Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'render_povray/render.py')
-rw-r--r--render_povray/render.py790
1 files changed, 790 insertions, 0 deletions
diff --git a/render_povray/render.py b/render_povray/render.py
new file mode 100644
index 00000000..755e12c4
--- /dev/null
+++ b/render_povray/render.py
@@ -0,0 +1,790 @@
+# ##### BEGIN GPL LICENSE BLOCK #####
+#
+# This program is free software; you can redistribute it and/or
+# modify it under the terms of the GNU General Public License
+# as published by the Free Software Foundation; either version 2
+# of the License, or (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program; if not, write to the Free Software Foundation,
+# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
+#
+# ##### END GPL LICENSE BLOCK #####
+
+import bpy
+import subprocess
+import os
+import sys
+import time
+import math
+
+import platform as pltfrm
+if pltfrm.architecture()[0] == '64bit':
+ bitness = 64
+else:
+ bitness = 32
+
+
+def write_pov(filename, scene=None, info_callback=None):
+ file = open(filename, 'w')
+
+ # Only for testing
+ if not scene:
+ scene = bpy.data.scenes[0]
+
+ render = scene.render
+ world = scene.world
+
+ def uniqueName(name, nameSeq):
+
+ if name not in nameSeq:
+ return name
+
+ name_orig = name
+ i = 1
+ while name in nameSeq:
+ name = '%s_%.3d' % (name_orig, i)
+ i += 1
+
+ return name
+
+ def writeMatrix(matrix):
+ file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\
+ (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))
+
+ def writeObjectMaterial(material):
+ if material and material.transparency_method == 'RAYTRACE':
+ file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
+
+ # Other interior args
+ # fade_distance 2
+ # fade_power [Value]
+ # fade_color
+
+ # dispersion
+ # dispersion_samples
+
+ materialNames = {}
+ DEF_MAT_NAME = 'Default'
+
+ def writeMaterial(material):
+ # Assumes only called once on each material
+
+ if material:
+ name_orig = material.name
+ else:
+ name_orig = DEF_MAT_NAME
+
+ name = materialNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), materialNames)
+
+ file.write('#declare %s = finish {\n' % name)
+
+ if material:
+ file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
+ file.write('\tspecular %.3g\n' % material.specular_intensity)
+
+ file.write('\tambient %.3g\n' % material.ambient)
+ #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple(c*material.ambient for c in world.ambient_color)) # povray blends the global value
+
+ # map hardness between 0.0 and 1.0
+ roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
+ # scale from 0.0 to 0.1
+ roughness *= 0.1
+ # add a small value because 0.0 is invalid
+ roughness += (1 / 511.0)
+
+ file.write('\troughness %.3g\n' % roughness)
+
+ # 'phong 70.0 '
+
+ if material.raytrace_mirror.use:
+ raytrace_mirror = material.raytrace_mirror
+ if raytrace_mirror.reflect_factor:
+ file.write('\treflection {\n')
+ file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
+ file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))
+
+ else:
+ file.write('\tdiffuse 0.8\n')
+ file.write('\tspecular 0.2\n')
+
+
+ # This is written into the object
+ '''
+ if material and material.transparency_method=='RAYTRACE':
+ 'interior { ior %.3g} ' % material.raytrace_transparency.ior
+ '''
+
+ #file.write('\t\t\tcrand 1.0\n') # Sand granyness
+ #file.write('\t\t\tmetallic %.6f\n' % material.spec)
+ #file.write('\t\t\tphong %.6f\n' % material.spec)
+ #file.write('\t\t\tphong_size %.6f\n' % material.spec)
+ #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
+
+ file.write('}\n')
+
+ def exportCamera():
+ camera = scene.camera
+ matrix = camera.matrix_world
+
+ # compute resolution
+ Qsize = float(render.resolution_x) / float(render.resolution_y)
+
+ file.write('camera {\n')
+ file.write('\tlocation <0, 0, 0>\n')
+ file.write('\tlook_at <0, 0, -1>\n')
+ file.write('\tright <%s, 0, 0>\n' % - Qsize)
+ file.write('\tup <0, 1, 0>\n')
+ file.write('\tangle %f \n' % (360.0 * math.atan(16.0 / camera.data.lens) / math.pi))
+
+ file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple(math.degrees(e) for e in matrix.rotation_part().to_euler()))
+ file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
+ file.write('}\n')
+
+ def exportLamps(lamps):
+ # Get all lamps
+ for ob in lamps:
+ lamp = ob.data
+
+ matrix = ob.matrix_world
+
+ color = tuple(c * lamp.energy for c in lamp.color) # Colour is modified by energy
+
+ file.write('light_source {\n')
+ file.write('\t< 0,0,0 >\n')
+ file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)
+
+ if lamp.type == 'POINT': # Point Lamp
+ pass
+ elif lamp.type == 'SPOT': # Spot
+ file.write('\tspotlight\n')
+
+ # Falloff is the main radius from the centre line
+ file.write('\tfalloff %.2f\n' % (math.degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
+ file.write('\tradius %.6f\n' % ((math.degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
+
+ # Blender does not have a tightness equivilent, 0 is most like blender default.
