Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'ant_landscape/eroder.py')
-rw-r--r--ant_landscape/eroder.py704
1 files changed, 324 insertions, 380 deletions
diff --git a/ant_landscape/eroder.py b/ant_landscape/eroder.py
index d36aef67..04e04bd7 100644
--- a/ant_landscape/eroder.py
+++ b/ant_landscape/eroder.py
@@ -2,7 +2,7 @@
#
# erode.py -- a script to simulate erosion of height fields
# (c) 2014 Michel J. Anders (varkenvarken)
-# now with some modifications by Ian Huish (nerk)
+# with some modifications by Ian Huish (nerk)
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
@@ -20,37 +20,29 @@
#
# ##### END GPL LICENSE BLOCK #####
+
from time import time
import unittest
import sys
import os
-# import resource # so much for platform independence, this only works on unix :-(
from random import random as rand, shuffle
import numpy as np
-#from .perlin import pnoise
numexpr_available = False
-# Sorry, nerk can't handle numexpr at this time!
-#try:
-# import numexpr as ne
-# numexpr_available = True
-#except ImportError:
-# pass
+
def getmemsize():
- return 0.0
- #return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss*resource.getpagesize()/(1024.0*1024.0)
-
+ return 0.0
+
+
def getptime():
- #r = resource.getrusage(resource.RUSAGE_SELF)
- #return r.ru_utime + r.ru_stime
- return time()
-
+ return time()
+
+
class Grid:
def __init__(self, size=10, dtype=np.single):
- self.center = np.zeros([size,size], dtype)
- #print("Centre\n", np.array_str(self.center,precision=3), file=sys.stderr)
+ self.center = np.zeros([size, size], dtype)
self.water = None
self.sediment = None
self.scour = None
@@ -59,19 +51,20 @@ class Grid:
self.sedimentpct = None
self.capacity = None
self.avalanced = None
- self.minx=None
- self.miny=None
- self.maxx=None
- self.maxy=None
- self.zscale=1
- self.maxrss=0.0
- self.sequence=[0,1,2,3]
+ self.minx = None
+ self.miny = None
+ self.maxx = None
+ self.maxy = None
+ self.zscale = 1
+ self.maxrss = 0.0
+ self.sequence = [0, 1, 2, 3]
self.watermax = 1.0
self.flowratemax = 1.0
self.scourmax = 1.0
self.sedmax = 1.0
self.scourmin = 1.0
-
+
+
def init_water_and_sediment(self):
if self.water is None:
self.water = np.zeros(self.center.shape, dtype=np.single)
@@ -88,9 +81,11 @@ class Grid:
if self.avalanced is None:
self.avalanced = np.zeros(self.center.shape, dtype=np.single)
+
def __str__(self):
return ''.join(self.__str_iter__(fmt="%.3f"))
-
+
+
def __str_iter__(self, fmt):
for row in self.center[::]:
values=[]
@@ -98,20 +93,24 @@ class Grid:
values.append(fmt%v)
yield ' '.join(values) + '\n'
+
@staticmethod
def fromFile(filename):
- if filename == '-' : filename = sys.stdin
+ if filename == '-':
+ filename = sys.stdin
g=Grid()
g.center=np.loadtxt(filename,np.single)
return g
+
def toFile(self, filename, fmt="%.3f"):
if filename == '-' :
filename = sys.stdout.fileno()
with open(filename,"w") as f:
for line in self.__str_iter__(fmt):
f.write(line)
-
+
+
def raw(self,format="%.3f"):
fstr=format+" "+ format+" "+ format+" "
a=self.center / self.zscale
@@ -134,6 +133,7 @@ class Grid:
fstr%(row1 ,col0 ,a[row+1][col ])+
fstr%(row1 ,col1 ,a[row+1][col+1])+"\n")
+
def toRaw(self, filename, infomap=None):
with open(filename if type(filename) == str else sys.stdout.fileno() , "w") as f:
f.writelines(self.raw())
@@ -141,85 +141,81 @@ class Grid:
with open(os.path.splitext(filename)[0]+".inf" if type(filename) == str else sys.stdout.fileno() , "w") as f:
f.writelines("\n".join("%-15s: %s"%t for t in sorted(infomap.items())))
+
@staticmethod
def fromRaw(filename):
"""initialize a grid from a Blender .raw file.
