# SPDX-License-Identifier: GPL-2.0-or-later import bpy import time import copy from mathutils import ( Euler, Matrix, Vector, ) from math import pi, sin, degrees, radians, atan2, copysign, cos, acos from math import floor from random import random, uniform, seed, choice, getstate, setstate, randint from collections import deque, OrderedDict tau = 2 * pi # Initialise the split error and axis vectors splitError = 0.0 zAxis = Vector((0, 0, 1)) yAxis = Vector((0, 1, 0)) xAxis = Vector((1, 0, 0)) # This class will contain a part of the tree which needs to be extended and the required tree parameters class stemSpline: def __init__(self, spline, curvature, curvatureV, attractUp, segments, maxSegs, segLength, childStems, stemRadStart, stemRadEnd, splineNum, ofst, pquat): self.spline = spline self.p = spline.bezier_points[-1] self.curv = curvature self.curvV = curvatureV self.vertAtt = attractUp self.seg = segments self.segMax = maxSegs self.segL = segLength self.children = childStems self.radS = stemRadStart self.radE = stemRadEnd self.splN = splineNum self.offsetLen = ofst self.patentQuat = pquat self.curvSignx = 1 self.curvSigny = 1 # This method determines the quaternion of the end of the spline def quat(self): if len(self.spline.bezier_points) == 1: return ((self.spline.bezier_points[-1].handle_right - self.spline.bezier_points[-1].co).normalized()).to_track_quat('Z', 'Y') else: return ((self.spline.bezier_points[-1].co - self.spline.bezier_points[-2].co).normalized()).to_track_quat('Z', 'Y') # Determine the declination def dec(self): tempVec = zAxis.copy() tempVec.rotate(self.quat()) return zAxis.angle(tempVec) # Update the end of the spline and increment the segment count def updateEnd(self): self.p = self.spline.bezier_points[-1] self.seg += 1 # This class contains the data for a point where a new branch will sprout class childPoint: def __init__(self, coords, quat, radiusPar, offset, sOfst, lengthPar, parBone): self.co = coords self.quat = quat self.radiusPar = radiusPar self.offset = offset self.stemOffset = sOfst self.lengthPar = lengthPar self.parBone = parBone # This function calculates the shape ratio as defined in the paper def shapeRatio(shape, ratio, pruneWidthPeak=0.0, prunePowerHigh=0.0, prunePowerLow=0.0, custom=None): if shape == 0: return 0.05 + 0.95 * ratio # 0.2 + 0.8 * ratio elif shape == 1: return 0.2 + 0.8 * sin(pi * ratio) elif shape == 2: return 0.2 + 0.8 * sin(0.5 * pi * ratio) elif shape == 3: return 1.0 elif shape == 4: return 0.5 + 0.5 * ratio elif shape == 5: if ratio <= 0.7: return 0.05 + 0.95 * ratio / 0.7 else: return 0.05 + 0.95 * (1.0 - ratio) / 0.3 elif shape == 6: return 1.0 - 0.8 * ratio elif shape == 7: if ratio <= 0.7: return 0.5 + 0.5 * ratio / 0.7 else: return 0.5 + 0.5 * (1.0 - ratio) / 0.3 elif shape == 8: r = 1 - ratio if r == 1: v = custom[3] elif r >= custom[2]: pos = (r - custom[2]) / (1 - custom[2]) # if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]): pos = pos * pos v = (pos * (custom[3] - custom[1])) + custom[1] else: pos = r / custom[2] # if (custom[0] >= custom[1] <= custom[3]) or (custom[0] <= custom[1] >= custom[3]): pos = 1 - (1 - pos) * (1 - pos) v = (pos * (custom[1] - custom[0])) + custom[0] return v elif shape == 9: if (ratio < (1 - pruneWidthPeak)) and (ratio > 0.0): return ((ratio / (1 - pruneWidthPeak))**prunePowerHigh) elif (ratio >= (1 - pruneWidthPeak)) and (ratio < 1.0): return (((1 - ratio) / pruneWidthPeak)**prunePowerLow) else: return 0.0 elif shape == 10: return 0.5 + 0.5 * (1 - ratio) # This function determines the actual number of splits at a given point using the global error def splits(n): global splitError nEff = round(n + splitError, 0) splitError -= (nEff - n) return int(nEff) def splits2(n): r = random() if r < n: return 1 else: return 0 def splits3(n): ni = int(n) nf = n - int(n) r = random() if r < nf: return ni + 1 else: return ni + 0 # Determine the declination from a given quaternion def declination(quat): tempVec = zAxis.copy() tempVec.rotate(quat) tempVec.normalize() return