+ file.write('\ttightness 0\n') # 0:10f
+
+ file.write('\tpoint_at <0, 0, -1>\n')
+ elif lamp.type == 'SUN':
+ file.write('\tparallel\n')
+ file.write('\tpoint_at <0, 0, -1>\n') # *must* be after 'parallel'
+
+ elif lamp.type == 'AREA':
+
+ size_x = lamp.size
+ samples_x = lamp.shadow_ray_samples_x
+ if lamp.shape == 'SQUARE':
+ size_y = size_x
+ samples_y = samples_x
+ else:
+ size_y = lamp.size_y
+ samples_y = lamp.shadow_ray_samples_y
+
+ file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
+ if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED':
+ if lamp.jitter:
+ file.write('\tjitter\n')
+ else:
+ file.write('\tadaptive 1\n')
+ file.write('\tjitter\n')
+
+ if lamp.shadow_method == 'NOSHADOW':
+ file.write('\tshadowless\n')
+
+ file.write('\tfade_distance %.6f\n' % lamp.distance)
+ file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
+ writeMatrix(matrix)
+
+ file.write('}\n')
+
+ def exportMeta(metas):
+
+ # TODO - blenders 'motherball' naming is not supported.
+
+ for ob in metas:
+ meta = ob.data
+
+ file.write('blob {\n')
+ file.write('\t\tthreshold %.4g\n' % meta.threshold)
+
+ try:
+ material = meta.materials[0] # lame! - blender cant do enything else.
+ except:
+ material = None
+
+ for elem in meta.elements:
+
+ if elem.type not in ('BALL', 'ELLIPSOID'):
+ continue # Not supported
+
+ loc = elem.co
+
+ stiffness = elem.stiffness
+ if elem.use_negative:
+ stiffness = - stiffness
+
+ if elem.type == 'BALL':
+
+ file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))
+
+ # After this wecould do something simple like...
+ # "pigment {Blue} }"
+ # except we'll write the color
+
+ elif elem.type == 'ELLIPSOID':
+ # location is modified by scale
+ file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
+ file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))
+
+ if material:
+ diffuse_color = material.diffuse_color
+
+ if material.use_transparency and material.transparency_method == 'RAYTRACE':
+ trans = 1.0 - material.raytrace_transparency.filter
+ else:
+ trans = 0.0
+
+ file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
+ (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))
+
+ else:
+ file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME) # Write the finish last.
+
+ writeObjectMaterial(material)
+
+ writeMatrix(ob.matrix_world)
+
+ file.write('}\n')
+
+ def exportMeshs(scene, sel):
+
+ ob_num = 0
+
+ for ob in sel:
+ ob_num += 1
+
+ if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'):
+ continue
+
+ me = ob.data
+ me_materials = me.materials
+
+ me = ob.create_mesh(scene, True, 'RENDER')
+
+ if not me or not me.faces:
+ continue
+
+ if info_callback:
+ info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
+
+ #if ob.type!='MESH':
+ # continue
+ # me = ob.data
+
+ matrix = ob.matrix_world
+ try:
+ uv_layer = me.uv_textures.active.data
+ except:
+ uv_layer = None
+
+ try:
+ vcol_layer = me.vertex_colors.active.data
+ except:
+ vcol_layer = None
+
+ faces_verts = [f.vertices[:] for f in me.faces]
+ faces_normals = [tuple(f.normal) for f in me.faces]
+ verts_normals = [tuple(v.normal) for v in me.vertices]
+
+ # quads incur an extra face
+ quadCount = sum(1 for f in faces_verts if len(f) == 4)
+
+ file.write('mesh2 {\n')
+ file.write('\tvertex_vectors {\n')
+ file.write('\t\t%s' % (len(me.vertices))) # vert count
+ for v in me.vertices:
+ file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
+ file.write('\n }\n')
+
+
+ # Build unique Normal list
+ uniqueNormals = {}
+ for fi, f in enumerate(me.faces):
+ fv = faces_verts[fi]
+ # [-1] is a dummy index, use a list so we can modify in place
+ if f.use_smooth: # Use vertex normals
+ for v in fv:
+ key = verts_normals[v]
+ uniqueNormals[key] = [-1]
+ else: # Use face normal
+ key = faces_normals[fi]
+ uniqueNormals[key] = [-1]
+
+ file.write('\tnormal_vectors {\n')
+ file.write('\t\t%d' % len(uniqueNormals)) # vert count
+ idx = 0
+ for no, index in uniqueNormals.items():
+ file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
+ index[0] = idx
+ idx += 1
+ file.write('\n }\n')
+
+
+ # Vertex colours
+ vertCols = {} # Use for material colours also.