currenly suports just rectangular grids of all triangles
"""
- g=Grid.fromFile(filename)
- # we assume tris and an axis aligned grid
- g.center=np.reshape(g.center,(-1,3))
+ g = Grid.fromFile(filename)
+ # we assume tris and an axis aligned grid
+ g.center = np.reshape(g.center,(-1,3))
g._sort()
return g
+
def _sort(self, expfact):
- # keep unique vertices only by creating a set and sort first on x then on y coordinate
- # using rather slow python sort but couldn;t wrap my head around np.lexsort
+ # keep unique vertices only by creating a set and sort first on x then on y coordinate
+ # using rather slow python sort but couldn;t wrap my head around np.lexsort
verts = sorted(list({ tuple(t) for t in self.center[::] }))
- x=set(c[0] for c in verts)
- y=set(c[1] for c in verts)
- nx=len(x)
- ny=len(y)
- self.minx=min(x)
- self.maxx=max(x)
- self.miny=min(y)
- self.maxy=max(y)
- xscale=(self.maxx-self.minx)/(nx-1)
- yscale=(self.maxy-self.miny)/(ny-1)
+ x = set(c[0] for c in verts)
+ y = set(c[1] for c in verts)
+ nx = len(x)
+ ny = len(y)
+ self.minx = min(x)
+ self.maxx = max(x)
+ self.miny = min(y)
+ self.maxy = max(y)
+ xscale = (self.maxx-self.minx)/(nx-1)
+ yscale = (self.maxy-self.miny)/(ny-1)
# note: a purely flat plane cannot be scaled
- if (yscale != 0.0) and (abs(xscale/yscale) - 1.0 > 1e-3) : raise ValueError("Mesh spacing not square %d x %d %.4f x %4.f"%(nx,ny,xscale,yscale))
- self.zscale=1.0
+ if (yscale != 0.0) and (abs(xscale/yscale) - 1.0 > 1e-3):
+ raise ValueError("Mesh spacing not square %d x %d %.4f x %4.f"%(nx,ny,xscale,yscale))
+ self.zscale = 1.0
if abs(yscale) > 1e-6 :
- self.zscale=1.0/yscale
+ self.zscale = 1.0/yscale
- # keep just the z-values and null any ofsset
- # we might catch a reshape error that will occur if nx*ny != # of vertices (if we are not dealing with a heightfield but with a mesh with duplicate x,y coords, like an axis aligned cube
- self.center=np.array([c[2] for c in verts],dtype=np.single).reshape(nx,ny)
- self.center=(self.center-np.amin(self.center))*self.zscale
+ # keep just the z-values and null any ofsset
+ # we might catch a reshape error that will occur if nx*ny != # of vertices (if we are not dealing with a heightfield but with a mesh with duplicate x,y coords, like an axis aligned cube
+ self.center = np.array([c[2] for c in verts],dtype=np.single).reshape(nx,ny)
+ self.center = (self.center-np.amin(self.center))*self.zscale
if self.rainmap is not None:
- #rainmap = sorted(list({ tuple(t) for t in self.rainmap[::] }))
- #self.rainmap=np.array([c[2] for c in rainmap],dtype=np.single).reshape(nx,ny)
rmscale = np.max(self.center)
- #self.rainmap = (self.center/rmscale) * np.exp(expfact*((self.center/rmscale)-1))
self.rainmap = expfact + (1-expfact)*(self.center/rmscale)
+
@staticmethod
def fromBlenderMesh(me, vg, expfact):
- g=Grid()
- g.center=np.asarray(list(tuple(v.co) for v in me.vertices), dtype=np.single )
- g.rainmap=None
- print("VertexGroup\n",vg, file=sys.stderr)
+ g = Grid()
+ g.center = np.asarray(list(tuple(v.co) for v in me.vertices), dtype=np.single )
+ g.rainmap = None
if vg is not None:
for v in me.vertices:
vg.add([v.index],0.0,'ADD')
g.rainmap=np.asarray(list( (v.co[0], v.co[1], vg.weight(v.index)) for v in me.vertices), dtype=np.single )
g._sort(expfact)
- #print("CentreMesh\n", np.array_str(g.center,precision=3), file=sys.stderr)
- #print('rainmap',np.max(g.rainmap),np.min(g.rainmap))
return g
-# def rainmapcolor(me, vg):
-# if vg is not None:
-# for v in me.vertices:
-
def setrainmap(self, rainmap):
self.rainmap = rainmap
+
def _verts(self, surface):
- a=surface / self.zscale
- minx=0.0 if self.minx is None else self.minx
- miny=0.0 if self.miny is None else self.miny
- maxx=1.0 if self.maxx is None else self.maxx
- maxy=1.0 if self.maxy is None else self.maxy
- dx=(maxx-minx)/(a.shape[0]-1)
- dy=(maxy-miny)/(a.shape[1]-1)
+ a = surface / self.zscale
+ minx = 0.0 if self.minx is None else self.minx
+ miny = 0.0 if self.miny is None else self.miny
+ maxx = 1.0 if self.maxx is None else self.maxx
+ maxy = 1.0 if self.maxy is None else self.maxy
+ dx = (maxx - minx) / (a.shape[0] - 1)
+ dy = (maxy - miny) / (a.shape[1] - 1)
for row in range(a.shape[0]):