degrees(acos(tempVec.z)) # Determines the angle of upward rotation of a segment due to attractUp def curveUp(attractUp, quat, curveRes): tempVec = yAxis.copy() tempVec.rotate(quat) tempVec.normalize() dec = radians(declination(quat)) curveUpAng = attractUp * dec * abs(tempVec.z) / curveRes if (-dec + curveUpAng) < -pi: curveUpAng = -pi + dec if (dec - curveUpAng) < 0: curveUpAng = dec return curveUpAng # Evaluate a bezier curve for the parameter 0<=t<=1 along its length def evalBez(p1, h1, h2, p2, t): return ((1 - t)**3) * p1 + (3 * t * (1 - t)**2) * h1 + (3 * (t**2) * (1 - t)) * h2 + (t**3) * p2 # Evaluate the unit tangent on a bezier curve for t def evalBezTan(p1, h1, h2, p2, t): return ( (-3 * (1 - t)**2) * p1 + (-6 * t * (1 - t) + 3 * (1 - t)**2) * h1 + (-3 * (t**2) + 6 * t * (1 - t)) * h2 + (3 * t**2) * p2 ).normalized() # Determine the range of t values along a splines length where child stems are formed def findChildPoints(stemList, numChild): numPoints = sum([len(n.spline.bezier_points) for n in stemList]) numSplines = len(stemList) numSegs = numPoints - numSplines numPerSeg = numChild / numSegs numMain = round(numPerSeg * stemList[0].segMax, 0) return [(a + 1) / (numMain) for a in range(int(numMain))] def findChildPoints2(stemList, numChild): return [(a + 1) / (numChild) for a in range(int(numChild))] # Find the coordinates, quaternion and radius for each t on the stem def interpStem1(stem, tVals, lPar, parRad): points = stem.spline.bezier_points numPoints = len(points) checkVal = (stem.segMax - (numPoints - 1)) / stem.segMax # Loop through all the parametric values to be determined tempList = deque() for t in tVals: if t == 1.0: index = numPoints - 2 coord = points[-1].co quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y') radius = points[-1].radius tempList.append( childPoint(coord, quat, (parRad, radius), t, lPar, 'bone' + (str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0'))) ) elif (t >= checkVal) and (t < 1.0): scaledT = (t - checkVal) / ((1 - checkVal) + .0001) length = (numPoints - 1) * scaledT index = int(length) tTemp = length - index coord = evalBez( points[index].co, points[index].handle_right, points[index + 1].handle_left, points[index + 1].co, tTemp ) quat = ( evalBezTan( points[index].co, points[index].handle_right, points[index + 1].handle_left, points[index + 1].co, tTemp) ).to_track_quat('Z', 'Y') # Not sure if this is the parent radius at the child point or parent start radius radius = (1 - tTemp) * points[index].radius + tTemp * points[index + 1].radius tempList.append( childPoint( coord, quat, (parRad, radius), t, lPar, 'bone' + (str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0'))) ) return tempList def interpStem(stem, tVals, lPar, parRad, maxOffset, baseSize): points = stem.spline.bezier_points numSegs = len(points) - 1 stemLen = stem.segL * numSegs checkBottom = stem.offsetLen / maxOffset checkTop = checkBottom + (stemLen / maxOffset) # Loop through all the parametric values to be determined tempList = deque() for t in tVals: if (t >= checkBottom) and (t <= checkTop) and (t < 1.0): scaledT = (t - checkBottom) / (checkTop - checkBottom) ofst = ((t - baseSize) / (checkTop - baseSize)) * (1 - baseSize) + baseSize length = numSegs * scaledT index = int(length) tTemp = length - index coord = evalBez( points[index].co, points[index].handle_right, points[index + 1].handle_left, points[index + 1].co, tTemp ) quat = ( evalBezTan( points[index].co, points[index].handle_right, points[index + 1].handle_left, points[index + 1].co, tTemp ) ).to_track_quat('Z', 'Y') # Not sure if this is the parent radius at the child point or parent start radius radius = (1 - tTemp) * points[index].radius + tTemp * points[index + 1].radius tempList.append( childPoint( coord, quat, (parRad, radius), t, ofst, lPar, 'bone' + (str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0'))) ) # add stem at tip index = numSegs - 1 coord = points[-1].co quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z', 'Y') radius = points[-1].radius