+
+ if uv_layer:
+ # Generate unique UV's
+ uniqueUVs = {}
+
+ for fi, uv in enumerate(uv_layer):
+
+ if len(faces_verts[fi]) == 4:
+ uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
+ else:
+ uvs = uv.uv1, uv.uv2, uv.uv3
+
+ for uv in uvs:
+ uniqueUVs[tuple(uv)] = [-1]
+
+ file.write('\tuv_vectors {\n')
+ #print unique_uvs
+ file.write('\t\t%s' % (len(uniqueUVs))) # vert count
+ idx = 0
+ for uv, index in uniqueUVs.items():
+ file.write(',\n\t\t<%.6f, %.6f>' % uv)
+ index[0] = idx
+ idx += 1
+ '''
+ else:
+ # Just add 1 dummy vector, no real UV's
+ file.write('\t\t1') # vert count
+ file.write(',\n\t\t<0.0, 0.0>')
+ '''
+ file.write('\n }\n')
+
+
+ if me.vertex_colors:
+
+ for fi, f in enumerate(me.faces):
+ material_index = f.material_index
+ material = me_materials[material_index]
+
+ if material and material.use_vertex_color_paint:
+
+ col = vcol_layer[fi]
+
+ if len(faces_verts[fi]) == 4:
+ cols = col.color1, col.color2, col.color3, col.color4
+ else:
+ cols = col.color1, col.color2, col.color3
+
+ for col in cols:
+ key = col[0], col[1], col[2], material_index # Material index!
+ vertCols[key] = [-1]
+
+ else:
+ if material:
+ diffuse_color = tuple(material.diffuse_color)
+ key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
+ vertCols[key] = [-1]
+
+
+ else:
+ # No vertex colours, so write material colours as vertex colours
+ for i, material in enumerate(me_materials):
+
+ if material:
+ diffuse_color = tuple(material.diffuse_color)
+ key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
+ vertCols[key] = [-1]
+
+
+ # Vert Colours
+ file.write('\ttexture_list {\n')
+ file.write('\t\t%s' % (len(vertCols))) # vert count
+ idx = 0
+ for col, index in vertCols.items():
+
+ if me_materials:
+ material = me_materials[col[3]]
+ material_finish = materialNames[material.name]
+
+ if material.use_transparency and material.transparency_method == 'RAYTRACE':
+ trans = 1.0 - material.raytrace_transparency.filter
+ else:
+ trans = 0.0
+
+ else:
+ material_finish = DEF_MAT_NAME # not working properly,
+ trans = 0.0
+
+ #print material.apl
+ file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
+ (col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish))
+
+ index[0] = idx
+ idx += 1
+
+ file.write('\n }\n')
+
+ # Face indicies
+ file.write('\tface_indices {\n')
+ file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+ for fi, f in enumerate(me.faces):
+ fv = faces_verts[fi]
+ material_index = f.material_index
+ if len(fv) == 4:
+ indicies = (0, 1, 2), (0, 2, 3)
+ else:
+ indicies = ((0, 1, 2),)
+
+ if vcol_layer:
+ col = vcol_layer[fi]
+
+ if len(fv) == 4:
+ cols = col.color1, col.color2, col.color3, col.color4
+ else:
+ cols = col.color1, col.color2, col.color3
+
+
+ if not me_materials or me_materials[material_index] is None: # No materials
+ for i1, i2, i3 in indicies:
+ file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
+ else:
+ material = me_materials[material_index]
+ for i1, i2, i3 in indicies:
+ if me.vertex_colors and material.use_vertex_color_paint:
+ # Colour per vertex - vertex colour
+
+ col1 = cols[i1]
+ col2 = cols[i2]
+ col3 = cols[i3]
+
+ ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
+ ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
+ ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
+ else:
+ # Colour per material - flat material colour
+ diffuse_color = material.diffuse_color
+ ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
+
+ file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
+
+
+ file.write('\n }\n')
+
+ # normal_indices indicies
+ file.write('\tnormal_indices {\n')
