0.32, 0.36, 0.94, 1.0), 1.00, 1.00, 1.00 , 3 , 1.07 , 4 , 0.92 ),
+(96, "Curium", "Cm", ( 0.47, 0.36, 0.89, 1.0), 1.00, 1.00, 1.00 ),
+(97, "Berkelium", "Bk", ( 0.54, 0.30, 0.89, 1.0), 1.00, 1.00, 1.00 ),
+(98, "Californium", "Cf", ( 0.63, 0.21, 0.83, 1.0), 1.00, 1.00, 1.00 ),
+(99, "Einsteinium", "Es", ( 0.70, 0.12, 0.83, 1.0), 1.00, 1.00, 1.00 ),
+(100, "Fermium", "Fm", ( 0.70, 0.12, 0.72, 1.0), 1.00, 1.00, 1.00 ),
+(101, "Mendelevium", "Md", ( 0.70, 0.05, 0.65, 1.0), 1.00, 1.00, 1.00 ),
+(102, "Nobelium", "No", ( 0.74, 0.05, 0.52, 1.0), 1.00, 1.00, 1.00 ),
+(103, "Lawrencium", "Lr", ( 0.78, 0.0, 0.4, 1.0), 1.00, 1.00, 1.00 ),
+(104, "Vacancy", "Vac", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
+(105, "Default", "Default", ( 1.0, 1.0, 1.0, 1.0), 1.00, 1.00, 1.00),
+(106, "Stick", "Stick", ( 0.5, 0.5, 0.5, 1.0), 1.00, 1.00, 1.00),
+)
+
+# This list here contains all data of the elements and will be used during
+# runtime. It is a list of classes.
+# During executing Atomic Blender, the list will be initialized with the fixed
+# data from above via the class structure below (ElementProp). We
+# have then one fixed list (above), which will never be changed, and a list of
+# classes with same data. The latter can be modified via loading a separate
+# custom data file.
+ELEMENTS = []
+
+# This is the class, which stores the properties for one element.
+class ElementProp(object):
+ __slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
+ def __init__(self, number, name, short_name, color, radii, radii_ionic):
+ self.number = number
+ self.name = name
+ self.short_name = short_name
+ self.color = color
+ self.radii = radii
+ self.radii_ionic = radii_ionic
+
+# This is the class, which stores the properties of one atom.
+class AtomProp(object):
+ __slots__ = ('element', 'name', 'location', 'radius', 'color', 'material')
+ def __init__(self, element, name, location, radius, color, material):
+ self.element = element
+ self.name = name
+ self.location = location
+ self.radius = radius
+ self.color = color
+ self.material = material
+
+# This is the class, which stores the two atoms of one stick.
+class StickProp(object):
+ __slots__ = ('atom1', 'atom2', 'number', 'dist')
+ def __init__(self, atom1, atom2, number, dist):
+ self.atom1 = atom1
+ self.atom2 = atom2
+ self.number = number
+ self.dist = dist
+
+# -----------------------------------------------------------------------------
+# Some basic routines
+
+
+# The function, which reads all necessary properties of the elements.
+def read_elements():
+
+ del ELEMENTS[:]
+
+ for item in ELEMENTS_DEFAULT:
+
+ # All three radii into a list
+ radii = [item[4],item[5],item[6]]
+ # The handling of the ionic radii will be done later. So far, it is an
+ # empty list.
+ radii_ionic = []
+
+ li = ElementProp(item[0],item[1],item[2],item[3],
+ radii,radii_ionic)
+ ELEMENTS.append(li)
+
+
+# The function, which reads the x,y,z positions of all atoms in a PDB
+# file.
+#
+# filepath_pdb: path to pdb file
+# radiustype : '0' default
+# '1' atomic radii
+# '2' van der Waals
+def read_pdb_file(filepath_pdb, radiustype):
+
+ # The list of all atoms as read from the PDB file.
+ all_atoms = []
+
+ # Open the pdb file ...
+ filepath_pdb_p = open(filepath_pdb, "r")
+
+ #Go to the line, in which "ATOM" or "HETATM" appears.
+ for line in filepath_pdb_p:
+ split_list = line.split(' ')
+ if "ATOM" in split_list[0]:
+ break
+ if "HETATM" in split_list[0]:
+ break
+
+ j = 0
+ # This is in fact an endless 'while loop', ...
+ while j > -1:
+
+ # ... the loop is broken here (EOF) ...
+ if line == "":
+ break
+
+ # If there is a "TER" we need to put empty entries into the lists
+ # in order to not destroy the order of atom numbers and same numbers
+ # used for sticks. "TER? What is that?" TER indicates the end of a
+ # list of ATOM/HETATM records for a chain.
+ if "TER" in line:
+ short_name = "TER"
+ name = "TER"
+ radius = 0.0
+ # 2019-03-14, New
+ color = [0,0,0, 0]
+ location = Vector((0,0,0))
+ # Append the TER into the list. Material remains empty so far.
+ all_atoms.append(AtomProp(short_name,
+ name,
+ location,
+ radius,
+ color,[]))
+
+ # If 'ATOM or 'HETATM' appears in the line then do ...
+ elif "ATOM" in line or "HETATM" in line:
+
+ # What follows is due to deviations which appear from PDB to
+ # PDB file. It is very special!
+ #
+ # PLEASE, DO NOT CHANGE! ............................... from here
+ if line[12:13] == " " or line[12:13].isdigit() == True:
+ short_name = line[13:14]
+ if line[14:15].islower() == True:
+ short_name = short_name + line[14:15]
+ elif line[12:13].isupper() == True:
+ short_name = line[12:13]
+ if line[13:14].isalpha() == True:
+ short_name = short_name + line[13:14]
+ else:
+ print("Atomic Blender: Strange error in PDB file.\n"
+ "Look for element names at positions 13-16 and 78-79.\n")
+ return -1
+
+ if len(line) >= 78:
+
+ if line[76:77] == " ":
+ short_name2 = line[76:77]
+ else:
+ short_name2 = line[76:78]
+
+ if short_name2.isalpha() == True:
+ FOUND = False
+ for element in ELEMENTS:
+ if str.upper(short_name2) == str.upper(element.short_name):
+ FOUND = True
+ break
+ if FOUND == False:
+ short_name = short_name2
+
+ # ....................................................... to here.
+
+ # Go through all elements and find the element of the current atom.