tempList.append( childPoint( coord, quat, (parRad, radius), 1, 1, lPar, 'bone' + (str(stem.splN).rjust(3, '0')) + '.' + (str(index).rjust(3, '0')) ) ) return tempList # round down bone number def roundBone(bone, step): bone_i = bone[:-3] bone_n = int(bone[-3:]) bone_n = int(bone_n / step) * step return bone_i + str(bone_n).rjust(3, '0') # Convert a list of degrees to radians def toRad(list): return [radians(a) for a in list] def anglemean(a1, a2, fac): x1 = sin(a1) y1 = cos(a1) x2 = sin(a2) y2 = cos(a2) x = x1 + (x2 - x1) * fac y = y1 + (y2 - y1) * fac return atan2(x, y) # This is the function which extends (or grows) a given stem. def growSpline(n, stem, numSplit, splitAng, splitAngV, splineList, hType, splineToBone, closeTip, kp, splitHeight, outAtt, stemsegL, lenVar, taperCrown, boneStep, rotate, rotateV): # curv at base sCurv = stem.curv if (n == 0) and (kp <= splitHeight): sCurv = 0.0 # curveangle = sCurv + (uniform(-stem.curvV, stem.curvV) * kp) # curveVar = uniform(-stem.curvV, stem.curvV) * kp curveangle = sCurv + (uniform(0, stem.curvV) * kp * stem.curvSignx) curveVar = uniform(0, stem.curvV) * kp * stem.curvSigny stem.curvSignx *= -1 stem.curvSigny *= -1 curveVarMat = Matrix.Rotation(curveVar, 3, 'Y') # First find the current direction of the stem dir = stem.quat() if n == 0: adir = zAxis.copy() adir.rotate(dir) ry = atan2(adir[0], adir[2]) adir.rotate(Euler((0, -ry, 0))) rx = atan2(adir[1], adir[2]) dir = Euler((-rx, ry, 0), 'XYZ') # length taperCrown if n == 0: dec = declination(dir) / 180 dec = dec ** 2 tf = 1 - (dec * taperCrown * 30) tf = max(.1, tf) else: tf = 1.0 # outward attraction if (n > 0) and (kp > 0) and (outAtt > 0): p = stem.p.co.copy() d = atan2(p[0], -p[1]) + tau edir = dir.to_euler('XYZ', Euler((0, 0, d), 'XYZ')) d = anglemean(edir[2], d, (kp * outAtt)) dirv = Euler((edir[0], edir[1], d), 'XYZ') dir = dirv.to_quaternion() """ # parent weight parWeight = kp * degrees(stem.curvV) * pi parWeight = parWeight * kp parWeight = kp if (n > 1) and (parWeight != 0): d1 = zAxis.copy() d2 = zAxis.copy() d1.rotate(dir) d2.rotate(stem.patentQuat) x = d1[0] + ((d2[0] - d1[0]) * parWeight) y = d1[1] + ((d2[1] - d1[1]) * parWeight) z = d1[2] + ((d2[2] - d1[2]) * parWeight) d3 = Vector((x, y, z)) dir = d3.to_track_quat('Z', 'Y') """ # If the stem splits, we need to add new splines etc if numSplit > 0: # Get the curve data cuData = stem.spline.id_data.name cu = bpy.data.curves[cuData] # calc split angles angle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV)) if n > 0: # make branches flatter angle *= max(1 - declination(dir) / 90, 0) * .67 + .33 spreadangle = choice([-1, 1]) * (splitAng + uniform(-splitAngV, splitAngV)) # branchRotMat = Matrix.Rotation(radians(uniform(0, 360)), 3, 'Z') if not hasattr(stem, 'rLast'): stem.rLast = radians(uniform(0, 360)) br = rotate[0] + uniform(-rotateV[0], rotateV[0]) branchRot = stem.rLast + br branchRotMat = Matrix.Rotation(branchRot, 3, 'Z') stem.rLast = branchRot # Now for each split add the new spline and adjust the growth direction for i in range(numSplit): # find split scale lenV = uniform(1 - lenVar, 1 + lenVar) bScale = min(lenV * tf, 1) newSpline = cu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] (newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (stem.p.co, 'VECTOR', 'VECTOR') newPoint.radius = ( stem.radS * (1 - stem.seg / stem.segMax) + stem.radE * (stem.seg / stem.segMax) ) * bScale # Here we make the new "sprouting" stems diverge from the current direction divRotMat = Matrix.Rotation(angle + curveangle, 3, 'X') dirVec = zAxis.copy() dirVec.rotate(divRotMat) # horizontal curvature variation dirVec.rotate(curveVarMat) if n == 0: # Special case for trunk splits dirVec.rotate(branchRotMat) ang = pi - ((tau) / (numSplit + 1)) * (i + 1) dirVec.rotate(Matrix.Rotation(ang, 3, 'Z')) # Spread the stem out in a random fashion spreadMat = Matrix.Rotation(spreadangle, 3, 'Y') if n != 0: # Special case for trunk splits dirVec.rotate(spreadMat) dirVec.rotate(dir) # Introduce upward curvature upRotAxis = xAxis.copy() upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y')) curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax) upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis) dirVec.rotate(upRotMat) # Make the growth vec the length of a stem segment dirVec.normalize() # split length variation stemL = stemsegL * lenV dirVec *= stemL * tf ofst = stem.offsetLen + (stem.segL * (len(stem.spline.bezier_points) - 1)) # dirVec *= stem.segL # Get the end point position end_co = stem.p.co.copy() # Add the new point and adjust its coords, handles and radius newSpline.bezier_points.add(1) newPoint = newSpline.bezier_points[-1] (newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType) newPoint.radius = ( stem.radS * (1 - (stem.seg + 1) / stem.segMax) + stem.radE * ((stem.seg + 1) / stem.segMax) ) * bScale if (stem.seg == stem.segMax - 1) and closeTip: newPoint.radius = 0.0 # If this isn't the last point on a stem, then we need to add it # to the list of stems to continue growing # print(stem.seg != stem.segMax, stem.seg, stem.segMax) # if stem.seg != stem.segMax: # if probs not necessary nstem = stemSpline( newSpline, stem.curv, stem.curvV, stem.vertAtt, stem.seg + 1, stem.segMax, stemL, stem.children, stem.radS * bScale, stem.radE * bScale, len(cu.splines) - 1, ofst, stem.quat() ) nstem.splitlast = 1 # numSplit # keep track of numSplit for next stem nstem.rLast = branchRot + pi splineList.append(nstem) bone = 'bone' + (str(stem.splN)).rjust(3, '0') + '.' + \ (str(len(stem.spline.bezier_points) - 2)).rjust(3, '0') bone = roundBone(bone, boneStep[n]) splineToBone.append((bone, False, True, len(stem.spline.bezier_points) - 2)) # The original spline also needs to keep growing so adjust its direction too divRotMat = Matrix.Rotation(-angle + curveangle, 3, 'X') dirVec = zAxis.copy() dirVec.rotate(divRotMat) # horizontal curvature variation dirVec.rotate(curveVarMat) if n == 0: # Special case for trunk splits dirVec.rotate(branchRotMat) # spread spreadMat = Matrix.Rotation(-spreadangle, 3, 'Y') if n != 0: # Special case for trunk splits dirVec.rotate(spreadMat) dirVec.rotate(dir) stem.splitlast = 1 # numSplit #keep track of numSplit for next stem else: # If there are no splits then generate the growth direction without accounting for spreading of stems dirVec = zAxis.copy() divRotMat = Matrix.Rotation(curveangle, 3, 'X') dirVec.rotate(divRotMat) # horizontal curvature variation dirVec.rotate(curveVarMat) dirVec.rotate(dir) stem.splitlast = 0 # numSplit #keep track of numSplit for next stem # Introduce upward curvature upRotAxis = xAxis.copy() upRotAxis.rotate(dirVec.to_track_quat('Z', 'Y')) curveUpAng = curveUp(stem.vertAtt, dirVec.to_track_quat('Z', 'Y'), stem.segMax) upRotMat = Matrix.Rotation(-curveUpAng, 3, upRotAxis) dirVec.rotate(upRotMat) dirVec.normalize() dirVec *= stem.segL * tf # Get the end point position end_co = stem.p.co.copy() stem.spline.bezier_points.add(1) newPoint = stem.spline.bezier_points[-1] (newPoint.co, newPoint.handle_left_type, newPoint.handle_right_type) = (end_co + dirVec, hType, hType) newPoint.radius = stem.radS * (1 - (stem.seg + 1) / stem.segMax) + \ stem.radE * ((stem.seg + 1) / stem.segMax) if (stem.seg == stem.segMax - 1) and closeTip: newPoint.radius = 0.0 # There are some cases where a point cannot have handles as VECTOR straight away, set these now if len(stem.spline.bezier_points) == 2: tempPoint = stem.spline.bezier_points[0] (tempPoint.handle_left_type, tempPoint.handle_right_type) = ('VECTOR', 'VECTOR') # Update the last point in the spline to be the newly added one stem.updateEnd() # return splineList def genLeafMesh(leafScale, leafScaleX, leafScaleT, leafScaleV, loc, quat, offset, index, downAngle, downAngleV, rotate, rotateV, oldRot, bend, leaves, leafShape, leafangle, horzLeaves): if leafShape == 'hex': verts = [ Vector((0, 0, 0)), Vector((0.5, 0, 1 / 3)), Vector((0.5, 0, 2 / 3)), Vector((0, 0, 1)), Vector((-0.5, 0, 2 / 3)), Vector((-0.5, 0, 1 / 3)) ] edges = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 0], [0, 3]] faces = [[0, 1, 2, 3], [0, 3, 4, 