- row0=miny+row*dy
+ row0 = miny + row * dy
for col in range(a.shape[1]):
- col0=minx+col*dx
+ col0 = minx + col * dx
yield (row0 ,col0 ,a[row ][col ])
+
def _faces(self):
nrow, ncol = self.center.shape
for row in range(nrow-1):
@@ -228,61 +224,70 @@ class Grid:
yield (vi, vi+ncol, vi+1)
yield (vi+1, vi+ncol, vi+ncol+1)
- def toBlenderMesh(self, me): # pass me as argument so that we don't need to import bpy and create a dependency
+
+ def toBlenderMesh(self, me):
+ # pass me as argument so that we don't need to import bpy and create a dependency
# the docs state that from_pydata takes iterators as arguments but it will fail with generators because it does len(arg)
me.from_pydata(list(self._verts(self.center)),[],list(self._faces()))
- def toWaterMesh(self, me): # pass me as argument so that we don't need to import bpy and create a dependency
+
+ def toWaterMesh(self, me):
+ # pass me as argument so that we don't need to import bpy and create a dependency
# the docs state that from_pydata takes iterators as arguments but it will fail with generators because it does len(arg)
me.from_pydata(list(self._verts(self.water)),[],list(self._faces()))
+
def peak(self, value=1):
nx,ny = self.center.shape
self.center[int(nx/2),int(ny/2)] += value
+
def shelf(self, value=1):
nx,ny = self.center.shape
self.center[:nx/2] += value
+
def mesa(self, value=1):
nx,ny = self.center.shape
self.center[nx/4:3*nx/4,ny/4:3*ny/4] += value
+
def random(self, value=1):
self.center += np.random.random_sample(self.center.shape)*value
+
def neighborgrid(self):
- self.up=np.roll(self.center,-1,0)
- self.down=np.roll(self.center,1,0)
- self.left=np.roll(self.center,-1,1)
- self.right=np.roll(self.center,1,1)
+ self.up = np.roll(self.center,-1,0)
+ self.down = np.roll(self.center,1,0)
+ self.left = np.roll(self.center,-1,1)
+ self.right = np.roll(self.center,1,1)
+
def zeroedge(self, quantity=None):
c = self.center if quantity is None else quantity
- c[0,:]=0
- c[-1,:]=0
- c[:,0]=0
- c[:,-1]=0
+ c[0,:] = 0
+ c[-1,:] = 0
+ c[:,0] = 0
+ c[:,-1] = 0
+
def diffuse(self, Kd, IterDiffuse, numexpr):
self.zeroedge()
- c = self.center[1:-1,1:-1]
- up = self.center[ :-2,1:-1]
- down = self.center[2: ,1:-1]
- left = self.center[1:-1, :-2]
+ c = self.center[1:-1,1:-1]
+ up = self.center[ :-2,1:-1]
+ down = self.center[2: ,1:-1]
+ left = self.center[1:-1, :-2]
right = self.center[1:-1,2: ]
if(numexpr and numexpr_available):
self.center[1:-1,1:-1] = ne.evaluate('c + Kd * (up + down + left + right - 4.0 * c)')
else:
self.center[1:-1,1:-1] = c + (Kd/IterDiffuse) * (up + down + left + right - 4.0 * c)
- print("diffuse: ", Kd)
self.maxrss = max(getmemsize(), self.maxrss)
return self.center
+
def avalanche(self, delta, iterava, prob, numexpr):
self.zeroedge()
- #print(self.center)
-
c = self.center[1:-1,1:-1]
up = self.center[ :-2,1:-1]
down = self.center[2: ,1:-1]
@@ -301,12 +306,12 @@ class Grid:
+ where((right-c) < -delta,(right-c +delta)/2, 0)')
else:
sa = (
- # incoming
+ # incoming
where((up -c) > delta ,(up -c -delta)/2, 0)
+ where((down -c) > delta ,(down -c -delta)/2, 0)
+ where((left -c) > delta ,(left -c -delta)/2, 0)
+ where((right-c) > delta ,(right-c -delta)/2, 0)
- # outgoing
+ # outgoing
+ where((up -c) < -delta,(up -c +delta)/2, 0)
+ where((down -c) < -delta,(down -c +delta)/2, 0)
+ where((left -c) < -delta,(left -c +delta)/2, 0)
@@ -317,14 +322,16 @@ class Grid:
self.avalanced[1:-1,1:-1] = self.avalanced[1:-1,1:-1] + sa/iterava
self.center[1:-1,1:-1] = c + sa/iterava
- #print(self.center)
self.maxrss = max(getmemsize(), self.maxrss)
return self.center
+
def rain(self, amount=1, variance=0, userainmap=False):
self.water += (1.0 - np.random.random(self.water.shape) * variance) * (amount if ((self.rainmap is None) or (not userainmap)) else self.rainmap * amount)
- def spring(self, amount, px, py, radius): # px, py and radius are all fractions
+
+ def spring(self, amount, px, py, radius):
+ # px, py and radius are all fractions
nx, ny = self.center.shape
rx = max(int(nx*radius),1)
ry = max(int(ny*radius),1)
@@ -332,320 +339,257 @@ class Grid:
py = int(ny*py)
self.water[px-rx:px+rx+1,py-ry:py+ry+1] += amount
+
def river(self, Kc, Ks, Kdep, Ka, Kev, numexpr):