+ FLAG_FOUND = False
+ for element in ELEMENTS:
+ if str.upper(short_name) == str.upper(element.short_name):
+ # Give the atom its proper names, color and radius:
+ short_name = str.upper(element.short_name)
+ name = element.name
+ # int(radiustype) => type of radius:
+ # pre-defined (0), atomic (1) or van der Waals (2)
+ radius = float(element.radii[int(radiustype)])
+ color = element.color
+ FLAG_FOUND = True
+ break
+
+ # Is it a vacancy or an 'unknown atom' ?
+ if FLAG_FOUND == False:
+ # Give this atom also a name. If it is an 'X' then it is a
+ # vacancy. Otherwise ...
+ if "X" in short_name:
+ short_name = "VAC"
+ name = "Vacancy"
+ radius = float(ELEMENTS[-3].radii[int(radiustype)])
+ color = ELEMENTS[-3].color
+ # ... take what is written in the PDB file. These are somewhat
+ # unknown atoms. This should never happen, the element list is
+ # almost complete. However, we do this due to security reasons.
+ else:
+ short_name = str.upper(short_name)
+ name = str.upper(short_name)
+ radius = float(ELEMENTS[-2].radii[int(radiustype)])
+ color = ELEMENTS[-2].color
+
+ # x,y and z are at fixed positions in the PDB file.
+ x = float(line[30:38].rsplit()[0])
+ y = float(line[38:46].rsplit()[0])
+ z = float(line[46:55].rsplit()[0])
+
+ location = Vector((x,y,z))
+
+ j += 1
+
+ # Append the atom to the list. Material remains empty so far.
+ all_atoms.append(AtomProp(short_name,
+ name,
+ location,
+ radius,
+ color,[]))
+
+ line = filepath_pdb_p.readline()
+ line = line[:-1]
+
+ filepath_pdb_p.close()
+ # From above it can be clearly seen that j is now the number of all atoms.
+ Number_of_total_atoms = j
+
+ return (Number_of_total_atoms, all_atoms)
+
+
+# The function, which reads the sticks in a PDB file.
+def read_pdb_file_sticks(filepath_pdb, use_sticks_bonds, all_atoms):
+
+ # The list of all sticks.
+ all_sticks = []
+
+ # Open the PDB file.
+ filepath_pdb_p = open(filepath_pdb, "r")
+
+ line = filepath_pdb_p.readline()
+ split_list = line.split(' ')
+
+ # Go to the first entry
+ if "CONECT" not in split_list[0]:
+ for line in filepath_pdb_p:
+ split_list = line.split(' ')
+ if "CONECT" in split_list[0]:
+ break
+
+ Number_of_sticks = 0
+ sticks_double = 0
+ j = 0
+ # This is in fact an endless while loop, ...
+ while j > -1:
+
+ # ... which is broken here (EOF) ...
+ if line == "":
+ break
+ # ... or here, when no 'CONECT' appears anymore.
+ if "CONECT" not in line:
+ break
+
+ # Note 2019-03-16: in a PDB file the identifier for sticks is called
+ # 'CONECT' and NOT 'CONNECT'! Please leave this as is, otherwise the
+ # sticks are NOT correctly loaded.
+
+ # The strings of the atom numbers do have a clear position in the file
+ # (From 7 to 12, from 13 to 18 and so on.) and one needs to consider
+ # this. One could also use the split function but then one gets into
+ # trouble if there are lots of atoms: For instance, it may happen that
+ # one has
+ # CONECT 11111 22244444
+ #
+ # In Fact it means that atom No. 11111 has a connection with atom
+ # No. 222 but also with atom No. 44444. The split function would give
+ # me only two numbers (11111 and 22244444), which is wrong.
+
+ # Cut spaces from the right and 'CONECT' at the beginning
+ line = line.rstrip()
+ line = line[6:]
+ # Amount of loops
+ length = len(line)
+ loops = int(length/5)
+
+ # List of atoms
+ atom_list = []
+ for i in range(loops):
+ number = line[5*i:5*(i+1)].rsplit()
+ if number != []:
+ if number[0].isdigit() == True:
+ atom_number = int(number[0])
+ atom_list.append(atom_number)
+
+ # The first atom is connected with all the others in the list.
+ atom1 = atom_list[0]
+
+ # For all the other atoms in the list do:
+ for atom2 in atom_list[1:]:
+
+ if use_sticks_bonds == True:
+ number = atom_list[1:].count(atom2)
+
+ if number == 2 or number == 3:
+ basis_list = list(set(atom_list[1:]))
+
+ if len(basis_list) > 1:
+ basis1 = (all_atoms[atom1-1].location
+ - all_atoms[basis_list[0]-1].location)
+ basis2 = (all_atoms[atom1-1].location
+ - all_atoms[basis_list[1]-1].location)
+ plane_n = basis1.cross(basis2)
+
+ dist_n = (all_atoms[atom1-1].location
+ - all_atoms[atom2-1].location)
+ dist_n = dist_n.cross(plane_n)
+ dist_n = dist_n / dist_n.length
+ else:
+ dist_n = (all_atoms[atom1-1].location
+ - all_atoms[atom2-1].location)
+ dist_n = Vector((dist_n[1],-dist_n[0],0))
+ dist_n = dist_n / dist_n.length
+
+ elif number > 3:
+ number = 1
+ dist_n = None
+ else:
+ dist_n = None
+ else:
+ number = 1
+ dist_n = None
+
+ # Note that in a PDB file, sticks of one atom pair can appear a
+ # couple of times. (Only god knows why ...)
+ # So, does a stick between the considered atoms already exist?
+ FLAG_BAR = False
+ for k in range(Number_of_sticks):
+ if ((all_sticks[k].atom1 == atom1 and all_sticks[k].atom2 == atom2) or
+ (all_sticks[k].atom2 == atom1 and all_sticks[k].atom1 == atom2)):
+ sticks_double += 1
+ # If yes, then FLAG on 'True'.
+ FLAG_BAR = True
+ break
+
+ # If the stick is not yet registered (FLAG_BAR == False), then
+ # register it!
+ if FLAG_BAR == False:
+ all_sticks.append(StickProp(atom1,atom2,number,dist_n))
+ Number_of_sticks += 1
+ j += 1
+
+ line = filepath_pdb_p.readline()
+ line = line.rstrip()
+
+ filepath_pdb_p.close()
+
+ return all_sticks
+
+
+# Function, which produces a cylinder. All is somewhat easy to understand.