5]] elif leafShape == 'rect': # verts = [Vector((1, 0, 0)), Vector((1, 0, 1)), Vector((-1, 0, 1)), Vector((-1, 0, 0))] verts = [Vector((.5, 0, 0)), Vector((.5, 0, 1)), Vector((-.5, 0, 1)), Vector((-.5, 0, 0))] edges = [[0, 1], [1, 2], [2, 3], [3, 0]] faces = [[0, 1, 2, 3]] elif leafShape == 'dFace': verts = [Vector((.5, .5, 0)), Vector((.5, -.5, 0)), Vector((-.5, -.5, 0)), Vector((-.5, .5, 0))] edges = [[0, 1], [1, 2], [2, 3], [3, 0]] faces = [[0, 3, 2, 1]] elif leafShape == 'dVert': verts = [Vector((0, 0, 1))] edges = [] faces = [] vertsList = [] facesList = [] normal = Vector((0, 0, 1)) if leaves < 0: rotMat = Matrix.Rotation(oldRot, 3, 'Y') else: rotMat = Matrix.Rotation(oldRot, 3, 'Z') # If the -ve flag for rotate is used we need to find which side of the stem # the last child point was and then grow in the opposite direction if rotate < 0.0: oldRot = -copysign(rotate + uniform(-rotateV, rotateV), oldRot) else: # If the special -ve flag for leaves is used we need a different rotation of the leaf geometry if leaves == -1: # oldRot = 0 rotMat = Matrix.Rotation(0, 3, 'Y') elif leaves < -1: oldRot += rotate / (-leaves - 1) else: oldRot += rotate + uniform(-rotateV, rotateV) """ if leaves < 0: rotMat = Matrix.Rotation(oldRot, 3, 'Y') else: rotMat = Matrix.Rotation(oldRot, 3, 'Z') """ if leaves >= 0: # downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV, downAngleV), 3, 'X') if downAngleV > 0.0: downV = -downAngleV * offset else: downV = uniform(-downAngleV, downAngleV) downRotMat = Matrix.Rotation(downAngle + downV, 3, 'X') # leaf scale variation if (leaves < -1) and (rotate != 0): f = 1 - abs((oldRot - (rotate / (-leaves - 1))) / (rotate / 2)) else: f = offset if leafScaleT < 0: leafScale = leafScale * (1 - (1 - f) * -leafScaleT) else: leafScale = leafScale * (1 - f * leafScaleT) leafScale = leafScale * uniform(1 - leafScaleV, 1 + leafScaleV) if leafShape == 'dFace': leafScale = leafScale * .1 # If the bending of the leaves is used we need to rotate them differently if (bend != 0.0) and (leaves >= 0): normal = yAxis.copy() orientationVec = zAxis.copy() normal.rotate(quat) orientationVec.rotate(quat) thetaPos = atan2(loc.y, loc.x) thetaBend = thetaPos - atan2(normal.y, normal.x) rotateZ = Matrix.Rotation(bend * thetaBend, 3, 'Z') normal.rotate(rotateZ) orientationVec.rotate(rotateZ) phiBend = atan2((normal.xy).length, normal.z) orientation = atan2(orientationVec.y, orientationVec.x) rotateZOrien = Matrix.Rotation(orientation, 3, 'X') rotateX = Matrix.Rotation(bend * phiBend, 3, 'Z') rotateZOrien2 = Matrix.Rotation(-orientation, 3, 'X') # For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh for v in verts: v.z *= leafScale v.y *= leafScale v.x *= leafScaleX * leafScale v.rotate(Euler((0, 0, radians(180)))) # leafangle v.rotate(Matrix.Rotation(radians(-leafangle), 3, 'X')) if rotate < 0: v.rotate(Euler((0, 0, radians(90)))) if oldRot < 0: v.rotate(Euler((0, 0, radians(180)))) if (leaves > 0) and (rotate > 0) and horzLeaves: nRotMat = Matrix.Rotation(-oldRot + rotate, 3, 'Z') v.rotate(nRotMat) if leaves > 0: v.rotate(downRotMat) v.rotate(rotMat) v.rotate(quat) if (bend != 0.0) and (leaves > 0): # Correct the rotation v.rotate(rotateZ) v.rotate(rotateZOrien) v.rotate(rotateX) v.rotate(rotateZOrien2) if leafShape == 'dVert': normal = verts[0] normal.normalize() v = loc vertsList.append([v.x, v.y, v.z]) else: for v in verts: v += loc vertsList.append([v.x, v.y, v.z]) for f in faces: facesList.append([f[0] + index, f[1] + index, f[2] + index, f[3] + index]) return vertsList, facesList, normal, oldRot def create_armature(armAnim, leafP, cu, frameRate, leafMesh, leafObj, leafVertSize, leaves, levelCount, splineToBone, treeOb, wind, gust, gustF, af1, af2, af3, leafAnim, loopFrames, previewArm, armLevels, makeMesh, boneStep): arm = bpy.data.armatures.new('tree') armOb = bpy.data.objects.new('treeArm', arm) bpy.context.scene.collection.objects.link(armOb) # Create a new action to store all animation newAction = bpy.data.actions.new(name='windAction') armOb.animation_data_create() armOb.animation_data.action = newAction arm.display_type = 'STICK' # Add the armature modifier to the curve armMod = treeOb.modifiers.new('windSway', 'ARMATURE') if previewArm: armMod.show_viewport = False arm.display_type = 'WIRE' treeOb.hide_viewport = True armMod.use_apply_on_spline = True armMod.object = armOb armMod.use_bone_envelopes = True armMod.use_vertex_groups = False # curves don't have vertex groups (yet) # If there are leaves then they need a modifier if leaves: armMod = leafObj.modifiers.new('windSway', 'ARMATURE') armMod.object = armOb armMod.use_bone_envelopes = False armMod.use_vertex_groups = True # Make sure all objects are deselected (may not be required?) for ob in bpy.context.view_layer.objects: ob.select_set(state=False) fps = bpy.context.scene.render.fps animSpeed = (24 / fps) * frameRate # Set the armature as active and go to edit mode to add bones bpy.context.view_layer.objects.active = armOb bpy.ops.object.mode_set(mode='EDIT') # For all the splines in the curve we need to add bones at each bezier point for i, parBone in enumerate(splineToBone): if (i < levelCount[armLevels]) or (armLevels == -1) or (not makeMesh): s = cu.splines[i] b = None # Get some data about the spline like length and number of points numPoints = len(s.bezier_points) - 1 # find branching level level = 0 for l, c in enumerate(levelCount): if i < c: level = l break level = min(level, 3) step = boneStep[level] # Calculate things for animation if armAnim: splineL = numPoints * ((s.bezier_points[0].co - s.bezier_points[1].co).length) # Set the random phase difference of the animation bxOffset = uniform(0, tau) byOffset = uniform(0, tau) # Set the phase multiplier for the spline # bMult_r = (s.bezier_points[0].radius / max(splineL, 1e-6)) * (1 / 15) * (1 / frameRate) # This shouldn't have to be in degrees but it looks much better in animation # bMult = degrees(bMult_r) bMult = (1 / max(splineL ** .5, 1e-6)) * (1 / 4) # print((1 / bMult) * tau) #print wavelength in frames windFreq1 = bMult * animSpeed windFreq2 = 0.7 * bMult * animSpeed if loopFrames != 0: bMult_l = 1 / (loopFrames / tau) fRatio = max(1, round(windFreq1 / bMult_l)) fgRatio = max(1, round(windFreq2 / bMult_l)) windFreq1 = fRatio * bMult_l windFreq2 = fgRatio * bMult_l # For all the points in the curve (less the last) add a bone and name it by the spline it will affect nx = 0 for n in range(0, numPoints, step): oldBone = b boneName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0') b = arm.edit_bones.new(boneName) b.head = s.bezier_points[n].co nx += step nx = min(nx, numPoints) b.tail = s.bezier_points[nx].co b.head_radius = s.bezier_points[n].radius b.tail_radius = s.bezier_points[n + 1].radius b.envelope_distance = 0.001 """ # If there are leaves then we need a new vertex group so they will attach to the bone if not leafAnim: if (len(levelCount) > 1) and (i >= levelCount[-2]) and leafObj: leafObj.vertex_groups.new(name=boneName) elif (len(levelCount) == 1) and leafObj: leafObj.vertex_groups.new(name=boneName) """ # If this is first point of the spline then it must be parented to the level above it if n == 0: if parBone: b.parent = arm.edit_bones[parBone] # Otherwise, we need to attach it to the previous bone in the spline else: b.parent = oldBone b.use_connect = True # If there isn't a previous bone then it shouldn't be attached if not oldBone: b.use_connect = False # Add the animation to the armature if required if armAnim: # Define all the required parameters of the wind sway by the dimension of the spline # a0 = 4 * splineL * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6) a0 = 2 * (splineL / numPoints) * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6) a0 = a0 * min(step, numPoints) # a0 = (splineL / numPoints) / max(s.bezier_points[n].radius, 1e-6) a1 = (wind / 50) * a0 a2 = a1 * .65 # (windGust / 50) * a0 + a1 / 2 p = s.bezier_points[nx].co - s.bezier_points[n].co p.normalize() ag = (wind * gust / 50) * a0 a3 = -p[0] * ag a4 = p[2] * ag a1 = radians(a1) a2 = radians(a2) a3 = radians(a3) a4 = radians(a4) # wind bending if loopFrames == 0: swayFreq = gustF * (tau / fps) * frameRate # animSpeed # .075 # 0.02 else: swayFreq = 1 / (loopFrames / tau) # Prevent tree base from rotating if (boneName == "bone000.000") or (boneName == "bone000.001"): a1 = 0 a2 = 0 a3 = 0 a4 = 0 # Add new fcurves for each sway as well as the modifiers swayX = armOb.animation_data.action.fcurves.new( 'pose.bones["' + boneName + '"].rotation_euler', index=0 ) swayY = armOb.animation_data.action.fcurves.new( 'pose.bones["' + boneName + '"].rotation_euler', index=2 ) swayXMod1 = swayX.modifiers.new(type='FNGENERATOR') swayXMod2 = swayX.modifiers.new(type='FNGENERATOR') swayYMod1 = swayY.modifiers.new(type='FNGENERATOR') swayYMod2 = swayY.modifiers.new(type='FNGENERATOR') # Set the parameters for each modifier swayXMod1.amplitude = a1 swayXMod1.phase_offset = bxOffset swayXMod1.phase_multiplier = windFreq1 swayXMod2.amplitude = a2 swayXMod2.phase_offset = 0.7 * bxOffset swayXMod2.phase_multiplier = windFreq2 swayXMod2.use_additive = True swayYMod1.amplitude = a1 swayYMod1.phase_offset = byOffset swayYMod1.phase_multiplier = windFreq1 swayYMod2.amplitude = a2 swayYMod2.phase_offset = 0.7 * byOffset swayYMod2.phase_multiplier = windFreq2 swayYMod2.use_additive = True # wind bending swayYMod3 = swayY.modifiers.new(type='FNGENERATOR') swayYMod3.amplitude = a3 swayYMod3.phase_multiplier = swayFreq swayYMod3.value_offset = .6 * a3 swayYMod3.use_additive = True swayXMod3 = swayX.modifiers.new(type='FNGENERATOR') swayXMod3.amplitude = a4 swayXMod3.phase_multiplier = swayFreq swayXMod3.value_offset = .6 * a4 swayXMod3.use_additive = True if leaves: bonelist = [b.name for b in arm.edit_bones] vertexGroups = OrderedDict() for i, cp in enumerate(leafP): # find leafs parent bone leafParent = roundBone(cp.parBone, boneStep[armLevels]) idx = int(leafParent[4:-4]) while leafParent not in bonelist: # find parent bone of parent bone leafParent = splineToBone[idx] idx = int(leafParent[4:-4]) if leafAnim: bname = "leaf" + str(i) b = arm.edit_bones.new(bname) b.head = cp.co b.tail = cp.co + Vector((0, 0, .02)) b.envelope_distance = 0.0 b.parent = arm.edit_bones[leafParent] vertexGroups[bname] = [ v.index for v in leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)] ] if armAnim: # Define all the required parameters of the wind sway by the dimension of the spline a1 = wind * .25 a1 *= af1 bMult = (1 / animSpeed) * 6 bMult *= 1 / max(af2, .001) ofstRand = af3 bxOffset = uniform(-ofstRand, ofstRand) byOffset = uniform(-ofstRand, ofstRand) # Add new fcurves for each sway as well as the modifiers swayX = armOb.animation_data.action.fcurves.new( 'pose.bones["' + bname + '"].rotation_euler', index=0 ) swayY = armOb.animation_data.action.fcurves.new( 'pose.bones["' + bname + '"].rotation_euler', index=2 ) # Add keyframe so noise works swayX.keyframe_points.add(1) swayY.keyframe_points.add(1) swayX.keyframe_points[0].co = (0, 0) swayY.keyframe_points[0].co = (0, 0) # Add noise modifiers swayXMod = swayX.modifiers.new(type='NOISE') swayYMod = swayY.modifiers.new(type='NOISE') if loopFrames != 0: swayXMod.use_restricted_range = True swayXMod.frame_end = loopFrames swayXMod.blend_in = 4 swayXMod.blend_out = 4 swayYMod.use_restricted_range = True swayYMod.frame_end = loopFrames swayYMod.blend_in = 4 swayYMod.blend_out = 4 swayXMod.scale = bMult swayXMod.strength = a1 swayXMod.offset = bxOffset swayYMod.scale = bMult swayYMod.strength = a1 swayYMod.offset = byOffset else: if leafParent not in vertexGroups: vertexGroups[leafParent] = [] vertexGroups[leafParent].extend( [v.index for v in leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]] ) for group in vertexGroups: leafObj.vertex_groups.new(name=group) leafObj.vertex_groups[group].add(vertexGroups[group], 1.0, 'ADD') # Now we need the rotation mode to be 'XYZ' to ensure correct rotation bpy.ops.object.mode_set(mode='OBJECT') for p in armOb.pose.bones: p.rotation_mode = 'XYZ' treeOb.parent = armOb def