+ zeros = np.zeros
+ where = np.where
+ min = np.minimum
+ max = np.maximum
+ abs = np.absolute
+ arctan = np.arctan
+ sin = np.sin
+
+ center = (slice( 1, -1,None),slice( 1, -1,None))
+ up = (slice(None, -2,None),slice( 1, -1,None))
+ down = (slice( 2, None,None),slice( 1, -1,None))
+ left = (slice( 1, -1,None),slice(None, -2,None))
+ right = (slice( 1, -1,None),slice( 2,None,None))
+
+ water = self.water
+ rock = self.center
+ sediment = self.sediment
+ height = rock + water
+
+ # !! this gives a runtime warning for division by zero
+ verysmallnumber = 0.0000000001
+ water += verysmallnumber
+ sc = where(water > verysmallnumber, sediment / water, 0)
+
+ sdw = zeros(water[center].shape)
+ svdw = zeros(water[center].shape)
+ sds = zeros(water[center].shape)
+ angle = zeros(water[center].shape)
+ for d in (up,down,left,right):
+ if(numexpr and numexpr_available):
+ hdd = height[d]
+ hcc = height[center]
+ dw = ne.evaluate('hdd-hcc')
+ inflow = ne.evaluate('dw > 0')
+ wdd = water[d]
+ wcc = water[center]
+ dw = ne.evaluate('where(inflow, where(wdd<dw, wdd, dw), where(-wcc>dw, -wcc, dw))/4.0') # nested where() represent min() and max()
+ sdw = ne.evaluate('sdw + dw')
+ scd = sc[d]
+ scc = sc[center]
+ rockd= rock[d]
+ rockc= rock[center]
+ sds = ne.evaluate('sds + dw * where(inflow, scd, scc)')
+ svdw = ne.evaluate('svdw + abs(dw)')
+ angle= ne.evaluate('angle + arctan(abs(rockd-rockc))')
+ else:
+ dw = (height[d]-height[center])
+ inflow = dw > 0
+ dw = where(inflow, min(water[d], dw), max(-water[center], dw))/4.0
+ sdw = sdw + dw
+ sds = sds + dw * where(inflow, sc[d], sc[center])
+ svdw = svdw + abs(dw)
+ angle= angle + np.arctan(abs(rock[d]-rock[center]))
- zeros = np.zeros
- where = np.where
- min = np.minimum
- max = np.maximum
- abs = np.absolute
- arctan = np.arctan
- sin = np.sin
-
- center = (slice( 1, -1,None),slice( 1, -1,None))
- #print("CentreSlice\n", np.array_str(center,precision=3), file=sys.stderr)
- up = (slice(None, -2,None),slice( 1, -1,None))
- down = (slice( 2, None,None),slice( 1, -1,None))
- left = (slice( 1, -1,None),slice(None, -2,None))
- right = (slice( 1, -1,None),slice( 2,None,None))
-
- water = self.water
- rock = self.center
- sediment = self.sediment
- height = rock + water
- sc = where(water>0, sediment/water, 0) ##!! this gives a runtime warning for division by zero
- sdw = zeros(water[center].shape)
- svdw = zeros(water[center].shape)
- sds = zeros(water[center].shape)
- angle = zeros(water[center].shape)
- #print(water[center])
- for d in (up,down,left,right):
- if(numexpr and numexpr_available):
- hdd = height[d]
- hcc = height[center]
- dw = ne.evaluate('hdd-hcc')
- inflow = ne.evaluate('dw > 0')
- wdd = water[d]
+ if(numexpr and numexpr_available):
+ wcc = water[center]
+ scc = sediment[center]
+ rcc = rock[center]
+ water[center] = ne.evaluate('wcc + sdw')
+ sediment[center] = ne.evaluate('scc + sds')
+ sc = ne.evaluate('where(wcc>0, scc/wcc, 2000*Kc)')
+ fKc = ne.evaluate('Kc*sin(Ka*angle)*svdw')
+ ds = ne.evaluate('where(sc > fKc, -Kd * scc, Ks * svdw)')
+ rock[center] = ne.evaluate('rcc - ds')
+ # there isn't really a bottom to the rock but negative values look ugly
+ rock[center] = ne.evaluate('where(rcc<0,0,rcc)')
+ sediment[center] = ne.evaluate('scc + ds')
+ else:
wcc = water[center]
- dw = ne.evaluate('where(inflow, where(wdd<dw, wdd, dw), where(-wcc>dw, -wcc, dw))/4.0') # nested where() represent min() and max()
- sdw = ne.evaluate('sdw + dw')
- scd = sc[d]
- scc = sc[center]
- rockd= rock[d]
- rockc= rock[center]
- sds = ne.evaluate('sds + dw * where(inflow, scd, scc)')
- svdw = ne.evaluate('svdw + abs(dw)')
- angle= ne.evaluate('angle + arctan(abs(rockd-rockc))')
- else:
- dw = (height[d]-height[center])
- inflow = dw > 0
- dw = where(inflow, min(water[d], dw), max(-water[center], dw))/4.0
- sdw = sdw + dw
- sds = sds + dw * where(inflow, sc[d], sc[center])
- svdw = svdw + abs(dw)
- angle= angle + np.arctan(abs(rock[d]-rock[center]))
-
- if(numexpr and numexpr_available):
- wcc = water[center]
- scc = sediment[center]
- rcc = rock[center]
- water[center] = ne.evaluate('wcc + sdw')
- sediment[center] = ne.evaluate('scc + sds')
- sc = ne.evaluate('where(wcc>0, scc/wcc, 2000*Kc)')