+def build_stick(radius, length, sectors, element_name):
+
+ dphi = 2.0 * pi/(float(sectors)-1)
+
+ # Vertices
+ vertices_top = [Vector((0,0,length / 2.0))]
+ vertices_bottom = [Vector((0,0,-length / 2.0))]
+ vertices = []
+ for i in range(sectors-1):
+ x = radius * cos( dphi * i )
+ y = radius * sin( dphi * i )
+ z = length / 2.0
+ vertex = Vector((x,y,z))
+ vertices_top.append(vertex)
+ z = -length / 2.0
+ vertex = Vector((x,y,z))
+ vertices_bottom.append(vertex)
+ vertices = vertices_top + vertices_bottom
+
+ # Side facets (Cylinder)
+ faces1 = []
+ for i in range(sectors-1):
+ if i == sectors-2:
+ faces1.append( [i+1, 1, 1+sectors, i+1+sectors] )
+ else:
+ faces1.append( [i+1, i+2, i+2+sectors, i+1+sectors] )
+
+ # Top facets
+ faces2 = []
+ for i in range(sectors-1):
+ if i == sectors-2:
+ face_top = [0,sectors-1,1]
+ face_bottom = [sectors,2*sectors-1,sectors+1]
+ else:
+ face_top = [0]
+ face_bottom = [sectors]
+ for j in range(2):
+ face_top.append(i+j+1)
+ face_bottom.append(i+j+1+sectors)
+ faces2.append(face_top)
+ faces2.append(face_bottom)
+
+ # Build the mesh, Cylinder
+ cylinder = bpy.data.meshes.new(element_name+"_sticks_cylinder")
+ cylinder.from_pydata(vertices, [], faces1)
+ cylinder.update()
+ new_cylinder = bpy.data.objects.new(element_name+"_sticks_cylinder", cylinder)
+ # Attention: the linking will be done a few moments later, after this
+ # is done definition.
+
+ # Build the mesh, Cups
+ cups = bpy.data.meshes.new(element_name+"_sticks_cup")
+ cups.from_pydata(vertices, [], faces2)
+ cups.update()
+ new_cups = bpy.data.objects.new(element_name+"_sticks_cup", cups)
+ # Attention: the linking will be done a few moments later, after this
+ # is done definition.
+
+ return (new_cylinder, new_cups)
+
+
+# Rotate an object.
+def rotate_object(rot_mat, obj):
+
+ bpy.ops.object.select_all(action='DESELECT')
+ obj.select_set(True)
+
+ # Decompose world_matrix's components, and from them assemble 4x4 matrices.
+ orig_loc, orig_rot, orig_scale = obj.matrix_world.decompose()
+
+ orig_loc_mat = Matrix.Translation(orig_loc)
+ orig_rot_mat = orig_rot.to_matrix().to_4x4()
+ orig_scale_mat = (Matrix.Scale(orig_scale[0],4,(1,0,0)) @
+ Matrix.Scale(orig_scale[1],4,(0,1,0)) @
+ Matrix.Scale(orig_scale[2],4,(0,0,1)))
+
+ # Assemble the new matrix.
+ obj.matrix_world = orig_loc_mat @ rot_mat @ orig_rot_mat @ orig_scale_mat
+
+
+# Function, which puts a camera and light source into the 3D scene
+def camera_light_source(use_camera,
+ use_light,
+ object_center_vec,
+ object_size):
+
+ camera_factor = 15.0
+
+ # If chosen a camera is put into the scene.
+ if use_camera == True:
+
+ # Assume that the object is put into the global origin. Then, the
+ # camera is moved in x and z direction, not in y. The object has its
+ # size at distance sqrt(object_size) from the origin. So, move the
+ # camera by this distance times a factor of camera_factor in x and z.
+ # Then add x, y and z of the origin of the object.
+ object_camera_vec = Vector((sqrt(object_size) * camera_factor,
+ 0.0,
+ sqrt(object_size) * camera_factor))
+ camera_xyz_vec = object_center_vec + object_camera_vec
+
+ # Create the camera
+ camera_data = bpy.data.cameras.new("A_camera")
+ camera_data.lens = 45
+ camera_data.clip_end = 500.0
+ camera = bpy.data.objects.new("A_camera", camera_data)
+ camera.location = camera_xyz_vec
+ bpy.context.collection.objects.link(camera)
+
+ # Here the camera is rotated such it looks towards the center of
+ # the object. The [0.0, 0.0, 1.0] vector along the z axis
+ z_axis_vec = Vector((0.0, 0.0, 1.0))
+ # The angle between the last two vectors
+ angle = object_camera_vec.angle(z_axis_vec, 0)
+ # The cross-product of z_axis_vec and object_camera_vec
+ axis_vec = z_axis_vec.cross(object_camera_vec)
+ # Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
+ # 4 is the size of the matrix.
+ camera.rotation_euler = Matrix.Rotation(angle, 4, axis_vec).to_euler()
+
+ # Rotate the camera around its axis by 90° such that we have a nice
+ # camera position and view onto the object.
+ bpy.ops.object.select_all(action='DESELECT')
+ camera.select_set(True)
+
+ # Rotate the camera around its axis 'object_camera_vec' by 90° such
+ # that we have a nice camera view onto the object.
+ matrix_rotation = Matrix.Rotation(90/360*2*pi, 4, object_camera_vec)
+ rotate_object(matrix_rotation, camera)
+
+ # Here a lamp is put into the scene, if chosen.
+ if use_light == True:
+
+ # This is the distance from the object measured in terms of %
+ # of the camera distance. It is set onto 50% (1/2) distance.
+ light_dl = sqrt(object_size) * 15 * 0.5
+ # This is a factor to which extend the lamp shall go to the right
+ # (from the camera point of view).
+ light_dy_right = light_dl * (3.0/4.0)
+
+ # Create x, y and z for the lamp.
+ object_light_vec = Vector((light_dl,light_dy_right,light_dl))
+ light_xyz_vec = object_center_vec + object_light_vec
+
+ # Create the lamp
+ light_data = bpy.data.lights.new(name="A_light", type="SUN")
+ light_data.distance = 500.0
+ light_data.energy = 3.0
+ lamp = bpy.data.objects.new("A_light", light_data)
+ lamp.location = light_xyz_vec
+ bpy.context.collection.objects.link(lamp)
+
+ # Some settings for the World: a bit ambient occlusion
+ bpy.context.scene.world.light_settings.use_ambient_occlusion = True
+ bpy.context.scene.world.light_settings.ao_factor = 0.1
+ # Some properties for cycles
+ lamp.data.use_nodes = True
+ lmp_P_BSDF = lamp.data.node_tree.nodes['Emission']
+ lmp_P_BSDF.inputs['Strength'].default_value = 5
+
+
+# Function, which draws the atoms of one type (balls). This is one
+# dupliverts structure then.