+ file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+ for fi, fv in enumerate(faces_verts):
+
+ if len(fv) == 4:
+ indicies = (0, 1, 2), (0, 2, 3)
+ else:
+ indicies = ((0, 1, 2),)
+
+ for i1, i2, i3 in indicies:
+ if f.use_smooth:
+ file.write(',\n\t\t<%d,%d,%d>' %\
+ (uniqueNormals[verts_normals[fv[i1]]][0],\
+ uniqueNormals[verts_normals[fv[i2]]][0],\
+ uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
+ else:
+ idx = uniqueNormals[faces_normals[fi]][0]
+ file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
+
+ file.write('\n }\n')
+
+ if uv_layer:
+ file.write('\tuv_indices {\n')
+ file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
+ for fi, fv in enumerate(faces_verts):
+
+ if len(fv) == 4:
+ indicies = (0, 1, 2), (0, 2, 3)
+ else:
+ indicies = ((0, 1, 2),)
+
+ uv = uv_layer[fi]
+ if len(faces_verts[fi]) == 4:
+ uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
+ else:
+ uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)
+
+ for i1, i2, i3 in indicies:
+ file.write(',\n\t\t<%d,%d,%d>' %\
+ (uniqueUVs[uvs[i1]][0],\
+ uniqueUVs[uvs[i2]][0],\
+ uniqueUVs[uvs[i2]][0])) # vert count
+ file.write('\n }\n')
+
+ if me.materials:
+ material = me.materials[0] # dodgy
+ writeObjectMaterial(material)
+
+ writeMatrix(matrix)
+ file.write('}\n')
+
+ bpy.data.meshes.remove(me)
+
+ def exportWorld(world):
+ if not world:
+ return
+
+ mist = world.mist_settings
+
+ if mist.use_mist:
+ file.write('fog {\n')
+ file.write('\tdistance %.6f\n' % mist.depth)
+ file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
+ #file.write('\tfog_offset %.6f\n' % mist.start)
+ #file.write('\tfog_alt 5\n')
+ #file.write('\tturbulence 0.2\n')
+ #file.write('\tturb_depth 0.3\n')
+ file.write('\tfog_type 1\n')
+ file.write('}\n')
+
+ def exportGlobalSettings(scene):
+
+ file.write('global_settings {\n')
+
+ if scene.pov_radio_enable:
+ file.write('\tradiosity {\n')
+ file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
+ file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
+ file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
+ file.write("\t\tcount %d\n" % scene.pov_radio_count)
+ file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
+ file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
+ file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
+ file.write("\t\tmedia %d\n" % scene.pov_radio_media)
+ file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
+ file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
+ file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
+ file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
+ file.write('\t}\n')
+
+ if world:
+ file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))
+
+ file.write('}\n')
+
+
+ # Convert all materials to strings we can access directly per vertex.
+ writeMaterial(None) # default material
+
+ for material in bpy.data.materials:
+ writeMaterial(material)
+
+ exportCamera()
+ #exportMaterials()
+ sel = scene.objects
+ exportLamps(l for l in sel if l.type == 'LAMP')
+ exportMeta(l for l in sel if l.type == 'META')
+ exportMeshs(scene, sel)
+ exportWorld(scene.world)
+ exportGlobalSettings(scene)
+
+ file.close()
+
+
+
+def write_pov_ini(filename_ini, filename_pov, filename_image):
+ scene = bpy.data.scenes[0]
+ render = scene.render
+
+ x = int(render.resolution_x * render.resolution_percentage * 0.01)
+ y = int(render.resolution_y * render.resolution_percentage * 0.01)
+
+ file = open(filename_ini, 'w')
+
+ file.write('Input_File_Name="%s"\n' % filename_pov)
+ file.write('Output_File_Name="%s"\n' % filename_image)
+
+ file.write('Width=%d\n' % x)
+ file.write('Height=%d\n' % y)
+
+ # Needed for border render.