- fKc = ne.evaluate('Kc*sin(Ka*angle)*svdw')
- ds = ne.evaluate('where(sc > fKc, -Kd * scc, Ks * svdw)')
- rock[center] = ne.evaluate('rcc - ds')
- rock[center] = ne.evaluate('where(rcc<0,0,rcc)') # there isn't really a bottom to the rock but negative values look ugly
- sediment[center] = ne.evaluate('scc + ds')
- else:
- wcc = water[center]
- scc = sediment[center]
- rcc = rock[center]
- water[center] = wcc * (1-Kev) + sdw
- sediment[center] = scc + sds
- sc = where(wcc>0, scc/wcc, 2*Kc)
- fKc = Kc*svdw
- #fKc = Kc*np.sin(Ka*angle)*svdw*wcc
- #ds = where(sc > fKc, -Kd * scc, Ks * svdw)
- ds = where(fKc>sc,(fKc-sc)*Ks,(fKc-sc)*Kdep)*wcc
- self.flowrate[center] = svdw
- self.scour[center] = ds
- self.sedimentpct[center] = sc
- self.capacity[center] = fKc
- #rock[center] = rcc - ds
- #rock[center] = where(rcc<0,0,rcc) # there isn't really a bottom to the rock but negative values look ugly
- sediment[center] = scc + ds + sds
- #print("sdw", sdw[10,15])
+ scc = sediment[center]
+ rcc = rock[center]
+ water[center] = wcc * (1-Kev) + sdw
+ sediment[center] = scc + sds
+ sc = where(wcc > 0, scc / wcc, 2 * Kc)
+ fKc = Kc*svdw
+ ds = where(fKc > sc, (fKc - sc) * Ks, (fKc - sc) * Kdep) * wcc
+ self.flowrate[center] = svdw
+ self.scour[center] = ds
+ self.sedimentpct[center] = sc
+ self.capacity[center] = fKc
+ sediment[center] = scc + ds + sds
+
def flow(self, Kc, Ks, Kz, Ka, numexpr):
+ zeros = np.zeros
+ where = np.where
+ min = np.minimum
+ max = np.maximum
+ abs = np.absolute
+ arctan = np.arctan
+ sin = np.sin
+
+ center = (slice( 1, -1,None),slice( 1, -1,None))
+ rock = self.center
+ ds = self.scour[center]
+ rcc = rock[center]
+ rock[center] = rcc - ds * Kz
+ # there isn't really a bottom to the rock but negative values look ugly
+ rock[center] = where(rcc<0,0,rcc)
- zeros = np.zeros
- where = np.where
- min = np.minimum
- max = np.maximum
- abs = np.absolute
- arctan = np.arctan
- sin = np.sin
-
- center = (slice( 1, -1,None),slice( 1, -1,None))
- #print("CentreSlice\n", np.array_str(center,precision=3), file=sys.stderr)
- #up = (slice(None, -2,None),slice( 1, -1,None))
- #down = (slice( 2, None,None),slice( 1, -1,None))
- #left = (slice( 1, -1,None),slice(None, -2,None))
- #right = (slice( 1, -1,None),slice( 2,None,None))
-
- #water = self.water
- rock = self.center
- #sediment = self.sediment
- #height = rock + water
- #sc = where(water>0, sediment/water, 0) ##!! this gives a runtime warning for division by zero
- #sdw = zeros(water[center].shape)
- #svdw = zeros(water[center].shape)
- #sds = zeros(water[center].shape)
- #angle = zeros(water[center].shape)
- #print(height[center])
- #print(water[center])
- #for d in (up,down,left,right):
- #if(numexpr and numexpr_available):
- #hdd = height[d]
- #hcc = height[center]
- #dw = ne.evaluate('hdd-hcc')
- #inflow = ne.evaluate('dw > 0')
- #wdd = water[d]
- #wcc = water[center]
- #dw = ne.evaluate('where(inflow, where(wdd<dw, wdd, dw), where(-wcc>dw, -wcc, dw))/4.0') # nested where() represent min() and max()
- #sdw = ne.evaluate('sdw + dw')
- #scd = sc[d]
- #scc = sc[center]
- #rockd= rock[d]
- #rockc= rock[center]
- #sds = ne.evaluate('sds + dw * where(inflow, scd, scc)')
- #svdw = ne.evaluate('svdw + abs(dw)')
- #angle= ne.evaluate('angle + arctan(abs(rockd-rockc))')
- #else:
- #dw = (height[d]-height[center])
- #inflow = dw > 0
- #dw = where(inflow, min(water[d], dw), max(-water[center], dw))/4.0
- #sdw = sdw + dw
- #sds = sds + dw * where(inflow, sc[d], sc[center])
- #svdw = svdw + abs(dw)
- #angle= angle + np.arctan(abs(rock[d]-rock[center]))
-
- #if(numexpr and numexpr_available):
- #wcc = water[center]
- #scc = sediment[center]
- #rcc = rock[center]
- #water[center] = ne.evaluate('wcc + sdw')
- #sediment[center] = ne.evaluate('scc + sds')
- #sc = ne.evaluate('where(wcc>0, scc/wcc, 2000*Kc)')
- #fKc = ne.evaluate('Kc*sin(Ka*angle)*svdw')
- #ds = ne.evaluate('where(sc > fKc, -Kd * scc, Ks * svdw)')
- #rock[center] = ne.evaluate('rcc - ds')
- #rock[center] = ne.evaluate('where(rcc<0,0,rcc)') # there isn't really a bottom to the rock but negative values look ugly
- #sediment[center] = ne.evaluate('scc + ds')
- #else:
- #wcc = water[center]
- #scc = sediment[center]