+# Return: the dupliverts structure
+def draw_atoms_one_type(draw_all_atoms_type,
+ Ball_type,
+ Ball_azimuth,
+ Ball_zenith,
+ Ball_radius_factor,
+ object_center_vec,
+ collection_molecule):
+
+ # Create the vertices composed of the coordinates of all atoms of one type
+ atom_vertices = []
+ for atom in draw_all_atoms_type:
+ # In fact, the object is created in the World's origin.
+ # This is why 'object_center_vec' is subtracted. At the end
+ # the whole object is translated back to 'object_center_vec'.
+ atom_vertices.append(atom[2] - object_center_vec)
+
+ # IMPORTANT: First, we create a collection of the element, which contains
+ # the atoms (balls + mesh) AND the sticks! The definition dealing with the
+ # sticks will put the sticks inside this collection later on.
+ coll_element_name = atom[0] # the element name
+ # Create the new collection and ...
+ coll_element = bpy.data.collections.new(coll_element_name)
+ # ... link it to the collection, which contains all parts of the
+ # molecule.
+ collection_molecule.children.link(coll_element)
+
+ # Now, create a collection for the atoms, which includes the representative
+ # ball and the mesh.
+ coll_atom_name = atom[0] + "_atom"
+ # Create the new collection and ...
+ coll_atom = bpy.data.collections.new(coll_atom_name)
+ # ... link it to the collection, which contains all parts of the
+ # element (ball and mesh).
+ coll_element.children.link(coll_atom)
+
+ # Build the mesh
+ atom_mesh = bpy.data.meshes.new("Mesh_"+atom[0])
+ atom_mesh.from_pydata(atom_vertices, [], [])
+ atom_mesh.update()
+ new_atom_mesh = bpy.data.objects.new(atom[0] + "_mesh", atom_mesh)
+
+ # Link active object to the new collection
+ coll_atom.objects.link(new_atom_mesh)
+
+ # Now, build a representative sphere (atom).
+ if atom[0] == "Vacancy":
+ bpy.ops.mesh.primitive_cube_add(
+ view_align=False, enter_editmode=False,
+ location=(0.0, 0.0, 0.0),
+ rotation=(0.0, 0.0, 0.0))
+ else:
+ # NURBS balls
+ if Ball_type == "0":
+ bpy.ops.surface.primitive_nurbs_surface_sphere_add(
+ view_align=False, enter_editmode=False,
+ location=(0,0,0), rotation=(0.0, 0.0, 0.0))
+ # UV balls
+ elif Ball_type == "1":
+ bpy.ops.mesh.primitive_uv_sphere_add(
+ segments=Ball_azimuth, ring_count=Ball_zenith,
+ size=1, view_align=False, enter_editmode=False,
+ location=(0,0,0), rotation=(0, 0, 0))
+ # Meta balls
+ elif Ball_type == "2":
+ bpy.ops.object.metaball_add(type='BALL', view_align=False,
+ enter_editmode=False, location=(0, 0, 0),
+ rotation=(0, 0, 0))
+
+ ball = bpy.context.view_layer.objects.active
+ # Hide this ball because its appearance has no meaning. It is just the
+ # representative ball. The ball is visible at the vertices of the mesh.
+ # Rememmber, this is a dupliverts construct!
+ ball.hide_set(True)
+ # Scale up/down the ball radius.
+ ball.scale = (atom[3]*Ball_radius_factor,) * 3
+
+ if atom[0] == "Vacancy":
+ ball.name = atom[0] + "_cube"
+ else:
+ ball.name = atom[0] + "_ball"
+
+ ball.active_material = atom[1]
+ ball.parent = new_atom_mesh
+ new_atom_mesh.instance_type = 'VERTS'
+ # The object is back translated to 'object_center_vec'.
+ new_atom_mesh.location = object_center_vec
+
+ # Note the collection where the ball was placed into.
+ coll_all = ball.users_collection
+ if len(coll_all) > 0:
+ coll_past = coll_all[0]
+ else:
+ coll_past = bpy.context.scene.collection
+
+ # Put the atom into the new collection 'atom' and ...
+ coll_atom.objects.link(ball)
+ # ... unlink the atom from the other collection.
+ coll_past.objects.unlink(ball)
+
+ return new_atom_mesh, coll_element
+
+
+# Function, which draws the sticks with help of the dupliverts technique.
+# Return: list of dupliverts structures.
+def draw_sticks_dupliverts(all_atoms,
+ atom_all_types_list,
+ center,
+ all_sticks,
+ Stick_diameter,
+ Stick_sectors,
+ Stick_unit,
+ Stick_dist,
+ use_sticks_smooth,
+ use_sticks_color,
+ list_coll_elements):
+
+ dl = Stick_unit
+
+ if use_sticks_color == False:
+ stick_material = bpy.data.materials.new(ELEMENTS[-1].name)
+ stick_material.diffuse_color = ELEMENTS[-1].color
+
+ # Sort the sticks and put them into a new list such that ...
