# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### bl_info = { "name": "Easy Lattice Object", "author": "Kursad Karatas", "version": (0, 6, 0), "blender": (2, 66, 0), "location": "View3D > Easy Lattice", "description": "Create a lattice for shape editing", "warning": "", "wiki_url": "https://wiki.blender.org/index.php/Easy_Lattice_Editing_Addon", "tracker_url": "https://bitbucket.org/kursad/blender_addons_easylattice/src", "category": "Mesh", } import bpy from mathutils import ( Matrix, Vector, ) from bpy.types import Operator from bpy.props import ( EnumProperty, FloatProperty, IntProperty, ) def createLattice(context, obj, props): # Create lattice and object lat = bpy.data.lattices.new('EasyLattice') ob = bpy.data.objects.new('EasyLattice', lat) # Take into consideration any selected vertices (default: all verticies) selectedVertices = createVertexGroup(obj) size, pos = findBBox(obj, selectedVertices) loc, rot = getTransformations(obj) # the position comes from the bbox ob.location = pos # the size from bbox * the incoming scale factor ob.scale = size * props[3] # the rotation comes from the combined obj world # matrix which was converted to euler pairs ob.rotation_euler = buildRot_World(obj) ob.show_in_front = True # Link object to scene scn = context.scene # Take care of the local view base = scn.objects.link(ob) scn.objects.active = ob v3d = None if context.space_data and context.space_data.type == 'VIEW_3D': v3d = context.space_data if v3d and v3d.local_view: base.layers_from_view(v3d) scn.update() # Set lattice attributes lat.points_u = props[0] lat.points_v = props[1] lat.points_w = props[2] lat.interpolation_type_u = props[4] lat.interpolation_type_v = props[4] lat.interpolation_type_w = props[4] lat.use_outside = False return ob def createVertexGroup(obj): vertices = obj.data.vertices selverts = [] if obj.mode == "EDIT": bpy.ops.object.editmode_toggle() group = obj.vertex_groups.new("easy_lattice_group") for vert in vertices: if vert.select is True: selverts.append(vert) group.add([vert.index], 1.0, "REPLACE") # Default: use all vertices if not selverts: for vert in vertices: selverts.append(vert) group.add([vert.index], 1.0, "REPLACE") return selverts def getTransformations(obj): rot = obj.rotation_euler loc = obj.location return [loc, rot] def findBBox(obj, selvertsarray): mat = buildTrnScl_WorldMat(obj) mat_world = obj.matrix_world minx, miny, minz = selvertsarray[0].co maxx, maxy, maxz = selvertsarray[0].co c = 1 for c in range(len(selvertsarray)): co = selvertsarray[c].co if co.x < minx: minx = co.x if co.y < miny: miny = co.y if co.z < minz: minz = co.z if co.x > maxx: maxx = co.x if co.y > maxy: maxy = co.y if co.z > maxz: maxz = co.z c += 1 minpoint = Vector((minx, miny, minz)) maxpoint = Vector((maxx, maxy, maxz)) # The middle position has to be calculated based on the real world matrix pos = ((minpoint + maxpoint) / 2) minpoint = mat * minpoint # Calculate only based on loc/scale maxpoint = mat * maxpoint # Calculate only based on loc/scale pos = mat_world * pos # the middle position has to be calculated based on the real world matrix size = maxpoint - minpoint size = Vector((max(0.1, abs(size.x)), max(0.1, abs(size.y)), max(0.1, abs(size.z)))) # Prevent zero size dimensions return [size, pos] def buildTrnSclMat(obj): # This function builds a local matrix that encodes translation # and scale and it leaves out the rotation matrix # The rotation is applied at obejct level if there is any mat_trans = Matrix.Translation(obj.location) mat_scale = Matrix.Scale(obj.scale[0], 4, (1, 0, 0)) mat_scale *= Matrix.Scale(obj.scale[1], 4, (0, 1, 0)) mat_scale *= Matrix.Scale(obj.scale[2], 4, (0, 0, 1)) mat_final = mat_trans * mat_scale return mat_final def buildTrnScl_WorldMat(obj): # This function builds a real world matrix that encodes translation # and scale and it leaves out the rotation matrix # The rotation is applied at obejct level if there is any loc, rot, scl = obj.matrix_world.decompose() mat_trans = Matrix.Translation(loc) mat_scale = Matrix.Scale(scl[0], 4, (1, 0, 0)) mat_scale *= Matrix.Scale(scl[1], 4, (0, 1, 0)) mat_scale *= Matrix.Scale(scl[2], 4, (0, 0, 1)) mat_final = mat_trans * mat_scale return mat_final # Feature use def buildRot_WorldMat(obj): # This function builds a real world matrix that encodes rotation # and it leaves out translation and scale matrices loc, rot, scl = obj.matrix_world.decompose() rot = rot.to_euler() mat_rot = Matrix.Rotation(rot[0], 4, 'X') mat_rot *= Matrix.Rotation(rot[1], 4, 'Z') mat_rot *= Matrix.Rotation(rot[2], 4, 'Y') return mat_rot def buildTrn_WorldMat(obj): # This function builds a real world matrix that encodes translation # and scale and it leaves out the rotation matrix # The rotation is applied at obejct level if there is any loc, rot, scl = obj.matrix_world.decompose() mat_trans = Matrix.Translation(loc) return mat_trans def buildScl_WorldMat(obj): # This function builds a real world matrix that encodes translation # and scale and it leaves out the rotation matrix # The rotation is applied at obejct level if there is any loc, rot, scl = obj.matrix_world.decompose() mat_scale = Matrix.Scale(scl[0], 4, (1, 0, 0)) mat_scale *= Matrix.Scale(scl[1], 4, (0, 1, 0)) mat_scale *= Matrix.Scale(scl[2], 4, (0, 0, 1)) return mat_scale def buildRot_World(obj): # This function builds a real world rotation values loc, rot, scl = obj.matrix_world.decompose() rot = rot.to_euler() return rot def main(context, lat_props): obj = context.object if obj.type == "MESH": lat = createLattice(context, obj, lat_props) modif = obj.modifiers.new("EasyLattice", "LATTICE") modif.object = lat modif.vertex_group = "easy_lattice_group" bpy.ops.object.select_all(action='DESELECT') bpy.ops.object.select_pattern(pattern=lat.name, extend=False) context.scene.objects.active = lat context.scene.update() return class EasyLattice(Operator): bl_idname = "object.easy_lattice" bl_label = "Easy Lattice Creator" bl_description = ("Create a Lattice modifier ready to edit\n" "Needs an existing Active Mesh Object\n") lat_u = IntProperty( name="Lattice u", description="Points in u direction", default=3 ) lat_v = IntProperty( name="Lattice v", description="Points in v direction", default=3 ) lat_w = IntProperty( name="Lattice w", description="Points in w direction", default=3 ) lat_scale_factor = FloatProperty( name="Lattice scale factor", description="Adjustment to the lattice scale", default=1, min=0.1, step=1, precision=2 ) lat_types = (('KEY_LINEAR', "Linear", "Linear Interpolation type"), ('KEY_CARDINAL', "Cardinal", "Cardinal Interpolation type"), ('KEY_CATMULL_ROM', "Catmull-Rom", "Catmull-Rom Interpolation type"), ('KEY_BSPLINE', "BSpline", "Key BSpline Interpolation Type") ) lat_type = EnumProperty( name="Lattice Type", description="Choose Lattice Type", items=lat_types, default='KEY_BSPLINE' ) @classmethod def poll(cls, context): obj = context.active_object return obj is not None and obj.type == "MESH" def draw(self, context): layout = self.layout col = layout.column(align=True) col.prop(self, "lat_u") col.prop(self, "lat_v") col.prop(self, "lat_w") layout.prop(self, "lat_scale_factor") layout.prop(self, "lat_type") def execute(self, context): lat_u = self.lat_u lat_v = self.lat_v lat_w = self.lat_w lat_scale_factor = self.lat_scale_factor # enum property no need to complicate things lat_type = self.lat_type # XXX, should use keyword args lat_props = [lat_u, lat_v, lat_w, lat_scale_factor, lat_type] try: main(context, lat_props) except Exception as ex: print("\n[Add Advanced Objects]\nOperator:object.easy_lattice\n{}\n".format(ex)) self.report( {'WARNING'}, "Easy Lattice Creator could not be completed (See Console for more info)" ) return {"CANCELLED"} return {"FINISHED"} def invoke(self, context, event): wm = context.window_manager return wm.invoke_props_dialog(self) def register(): bpy.utils.register_class(EasyLattice) def unregister(): bpy.utils.unregister_class(EasyLattice) if __name__ == "__main__": register()