- ds = self.scour[center]
- rcc = rock[center]
- #water[center] = wcc + sdw
- #sediment[center] = scc + sds
- #sc = where(wcc>0, scc/wcc, 2*Kc)
- #fKc = Kc*np.sin(Ka*angle)*svdw
- #ds = where(sc > fKc, -Kd * scc, Ks * svdw)
- rock[center] = rcc - ds * Kz
- rock[center] = where(rcc<0,0,rcc) # there isn't really a bottom to the rock but negative values look ugly
- #sediment[center] = scc + ds
def rivergeneration(self, rainamount, rainvariance, userainmap, Kc, Ks, Kdep, Ka, Kev, Kspring, Kspringx, Kspringy, Kspringr, numexpr):
self.init_water_and_sediment()
self.rain(rainamount, rainvariance, userainmap)
self.zeroedge(self.water)
self.zeroedge(self.sediment)
- #self.spring(Kspring, Kspringx, Kspringy, Kspringr)
self.river(Kc, Ks, Kdep, Ka, Kev, numexpr)
self.watermax = np.max(self.water)
+
def fluvial_erosion(self, rainamount, rainvariance, userainmap, Kc, Ks, Kdep, Ka, Kspring, Kspringx, Kspringy, Kspringr, numexpr):
- #self.init_water_and_sediment()
- #self.rain(rainamount, rainvariance, userainmap)
- #self.zeroedge(self.water)
- #self.zeroedge(self.sediment)
- #self.spring(Kspring, Kspringx, Kspringy, Kspringr)
self.flow(Kc, Ks, Kdep, Ka, numexpr)
self.flowratemax = np.max(self.flowrate)
self.scourmax = np.max(self.scour)
self.scourmin = np.min(self.scour)
self.sedmax = np.max(self.sediment)
- print("DSMinMax", np.min(self.scour), np.max(self.scour))
+
def analyze(self):
- self.neighborgrid()
- # just looking at up and left to avoid needless doubel calculations
- slopes=np.concatenate((np.abs(self.left - self.center),np.abs(self.up - self.center)))
- return '\n'.join(["%-15s: %.3f"%t for t in [
- ('height average', np.average(self.center)),
- ('height median', np.median(self.center)),
- ('height max', np.max(self.center)),
- ('height min', np.min(self.center)),
- ('height std', np.std(self.center)),
- ('slope average', np.average(slopes)),
- ('slope median', np.median(slopes)),
- ('slope max', np.max(slopes)),
- ('slope min', np.min(slopes)),
- ('slope std', np.std(slopes))
- ]]
- )
+ self.neighborgrid()
+ # just looking at up and left to avoid needless doubel calculations
+ slopes=np.concatenate((np.abs(self.left - self.center),np.abs(self.up - self.center)))
+ return '\n'.join(["%-15s: %.3f"%t for t in [
+ ('height average', np.average(self.center)),
+ ('height median', np.median(self.center)),
+ ('height max', np.max(self.center)),
+ ('height min', np.min(self.center)),
+ ('height std', np.std(self.center)),
+ ('slope average', np.average(slopes)),
+ ('slope median', np.median(slopes)),
+ ('slope max', np.max(slopes)),
+ ('slope min', np.min(slopes)),
+ ('slope std', np.std(slopes))
+ ]]
+ )
+
class TestGrid(unittest.TestCase):
- def test_diffuse(self):
- g=Grid(5)
- g.peak(1)
- self.assertEqual(g.center[2,2],1.0)
- g.diffuse(0.1, numexpr=False)
- for n in [(2,1),(2,3),(1,2),(3,2)]:
- self.assertAlmostEqual(g.center[n],0.1)
- self.assertAlmostEqual(g.center[2,2],0.6)
-
- def test_diffuse_numexpr(self):
- g=Grid(5)
- g.peak(1)
- g.diffuse(0.1, numexpr=False)
- h=Grid(5)
- h.peak(1)
- h.diffuse(0.1, numexpr=True)
- self.assertEqual(list(g.center.flat),list(h.center.flat))
-
- def test_avalanche_numexpr(self):
- g=Grid(5)
- g.peak(1)
- g.avalanche(0.1, numexpr=False)
- h=Grid(5)
- h.peak(1)
- h.avalanche(0.1, numexpr=True)
- print(g)
- print(h)
- np.testing.assert_almost_equal(g.center,h.center)
+ def test_diffuse(self):
+ g = Grid(5)
+ g.peak(1)
+ self.assertEqual(g.center[2,2],1.0)
+ g.diffuse(0.1, numexpr=False)
+ for n in [(2,1),(2,3),(1,2),(3,2)]:
+ self.assertAlmostEqual(g.center[n],0.1)
+ self.assertAlmostEqual(g.center[2,2],0.6)
+
+
+ def test_diffuse_numexpr(self):
+ g = Grid(5)
+ g.peak(1)
+ g.diffuse(0.1, numexpr=False)
+ h = Grid(5)
+ h.peak(1)
+ h.diffuse(0.1, numexpr=True)
+ self.assertEqual(list(g.center.flat),list(h.center.flat))
+
+
+ def test_avalanche_numexpr(self):
+ g = Grid(5)
+ g.peak(1)
+ g.avalanche(0.1, numexpr=False)
+ h = Grid(5)
+ h.peak(1)
+ h.avalanche(0.1, numexpr=True)
+ print(g)
+ print(h)
+ np.testing.assert_almost_equal(g.center,h.center)
+
if __name__ == "__main__":
- import argparse
-
- parser = argparse.ArgumentParser(description='Erode a terrain while assuming zero boundary conditions.')