+ sticks_all_lists = []
+ if use_sticks_color == True:
+ for atom_type in atom_all_types_list:
+ if atom_type[0] == "TER":
+ continue
+ sticks_list = []
+ for stick in all_sticks:
+ for repeat in range(stick.number):
+
+ atom1 = copy(all_atoms[stick.atom1-1].location)-center
+ atom2 = copy(all_atoms[stick.atom2-1].location)-center
+
+ dist = Stick_diameter * Stick_dist
+
+ if stick.number == 2:
+ if repeat == 0:
+ atom1 += (stick.dist * dist)
+ atom2 += (stick.dist * dist)
+ if repeat == 1:
+ atom1 -= (stick.dist * dist)
+ atom2 -= (stick.dist * dist)
+
+ if stick.number == 3:
+ if repeat == 0:
+ atom1 += (stick.dist * dist)
+ atom2 += (stick.dist * dist)
+ if repeat == 2:
+ atom1 -= (stick.dist * dist)
+ atom2 -= (stick.dist * dist)
+
+ dv = atom1 - atom2
+ n = dv / dv.length
+ if atom_type[0] == all_atoms[stick.atom1-1].name:
+ location = atom1
+ name = "_" + all_atoms[stick.atom1-1].name
+ material = all_atoms[stick.atom1-1].material
+ sticks_list.append([name, location, dv, material])
+ if atom_type[0] == all_atoms[stick.atom2-1].name:
+ location = atom1 - n * dl * int(ceil(dv.length / (2.0 * dl)))
+ name = "_" + all_atoms[stick.atom2-1].name
+ material = all_atoms[stick.atom2-1].material
+ sticks_list.append([name, location, dv, material])
+
+ if sticks_list != []:
+ sticks_all_lists.append(sticks_list)
+ else:
+ sticks_list = []
+ for stick in all_sticks:
+
+ if stick.number > 3:
+ stick.number = 1
+
+ for repeat in range(stick.number):
+
+ atom1 = copy(all_atoms[stick.atom1-1].location)-center
+ atom2 = copy(all_atoms[stick.atom2-1].location)-center
+
+ dist = Stick_diameter * Stick_dist
+
+ if stick.number == 2:
+ if repeat == 0:
+ atom1 += (stick.dist * dist)
+ atom2 += (stick.dist * dist)
+ if repeat == 1:
+ atom1 -= (stick.dist * dist)
+ atom2 -= (stick.dist * dist)
+ if stick.number == 3:
+ if repeat == 0:
+ atom1 += (stick.dist * dist)
+ atom2 += (stick.dist * dist)
+ if repeat == 2:
+ atom1 -= (stick.dist * dist)
+ atom2 -= (stick.dist * dist)
+
+ dv = atom1 - atom2
+ n = dv / dv.length
+ location = atom1
+ material = stick_material
+ sticks_list.append(["", location, dv, material])
+
+ sticks_all_lists.append(sticks_list)
+
+ atom_object_list = []
+ # ... the sticks in the list can be drawn:
+ for stick_list in sticks_all_lists:
+ vertices = []
+ faces = []
+ i = 0
+
+ # What follows is school mathematics! :-)
+ for stick in stick_list:
+
+ dv = stick[2]
+ v1 = stick[1]
+ n = dv / dv.length
+ gamma = -n.dot(v1)
+ b = v1 + gamma * n
+ n_b = b / b.length
+
+ if use_sticks_color == True:
+ loops = int(ceil(dv.length / (2.0 * dl)))
+ else:
+ loops = int(ceil(dv.length / dl))
+
+ for j in range(loops):
+
+ g = v1 - n * dl / 2.0 - n * dl * j
+ p1 = g + n_b * Stick_diameter
+ p2 = g - n_b * Stick_diameter
+ p3 = g - n_b.cross(n) * Stick_diameter
+ p4 = g + n_b.cross(n) * Stick_diameter
+
+ vertices.append(p1)
+ vertices.append(p2)
+ vertices.append(p3)
+ vertices.append(p4)
+ faces.append((i*4+0,i*4+2,i*4+1,i*4+3))
+ i += 1
+
+ # Create a collection for the sticks, which includes the representative
+ # cylinders, cups and the mesh.
+ coll_name = stick[0][1:] + "_sticks"
+ # Create the collection and ...
+ coll = bpy.data.collections.new(coll_name)
+ # ... link it to the collection, which contains all parts of the
+ # element. 'stick[0][1:]' contains the name of the element!
+ for coll_element_from_list in list_coll_elements:
+ if stick[0][1:] in coll_element_from_list.name:
+ break
+ coll_element_from_list.children.link(coll)
+
+ # Build the mesh.
+ mesh = bpy.data.meshes.new("Sticks_"+stick[0][1:])
+ mesh.from_pydata(vertices, [], faces)
+ mesh.update()
+ new_mesh = bpy.data.objects.new(stick[0][1:]+"_sticks_mesh", mesh)
+ # Link active object to the new collection
+ coll.objects.link(new_mesh)
+
+ # Build the object.
+ # Get the cylinder from the 'build_stick' function.
+ object_stick = build_stick(Stick_diameter,
+ dl,
+ Stick_sectors,
+ stick[0][1:])
+ # Link active object to the new collection
+ coll.objects.link(object_stick[0])
+ coll.objects.link(object_stick[1])
+
+ # Hide these objects because their appearance has no meaning. They are
+ # just the representative objects. The cylinder and cups are visible at
+ # the vertices of the mesh. Rememmber, this is a dupliverts construct!
+ object_stick[0].hide_set(True)
+ object_stick[1].hide_set(True)
+
+ stick_cylinder = object_stick[0]
+ stick_cylinder.active_material = stick[3]
+ stick_cups = object_stick[1]
+ stick_cups.active_material = stick[3]
+
+ # Smooth the cylinders.
+ if use_sticks_smooth == True:
+ bpy.ops.object.select_all(action='DESELECT')
+ stick_cylinder.select_set(True)
+ stick_cups.select_set(True)
+ bpy.ops.object.shade_smooth()
+
+ # Parenting the mesh to the cylinder.
+ stick_cylinder.parent = new_mesh
+ stick_cups.parent = new_mesh
+ new_mesh.instance_type = 'FACES'
+ new_mesh.location = center
+ atom_object_list.append(new_mesh)
+
+ # Return the list of dupliverts structures.
+ return atom_object_list
+
+
+# Function, which draws the sticks with help of the skin and subdivision
+# modifiers.
+def draw_sticks_skin(all_atoms,
+ all_sticks,
+ Stick_diameter,
+ use_sticks_smooth,
+ sticks_subdiv_view,
+ sticks_subdiv_render,
+ coll_molecule):
+
+ # These counters are for the edges, in the shape [i,i+1].
+ i = 0
+
+ # This is the list of vertices, containing the atom position
+ # (vectors)).
+ stick_vertices = []
+ # This is the 'same' list, which contains not vector position of
+ # the atoms but their numbers. It is used to handle the edges.
+ stick_vertices_nr = []
+ # This is the list of edges.
+ stick_edges = []
+
+ # Go through the list of all sticks. For each stick do:
+ for stick in all_sticks:
+
+ # Each stick has two atoms = two vertices.
+
+ """
+ [ 0,1 , 3,4 , 0,8 , 7,3]
+ [[0,1], [2,3], [4,5], [6,7]]
+
+ [ 0,1 , 3,4 , x,8 , 7,x] x:deleted
+ [[0,1], [2,3], [0,5], [6,2]]
+ """
+
+ # Check, if the vertex (atom) is already in the vertex list.
+ # edge: [s1,s2]
+ FLAG_s1 = False
+ s1 = 0
+ for stick2 in stick_vertices_nr:
+ if stick2 == stick.atom1-1:
+ FLAG_s1 = True
+ break
+ s1 += 1
+ FLAG_s2 = False
+ s2 = 0
+ for stick2 in stick_vertices_nr:
+ if stick2 == stick.atom2-1:
+ FLAG_s2 = True
+ break
+ s2 += 1
+
+ # If the vertex (atom) is not yet in the vertex list:
+ # append the number of atom and the vertex to the two lists.