+ '''
+ file.write('Start_Column=%d\n' % part.x)
+ file.write('End_Column=%d\n' % (part.x+part.w))
+
+ file.write('Start_Row=%d\n' % (part.y))
+ file.write('End_Row=%d\n' % (part.y+part.h))
+ '''
+
+ file.write('Display=0\n')
+ file.write('Pause_When_Done=0\n')
+ file.write('Output_File_Type=T\n') # TGA, best progressive loading
+ file.write('Output_Alpha=1\n')
+
+ if render.use_antialiasing:
+ aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 1 assumed
+ file.write('Antialias=1\n')
+ file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
+ else:
+ file.write('Antialias=0\n')
+
+ file.close()
+
+
+class PovrayRender(bpy.types.RenderEngine):
+ bl_idname = 'POVRAY_RENDER'
+ bl_label = "Povray"
+ DELAY = 0.02
+
+ def _export(self, scene):
+ import tempfile
+
+ self._temp_file_in = tempfile.mktemp(suffix='.pov')
+ self._temp_file_out = tempfile.mktemp(suffix='.tga')
+ self._temp_file_ini = tempfile.mktemp(suffix='.ini')
+ '''
+ self._temp_file_in = '/test.pov'
+ self._temp_file_out = '/test.tga'
+ self._temp_file_ini = '/test.ini'
+ '''
+
+ def info_callback(txt):
+ self.update_stats("", "POVRAY: " + txt)
+
+ write_pov(self._temp_file_in, scene, info_callback)
+
+ def _render(self):
+
+ try:
+ os.remove(self._temp_file_out) # so as not to load the old file
+ except:
+ pass
+
+ write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)
+
+ print ("***-STARTING-***")
+
+ pov_binary = "povray"
+
+ if sys.platform == 'win32':
+ import winreg
+ regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')
+
+ if bitness == 64:
+ pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
+ else:
+ pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'
+
+ if 1:
+ # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
+ try:
+ self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
+ except OSError:
+ # TODO, report api
+ print("POVRAY: could not execute '%s', possibly povray isn't installed" % pov_binary)
+ import traceback
+ traceback.print_exc()
+ print ("***-DONE-***")
+ return False
+
+ else:
+ # This works too but means we have to wait until its done
+ os.system('%s %s' % (pov_binary, self._temp_file_ini))
+
+ print ("***-DONE-***")
+ return True
+
+ def _cleanup(self):
+ for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
+ try:
+ os.remove(f)
+ except:
+ pass
+
+ self.update_stats("", "")
+
+ def render(self, scene):
+
+ self.update_stats("", "POVRAY: Exporting data from Blender")
+ self._export(scene)
+ self.update_stats("", "POVRAY: Parsing File")
+
+ if not self._render():
+ self.update_stats("", "POVRAY: Not found")
+ return
+
+ r = scene.render
+
+ # compute resolution
+ x = int(r.resolution_x * r.resolution_percentage * 0.01)
+ y = int(r.resolution_y * r.resolution_percentage * 0.01)
+
+ # Wait for the file to be created
+ while not os.path.exists(self._temp_file_out):
+ if self.test_break():
+ try:
+ self._process.terminate()
+ except:
+ pass
+ break
+
+ if self._process.poll() != None:
+ self.update_stats("", "POVRAY: Failed")
+ break
+
+ time.sleep(self.DELAY)
+
+ if os.path.exists(self._temp_file_out):
+
+ self.update_stats("", "POVRAY: Rendering")
+
+ prev_size = -1
+
+ def update_image():
+ result = self.begin_result(0, 0, x, y)
+ lay = result.layers[0]
+ # possible the image wont load early on.
+ try:
+ lay.load_from_file(self._temp_file_out)
+ except:
+ pass
+ self.end_result(result)
+
+ # Update while povray renders
+ while True:
+
+ # test if povray exists
+ if self._process.poll() is not None:
+ update_image()
+ break
+
+ # user exit
+ if self.test_break():
+ try:
+ self._process.terminate()
+ except:
+ pass
+
+ break
+
+ # Would be nice to redirect the output
+ # stdout_value, stderr_value = self._process.communicate() # locks
+
+
+ # check if the file updated
+ new_size = os.path.getsize(self._temp_file_out)
+
+ if new_size != prev_size:
+ update_image()
+ prev_size = new_size
+
+ time.sleep(self.DELAY)
+
+ self._cleanup()
+
+