- parser.add_argument('-I', dest='iterations', type=int, default=1, help='the number of iterations')
- parser.add_argument('-Kd', dest='Kd', type=float, default=0.01, help='Diffusion constant')
- parser.add_argument('-Kh', dest='Kh', type=float, default=6, help='Maximum stable cliff height')
- parser.add_argument('-Kp', dest='Kp', type=float, default=0.1, help='Avalanche probability for unstable cliffs')
- parser.add_argument('-Kr', dest='Kr', type=float, default=0.1, help='Average amount of rain per iteration')
- parser.add_argument('-Kspring', dest='Kspring', type=float, default=0.0, help='Average amount of wellwater per iteration')
- parser.add_argument('-Kspringx', dest='Kspringx', type=float, default=0.5, help='relative x position of spring')
- parser.add_argument('-Kspringy', dest='Kspringy', type=float, default=0.5, help='relative y position of spring')
- parser.add_argument('-Kspringr', dest='Kspringr', type=float, default=0.02, help='radius of spring')
- parser.add_argument('-Kdep', dest='Kdep', type=float, default=0.1, help='Sediment deposition constant')
- parser.add_argument('-Ks', dest='Ks', type=float, default=0.1, help='Soil softness constant')
- parser.add_argument('-Kc', dest='Kc', type=float, default=1.0, help='Sediment capacity')
- parser.add_argument('-Ka', dest='Ka', type=float, default=2.0, help='Slope dependency of erosion')
- parser.add_argument('-ri', action='store_true', dest='rawin', default=False, help='use Blender raw format for input')
- parser.add_argument('-ro', action='store_true', dest='rawout', default=False, help='use Blender raw format for output')
- parser.add_argument('-i', action='store_true', dest='useinputfile', default=False, help='use an inputfile (instead of just a synthesized grid)')
- parser.add_argument('-t', action='store_true', dest='timingonly', default=False, help='do not write anything to an output file')
- parser.add_argument('-infile', type=str, default="-", help='input filename')
- parser.add_argument('-outfile', type=str, default="-", help='output filename')
- parser.add_argument('-Gn', dest='gridsize', type=int, default=20, help='Gridsize (always square)')
- parser.add_argument('-Gp', dest='gridpeak', type=float, default=0, help='Add peak with given height')
- parser.add_argument('-Gs', dest='gridshelf', type=float, default=0, help='Add shelve with given height')
- parser.add_argument('-Gm', dest='gridmesa', type=float, default=0, help='Add mesa with given height')
- parser.add_argument('-Gr', dest='gridrandom', type=float, default=0, help='Add random values between 0 and given value')
- parser.add_argument('-m', dest='threads', type=int, default=1, help='number of threads to use')
- parser.add_argument('-u', action='store_true', dest='unittest', default=False, help='perfom unittests')
- parser.add_argument('-a', action='store_true', dest='analyze', default=False, help='show some statistics of input and output meshes')
- parser.add_argument('-d', action='store_true', dest='dump', default=False, help='show sediment and water meshes at end of run')
- parser.add_argument('-n', action='store_true', dest='usenumexpr', default=False, help='use numexpr optimizations')
-
- args = parser.parse_args()
- print("\nInput arguments:")
- print("\n".join("%-15s: %s"%t for t in sorted(vars(args).items())), file=sys.stderr)
-
- if args.unittest:
- unittest.main(argv=[sys.argv[0]])
- sys.exit(0)
-
- if args.useinputfile:
- if args.rawin:
- grid = Grid.fromRaw(args.infile)
- else:
- grid = Grid.fromFile(args.infile)
- else:
- grid = Grid(args.gridsize)
-
- if args.gridpeak > 0 : grid.peak(args.gridpeak)
- if args.gridmesa > 0 : grid.mesa(args.gridmesa)
- if args.gridshelf > 0 : grid.shelf(args.gridshelf)
- if args.gridrandom > 0 : grid.random(args.gridrandom)
-
- if args.analyze:
- print('\nstatistics of the input grid:\n\n', grid.analyze(), file=sys.stderr, sep='' )
- t = getptime()
- for g in range(args.iterations):
- if args.Kd > 0:
- grid.diffuse(args.Kd, args.usenumexpr)
- if args.Kh > 0 and args.Kp > rand():
- grid.avalanche(args.Kh, args.usenumexpr)
- if args.Kr > 0 or args.Kspring > 0:
- grid.fluvial_erosion(args.Kr, args.Kc, args.Ks, args.Kdep, args.Ka, args.Kspring, args.Kspringx, args.Kspringy, args.Kspringr, args.usenumexpr)
- t = getptime() - t
- print("\nElapsed time: %.1f seconds, max memory %.1f Mb.\n"%(t,grid.maxrss), file=sys.stderr)
- if args.analyze:
- print('\nstatistics of the output grid:\n\n', grid.analyze(), file=sys.stderr, sep='')
-
- if not args.timingonly:
- if args.rawout:
- grid.toRaw(args.outfile, vars(args))
+ import argparse
+
+ parser = argparse.ArgumentParser(description='Erode a terrain while assuming zero boundary conditions.')