+ # For the first atom:
+ if FLAG_s1 == False:
+ atom1 = copy(all_atoms[stick.atom1-1].location)
+ stick_vertices.append(atom1)
+ stick_vertices_nr.append(stick.atom1-1)
+ # For the second atom:
+ if FLAG_s2 == False:
+ atom2 = copy(all_atoms[stick.atom2-1].location)
+ stick_vertices.append(atom2)
+ stick_vertices_nr.append(stick.atom2-1)
+
+ # Build the edges:
+
+ # If both vertices (atoms) were not in the lists, then
+ # the edge is simply [i,i+1]. These are two new vertices
+ # (atoms), so increase i by 2.
+ if FLAG_s1 == False and FLAG_s2 == False:
+ stick_edges.append([i,i+1])
+ i += 2
+ # Both vertices (atoms) were already in the list, so then
+ # use the vertices (atoms), which already exist. They are
+ # at positions s1 and s2.
+ if FLAG_s1 == True and FLAG_s2 == True:
+ stick_edges.append([s1,s2])
+ # The following two if cases describe the situation that
+ # only one vertex (atom) was in the list. Since only ONE
+ # new vertex was added, increase i by one.
+ if FLAG_s1 == True and FLAG_s2 == False:
+ stick_edges.append([s1,i])
+ i += 1
+ if FLAG_s1 == False and FLAG_s2 == True:
+ stick_edges.append([i,s2])
+ i += 1
+
+ # Build the mesh of the sticks
+ stick_mesh = bpy.data.meshes.new("Mesh_sticks")
+ stick_mesh.from_pydata(stick_vertices, stick_edges, [])
+ stick_mesh.update()
+ new_stick_mesh = bpy.data.objects.new("Sticks", stick_mesh)
+ # Link the active mesh to the molecule collection
+ coll_molecule.objects.link(new_stick_mesh)
+
+ # Apply the skin modifier.
+ new_stick_mesh.modifiers.new(name="Sticks_skin", type='SKIN')
+ # Smooth the skin surface if this option has been chosen.
+ new_stick_mesh.modifiers[0].use_smooth_shade = use_sticks_smooth
+ # Apply the Subdivision modifier.
+ new_stick_mesh.modifiers.new(name="Sticks_subsurf", type='SUBSURF')
+ # Options: choose the levels
+ new_stick_mesh.modifiers[1].levels = sticks_subdiv_view
+ new_stick_mesh.modifiers[1].render_levels = sticks_subdiv_render
+
+ stick_material = bpy.data.materials.new(ELEMENTS[-1].name)
+ stick_material.diffuse_color = ELEMENTS[-1].color
+ new_stick_mesh.active_material = stick_material
+
+ # This is for putting the radius of the sticks onto
+ # the desired value 'Stick_diameter'
+ bpy.context.view_layer.objects.active = new_stick_mesh
+ # EDIT mode
+ bpy.ops.object.mode_set(mode='EDIT', toggle=False)
+ bm = bmesh.from_edit_mesh(new_stick_mesh.data)
+ bpy.ops.mesh.select_all(action='DESELECT')
+
+ # Select all vertices
+ for v in bm.verts:
+ v.select = True
+
+ # This is somewhat a factor for the radius.
+ r_f = 4.0
+ # Apply operator 'skin_resize'.
+ bpy.ops.transform.skin_resize(value=(Stick_diameter*r_f,
+ Stick_diameter*r_f,
+ Stick_diameter*r_f),
+ constraint_axis=(False, False, False),
+ orient_type='GLOBAL',
+ mirror=False,
+ proportional='DISABLED',
+ proportional_edit_falloff='SMOOTH',
+ proportional_size=1,
+ snap=False,
+ snap_target='CLOSEST',
+ snap_point=(0, 0, 0),
+ snap_align=False,
+ snap_normal=(0, 0, 0),
+ release_confirm=False)
+ # Back to the OBJECT mode.
+ bpy.ops.object.mode_set(mode='OBJECT', toggle=False)
+
+ return new_stick_mesh
+
+
+# Draw the sticks the normal way: connect the atoms by simple cylinders.
+# Two options: 1. single cylinders parented to an empty
+# 2. one single mesh object
+def draw_sticks_normal(all_atoms,
+ all_sticks,
+ center,
+ Stick_diameter,
+ Stick_sectors,
+ use_sticks_smooth,
+ use_sticks_one_object,
+ use_sticks_one_object_nr,
+ coll_molecule):
+
+ stick_material = bpy.data.materials.new(ELEMENTS[-1].name)
+ stick_material.diffuse_color = ELEMENTS[-1].color
+
+ up_axis = Vector([0.0, 0.0, 1.0])
+
+ # For all sticks, do ...
+ list_group = []
+ list_group_sub = []
+ counter = 0
+ for stick in all_sticks:
+
+ # The vectors of the two atoms
+ atom1 = all_atoms[stick.atom1-1].location-center
+ atom2 = all_atoms[stick.atom2-1].location-center
+ # Location
+ location = (atom1 + atom2) * 0.5
+ # The difference of both vectors
+ v = (atom2 - atom1)
+ # Angle with respect to the z-axis
+ angle = v.angle(up_axis, 0)
+ # Cross-product between v and the z-axis vector. It is the
+ # vector of rotation.
+ axis = up_axis.cross(v)
+ # Calculate Euler angles
+ euler = Matrix.Rotation(angle, 4, axis).to_euler()
+ # Create stick
+ stick = bpy.ops.mesh.primitive_cylinder_add(vertices=Stick_sectors,
+ radius=Stick_diameter,
+ depth=v.length,
+ end_fill_type='NGON',
+ view_align=False,
+ enter_editmode=False,
+ location=location,
+ rotation=(0, 0, 0))
+ # Put the stick into the scene ...
+ stick = bpy.context.view_layer.objects.active
+ # ... and rotate the stick.
+ stick.rotation_euler = euler
+ # ... and name
+ stick.name = "Stick_Cylinder"
+ counter += 1
+
+ # Smooth the cylinder.
+ if use_sticks_smooth == True:
+ bpy.ops.object.select_all(action='DESELECT')
+ stick.select_set(True)
+ bpy.ops.object.shade_smooth()
+
+ list_group_sub.append(stick)
+
+ if use_sticks_one_object == True:
+ if counter == use_sticks_one_object_nr:
+ bpy.ops.object.select_all(action='DESELECT')
+ for stick in list_group_sub:
+ stick.select_set(True)
+ bpy.ops.object.join()
+ list_group.append(bpy.context.view_layer.objects.active)
+ bpy.ops.object.select_all(action='DESELECT')
+ list_group_sub = []
+ counter = 0
+ else:
+ # Material ...
+ stick.active_material = stick_material
+
+ if use_sticks_one_object == True:
+ bpy.ops.object.select_all(action='DESELECT')
+ for stick in list_group_sub:
+ stick.select_set(True)
+ bpy.ops.object.join()
+ list_group.append(bpy.context.view_layer.objects.active)
+ bpy.ops.object.select_all(action='DESELECT')
+
+ for group in list_group:
+ group.select_set(True)
+ bpy.ops.object.join()
+ bpy.ops.object.origin_set(type='ORIGIN_GEOMETRY',
+ center='MEDIAN')
+ sticks = bpy.context.view_layer.objects.active
+ sticks.active_material = stick_material
+
+ sticks.location += center
+
+ # Collections
+ # ===========
+ # Note the collection where the sticks were placed into.
+ coll_all = sticks.users_collection
+ if len(coll_all) > 0:
+ coll_past = coll_all[0]
+ else:
+ coll_past = bpy.context.scene.collection
+
+ # Link the sticks with the collection of the molecule ...
+ coll_molecule.objects.link(sticks)
+ # ... and unlink them from the collection it has been before.
+ coll_past.objects.unlink(sticks)
+
+ return sticks
+ else:
+ # Here we use an empty ...
+ bpy.ops.object.empty_add(type='ARROWS',
+ view_align=False,
+ location=(0, 0, 0),
+ rotation=(0, 0, 0))
+ sticks_empty = bpy.context.view_layer.objects.active
+ sticks_empty.name = "A_sticks_empty"
+ # ... that is parent to all sticks. With this, we can better move
+ # all sticks if necessary.
+ for stick in list_group_sub:
+ stick.parent = sticks_empty
+
+ sticks_empty.location += center
+
+ # Collections
+ # ===========
+ # Create a collection that will contain all sticks + the empty and ...
+ coll = bpy.data.collections.new("Sticks")
+ # ... link it to the collection, which contains all parts of the
+ # molecule.
+ coll_molecule.children.link(coll)
+ # Now, create a collection that only contains the sticks and ...
+ coll_cylinder = bpy.data.collections.new("Sticks_cylinders")
+ # ... link it to the collection, which contains the sticks and empty.
+ coll.children.link(coll_cylinder)
+
+ # Note the collection where the empty was placed into, ...
+ coll_all = sticks_empty.users_collection
+ if len(coll_all) > 0:
+ coll_past = coll_all[0]
+ else:
+ coll_past = bpy.context.scene.collection
+ # ... link the empty with the new collection ...
+ coll.objects.link(sticks_empty)
+ # ... and unlink it from the old collection where it has been before.
+ coll_past.objects.unlink(sticks_empty)
+
+ # Note the collection where the cylinders were placed into, ...
+ coll_all = list_group_sub[0].users_collection
+ if len(coll_all) > 0:
+ coll_past = coll_all[0]
+ else:
+ coll_past = bpy.context.scene.collection
+
+ for stick in list_group_sub:
+ # ... link each stick with the new collection ...
+ coll_cylinder.objects.link(stick)
+ # ... and unlink it from the old collection.
+ coll_past.objects.unlink(stick)
+
+ return sticks_empty
+
+
+# -----------------------------------------------------------------------------
+# The main routine
+
+def import_pdb(Ball_type,
+ Ball_azimuth,
+ Ball_zenith,
+ Ball_radius_factor,
+ radiustype,
+ Ball_distance_factor,
+ use_sticks,
+ use_sticks_type,
+ sticks_subdiv_view,
+ sticks_subdiv_render,
+ use_sticks_color,
+ use_sticks_smooth,
+ use_sticks_bonds,
+ use_sticks_one_object,
+ use_sticks_one_object_nr,
+ Stick_unit, Stick_dist,
+ Stick_sectors,
+ Stick_diameter,
+ put_to_center,
+ use_camera,
+ use_light,
+ filepath_pdb):
+
+ # List of materials
+ atom_material_list = []
+
+ # A list of ALL objects which are loaded (needed for selecting the loaded
+ # structure.
+ atom_object_list = []
+
+ # ------------------------------------------------------------------------
+ # INITIALIZE THE ELEMENT LIST
+
+ read_elements()
+
+ # ------------------------------------------------------------------------
+ # READING DATA OF ATOMS
+
+ (Number_of_total_atoms, all_atoms) = read_pdb_file(filepath_pdb, radiustype)
+
+ # ------------------------------------------------------------------------
+ # MATERIAL PROPERTIES FOR ATOMS
+
+ # The list that contains info about all types of atoms is created
+ # here. It is used for building the material properties for
+ # instance (see below).
+ atom_all_types_list = []
+
+ for atom in all_atoms:
+ FLAG_FOUND = False
+ for atom_type in atom_all_types_list:
+ # If the atom name is already in the list, FLAG on 'True'.
+ if atom_type[0] == atom.name:
+ FLAG_FOUND = True
+ break
+ # No name in the current list has been found? => New entry.
+ if FLAG_FOUND == False:
+ # Stored are: Atom label (e.g. 'Na'), the corresponding atom
+ # name (e.g. 'Sodium') and its color.
+ atom_all_types_list.append([atom.name, atom.element, atom.color])
+
+ # The list of materials is built.
+ # Note that all atoms of one type (e.g. all hydrogens) get only ONE
+ # material! This is good because then, by activating one atom in the
+ # Blender scene and changing the color of this atom, one changes the color
+ # of ALL atoms of the same type at the same time.
+
+ # Create first a new list of materials for each type of atom
+ # (e.g. hydrogen)
+ for atom_type in atom_all_types_list:
+ material = bpy.data.materials.new(atom_type[1])
+ material.name = atom_type[0]
+ material.diffuse_color = atom_type[2]
+ atom_material_list.append(material)
+
+ # Now, we go through all atoms and give them a material. For all atoms ...
+ for atom in all_atoms:
+ # ... and all materials ...
+ for material in atom_material_list:
+ # ... select the correct material for the current atom via
+ # comparison of names ...
+ if atom.name in material.name:
+ # ... and give the atom its material properties.
+ # However, before we check, if it is a vacancy, because then it
+ # gets some additional preparation. The vacancy is represented
+ # by a transparent cube.
+ if atom.name == "Vacancy":
+ material.metallic = 0.8
+ material.specular_intensity = 0.5
+ material.roughness = 0.3
+ material.blend_method = 'ADD'
+ material.show_transparent_back = False
+ # Some properties for cycles
+ material.use_nodes = True
+ mat_P_BSDF = material.node_tree.nodes['Principled BSDF']
+ mat_P_BSDF.inputs['Metallic'].default_value = 0.1
+ mat_P_BSDF.inputs['Roughness'].default_value = 0.2
+ mat_P_BSDF.inputs['Transmission'].default_value = 0.97
+ mat_P_BSDF.inputs['IOR'].default_value = 0.8
+ # The atom gets its properties.