+ parser.add_argument('-I', dest='iterations', type=int, default=1, help='the number of iterations')
+ parser.add_argument('-Kd', dest='Kd', type=float, default=0.01, help='Diffusion constant')
+ parser.add_argument('-Kh', dest='Kh', type=float, default=6, help='Maximum stable cliff height')
+ parser.add_argument('-Kp', dest='Kp', type=float, default=0.1, help='Avalanche probability for unstable cliffs')
+ parser.add_argument('-Kr', dest='Kr', type=float, default=0.1, help='Average amount of rain per iteration')
+ parser.add_argument('-Kspring', dest='Kspring', type=float, default=0.0, help='Average amount of wellwater per iteration')
+ parser.add_argument('-Kspringx', dest='Kspringx', type=float, default=0.5, help='relative x position of spring')
+ parser.add_argument('-Kspringy', dest='Kspringy', type=float, default=0.5, help='relative y position of spring')
+ parser.add_argument('-Kspringr', dest='Kspringr', type=float, default=0.02, help='radius of spring')
+ parser.add_argument('-Kdep', dest='Kdep', type=float, default=0.1, help='Sediment deposition constant')
+ parser.add_argument('-Ks', dest='Ks', type=float, default=0.1, help='Soil softness constant')
+ parser.add_argument('-Kc', dest='Kc', type=float, default=1.0, help='Sediment capacity')
+ parser.add_argument('-Ka', dest='Ka', type=float, default=2.0, help='Slope dependency of erosion')
+ parser.add_argument('-ri', action='store_true', dest='rawin', default=False, help='use Blender raw format for input')
+ parser.add_argument('-ro', action='store_true', dest='rawout', default=False, help='use Blender raw format for output')
+ parser.add_argument('-i', action='store_true', dest='useinputfile', default=False, help='use an inputfile (instead of just a synthesized grid)')
+ parser.add_argument('-t', action='store_true', dest='timingonly', default=False, help='do not write anything to an output file')
+ parser.add_argument('-infile', type=str, default="-", help='input filename')
+ parser.add_argument('-outfile', type=str, default="-", help='output filename')
+ parser.add_argument('-Gn', dest='gridsize', type=int, default=20, help='Gridsize (always square)')
+ parser.add_argument('-Gp', dest='gridpeak', type=float, default=0, help='Add peak with given height')
+ parser.add_argument('-Gs', dest='gridshelf', type=float, default=0, help='Add shelve with given height')
+ parser.add_argument('-Gm', dest='gridmesa', type=float, default=0, help='Add mesa with given height')
+ parser.add_argument('-Gr', dest='gridrandom', type=float, default=0, help='Add random values between 0 and given value')
+ parser.add_argument('-m', dest='threads', type=int, default=1, help='number of threads to use')
+ parser.add_argument('-u', action='store_true', dest='unittest', default=False, help='perfom unittests')
+ parser.add_argument('-a', action='store_true', dest='analyze', default=False, help='show some statistics of input and output meshes')
+ parser.add_argument('-d', action='store_true', dest='dump', default=False, help='show sediment and water meshes at end of run')
+ parser.add_argument('-n', action='store_true', dest='usenumexpr', default=False, help='use numexpr optimizations')
+
+ args = parser.parse_args()
+ print("\nInput arguments:")
+ print("\n".join("%-15s: %s"%t for t in sorted(vars(args).items())), file=sys.stderr)
+
+ if args.unittest:
+ unittest.main(argv=[sys.argv[0]])
+ sys.exit(0)
+
+ if args.useinputfile:
+ if args.rawin:
+ grid = Grid.fromRaw(args.infile)
+ else:
+ grid = Grid.fromFile(args.infile)
else:
- grid.toFile(args.outfile)
+ grid = Grid(args.gridsize)
+
+ if args.gridpeak > 0 : grid.peak(args.gridpeak)
+ if args.gridmesa > 0 : grid.mesa(args.gridmesa)
+ if args.gridshelf > 0 : grid.shelf(args.gridshelf)
+ if args.gridrandom > 0 : grid.random(args.gridrandom)
+
+ if args.analyze:
+ print('\nstatistics of the input grid:\n\n', grid.analyze(), file=sys.stderr, sep='' )
+ t = getptime()
+ for g in range(args.iterations):
+ if args.Kd > 0:
+ grid.diffuse(args.Kd, args.usenumexpr)
+ if args.Kh > 0 and args.Kp > rand():
+ grid.avalanche(args.Kh, args.usenumexpr)
+ if args.Kr > 0 or args.Kspring > 0:
+ grid.fluvial_erosion(args.Kr, args.Kc, args.Ks, args.Kdep, args.Ka, args.Kspring, args.Kspringx, args.Kspringy, args.Kspringr, args.usenumexpr)
+ t = getptime() - t
+ print("\nElapsed time: %.1f seconds, max memory %.1f Mb.\n"%(t,grid.maxrss), file=sys.stderr)
+ if args.analyze:
+ print('\nstatistics of the output grid:\n\n', grid.analyze(), file=sys.stderr, sep='')
+
+ if not args.timingonly:
+ if args.rawout:
+ grid.toRaw(args.outfile, vars(args))
+ else:
+ grid.toFile(args.outfile)
- if args.dump:
- print("sediment\n", np.array_str(grid.sediment,precision=3), file=sys.stderr)
- print("water\n", np.array_str(grid.water,precision=3), file=sys.stderr)
- print("sediment concentration\n", np.array_str(grid.sediment/grid.water,precision=3), file=sys.stderr)
+ if args.dump:
+ print("sediment\n", np.array_str(grid.sediment,precision=3), file=sys.stderr)
+ print("water\n", np.array_str(grid.water,precision=3), file=sys.stderr)
+ print("sediment concentration\n", np.array_str(grid.sediment/grid.water,precision=3), file=sys.stderr)