+ atom.material = material
+
+ # ------------------------------------------------------------------------
+ # READING DATA OF STICKS
+
+ all_sticks = read_pdb_file_sticks(filepath_pdb,
+ use_sticks_bonds,
+ all_atoms)
+ #
+ # So far, all atoms, sticks and materials have been registered.
+ #
+
+ # ------------------------------------------------------------------------
+ # TRANSLATION OF THE STRUCTURE TO THE ORIGIN
+
+ # It may happen that the structure in a PDB file already has an offset
+ # If chosen, the structure is first put into the center of the scene
+ # (the offset is subtracted).
+
+ if put_to_center == True:
+ sum_vec = Vector((0.0,0.0,0.0))
+ # Sum of all atom coordinates
+ sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
+ # Then the average is taken
+ sum_vec = sum_vec / Number_of_total_atoms
+ # After, for each atom the center of gravity is subtracted
+ for atom in all_atoms:
+ atom.location -= sum_vec
+
+ # ------------------------------------------------------------------------
+ # SCALING
+
+ # Take all atoms and adjust their radii and scale the distances.
+ for atom in all_atoms:
+ atom.location *= Ball_distance_factor
+
+ # ------------------------------------------------------------------------
+ # DETERMINATION OF SOME GEOMETRIC PROPERTIES
+
+ # In the following, some geometric properties of the whole object are
+ # determined: center, size, etc.
+ sum_vec = Vector((0.0,0.0,0.0))
+
+ # First the center is determined. All coordinates are summed up ...
+ sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
+
+ # ... and the average is taken. This gives the center of the object.
+ object_center_vec = sum_vec / Number_of_total_atoms
+
+ # Now, we determine the size.The farthest atom from the object center is
+ # taken as a measure. The size is used to place well the camera and light
+ # into the scene.
+ object_size_vec = [atom.location - object_center_vec for atom in all_atoms]
+ object_size = max(object_size_vec).length
+
+ # ------------------------------------------------------------------------
+ # SORTING THE ATOMS
+
+ # Lists of atoms of one type are created. Example:
+ # draw_all_atoms = [ data_hydrogen,data_carbon,data_nitrogen ]
+ # data_hydrogen = [["Hydrogen", Material_Hydrogen, Vector((x,y,z)), 109], ...]
+
+ # Go through the list which contains all types of atoms. It is the list,
+ # which has been created on the top during reading the PDB file.
+ # Example: atom_all_types_list = ["hydrogen", "carbon", ...]
+ draw_all_atoms = []
+ for atom_type in atom_all_types_list:
+
+ # Don't draw 'TER atoms'.
+ if atom_type[0] == "TER":
+ continue
+
+ # This is the draw list, which contains all atoms of one type (e.g.
+ # all hydrogens) ...
+ draw_all_atoms_type = []
+
+ # Go through all atoms ...
+ for atom in all_atoms:
+ # ... select the atoms of the considered type via comparison ...
+ if atom.name == atom_type[0]:
+ # ... and append them to the list 'draw_all_atoms_type'.
+ draw_all_atoms_type.append([atom.name,
+ atom.material,
+ atom.location,
+ atom.radius])
+
+ # Now append the atom list to the list of all types of atoms
+ draw_all_atoms.append(draw_all_atoms_type)
+
+ # ------------------------------------------------------------------------
+ # COLLECTION
+
+ # Before we start to draw the atoms and sticks, we first create a
+ # collection for the molecule. All atoms (balls) and sticks (cylinders)
+ # are put into this collection.
+ coll_molecule_name = os.path.basename(filepath_pdb)
+ scene = bpy.context.scene
+ coll_molecule = bpy.data.collections.new(coll_molecule_name)
+ scene.collection.children.link(coll_molecule)
+
+ # ------------------------------------------------------------------------
+ # DRAWING THE ATOMS
+
+ bpy.ops.object.select_all(action='DESELECT')
+
+ list_coll_elements = []
+ # For each list of atoms of ONE type (e.g. Hydrogen)
+ for draw_all_atoms_type in draw_all_atoms:
+
+ atom_mesh, coll_element = draw_atoms_one_type(draw_all_atoms_type,
+ Ball_type,
+ Ball_azimuth,
+ Ball_zenith,
+ Ball_radius_factor,
+ object_center_vec,
+ coll_molecule)
+ atom_object_list.append(atom_mesh)
+ list_coll_elements.append(coll_element)
+
+ # ------------------------------------------------------------------------
+ # DRAWING THE STICKS: cylinders in a dupliverts structure
+
+ if use_sticks == True and use_sticks_type == '0' and all_sticks != []:
+
+ sticks = draw_sticks_dupliverts(all_atoms,
+ atom_all_types_list,
+ object_center_vec,
+ all_sticks,
+ Stick_diameter,
+ Stick_sectors,
+ Stick_unit,
+ Stick_dist,
+ use_sticks_smooth,
+ use_sticks_color,
+ list_coll_elements)
+ for stick in sticks:
+ atom_object_list.append(stick)
+
+ # ------------------------------------------------------------------------
+ # DRAWING THE STICKS: skin and subdivision modifier
+
+ if use_sticks == True and use_sticks_type == '1' and all_sticks != []:
+
+ sticks = draw_sticks_skin(all_atoms,
+ all_sticks,
+ Stick_diameter,
+ use_sticks_smooth,
+ sticks_subdiv_view,
+ sticks_subdiv_render,
+ coll_molecule)
+ atom_object_list.append(sticks)
+
+ # ------------------------------------------------------------------------
+ # DRAWING THE STICKS: normal cylinders
+
+ if use_sticks == True and use_sticks_type == '2' and all_sticks != []:
+
+ sticks = draw_sticks_normal(all_atoms,
+ all_sticks,
+ object_center_vec,
+ Stick_diameter,
+ Stick_sectors,
+ use_sticks_smooth,
+ use_sticks_one_object,
+ use_sticks_one_object_nr,
+ coll_molecule)
+ atom_object_list.append(sticks)
+
+ # ------------------------------------------------------------------------
+ # CAMERA and LIGHT SOURCES
+
+ camera_light_source(use_camera,
+ use_light,
+ object_center_vec,
+ object_size)
+
+ # ------------------------------------------------------------------------
+ # SELECT ALL LOADED OBJECTS
+ bpy.ops.object.select_all(action='DESELECT')
+ obj = None
+ for obj in atom_object_list:
+ obj.select_set(True)
+
+ # activate the last selected object
+ if obj:
+ bpy.context.view_layer.objects.active = obj