kickstart_trunk(addstem, levels, leaves, branches, cu, curve, curveRes, curveV, attractUp, length, lengthV, ratio, ratioPower, resU, scale0, scaleV0, scaleVal, taper, minRadius, rootFlare): newSpline = cu.splines.new('BEZIER') cu.resolution_u = resU newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0, 0, 0)) newPoint.handle_right = Vector((0, 0, 1)) newPoint.handle_left = Vector((0, 0, -1)) # (newPoint.handle_right_type, newPoint.handle_left_type) = ('VECTOR', 'VECTOR') branchL = scaleVal * length[0] curveVal = curve[0] / curveRes[0] # curveVal = curveVal * (branchL / scaleVal) if levels == 1: childStems = leaves else: childStems = branches[1] startRad = scaleVal * ratio * scale0 * uniform(1 - scaleV0, 1 + scaleV0) # * (scale0 + uniform(-scaleV0, scaleV0)) endRad = (startRad * (1 - taper[0])) ** ratioPower startRad = max(startRad, minRadius) endRad = max(endRad, minRadius) newPoint.radius = startRad * rootFlare addstem( stemSpline( newSpline, curveVal, curveV[0] / curveRes[0], attractUp[0], 0, curveRes[0], branchL / curveRes[0], childStems, startRad, endRad, 0, 0, None ) ) def fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack, curveRes, curveV, attractUp, downAngle, downAngleV, leafDist, leaves, length, lengthV, levels, n, ratioPower, resU, rotate, rotateV, scaleVal, shape, storeN, taper, shapeS, minRadius, radiusTweak, customShape, rMode, segSplits, useOldDownAngle, useParentAngle, boneStep): # prevent baseSize from going to 1.0 baseSize = min(0.999, baseSize) # Store the old rotation to allow new stems to be rotated away from the previous one. oldRotate = 0 # use fancy child point selection / rotation if (n == 1) and (rMode != "original"): childP_T = OrderedDict() childP_L = [] for p in childP: if p.offset == 1: childP_L.append(p) else: if p.offset not in childP_T: childP_T[p.offset] = [p] else: childP_T[p.offset].append(p) childP_T = [childP_T[k] for k in sorted(childP_T.keys())] childP = [] rot_a = [] for p in childP_T: if rMode == "rotate": if rotate[n] < 0.0: oldRotate = -copysign(rotate[n], oldRotate) else: oldRotate += rotate[n] bRotate = oldRotate + uniform(-rotateV[n], rotateV[n]) # choose start point whose angle is closest to the rotate angle a1 = bRotate % tau a_diff = [] for a in p: a2 = atan2(a.co[0], -a.co[1]) d = min((a1 - a2 + tau) % tau, (a2 - a1 + tau) % tau) a_diff.append(d) idx = a_diff.index(min(a_diff)) # find actual rotate angle from branch location br = p[idx] b = br.co vx = sin(bRotate) vy = cos(bRotate) v = Vector((vx, vy)) bD = ((b[0] * b[0] + b[1] * b[1]) ** .5) bL = br.lengthPar * length[1] * shapeRatio(shape, (1 - br.offset) / (1 - baseSize), custom=customShape) # account for down angle if downAngleV[1] > 0: downA = downAngle[n] + (-downAngleV[n] * (1 - (1 - br.offset) / (1 - baseSize)) ** 2) else: downA = downAngle[n] if downA < (.5 * pi): downA = sin(downA) ** 2 bL *= downA bL *= 0.33 v *= (bD + bL) bv = Vector((b[0], -b[1])) cv = v - bv a = atan2(cv[0], cv[1]) # rot_a.append(a) """ # add fill points at top #experimental fillHeight = 1 - degrees(rotateV[3]) # 0.8 if fillHeight < 1: w = (p[0].offset - fillHeight) / (1- fillHeight) prob_b = random() < w else: prob_b = False if (p[0].offset > fillHeight): # prob_b and (len(p) > 1): ##(p[0].offset > fillHeight) and childP.append(p[randint(0, len(p)-1)]) rot_a.append(bRotate)# + pi) """ childP.append(p[idx]) rot_a.append(a) else: idx = randint(0, len(p) - 1) childP.append(p[idx]) # childP.append(p[idx]) childP.extend(childP_L) rot_a.extend([0] * len(childP_L)) oldRotate = 0 for i, p in enumerate(childP): # Add a spline and set the coordinate of the first point. newSpline = cu.splines.new('BEZIER') cu.resolution_u = resU newPoint = newSpline.bezier_points[-1] newPoint.co = p.co tempPos = zAxis.copy() # If the -ve flag for downAngle is used we need a special formula to find it if useOldDownAngle: if downAngleV[n] < 0.0: downV = downAngleV[n] * (1 - 2 * (.2 + .8 * ((1 - p.offset) / (1 - baseSize)))) # Otherwise just find a random value else: downV = uniform(-downAngleV[n], downAngleV[n]) else: if downAngleV[n] < 0.0: downV = uniform(-downAngleV[n], downAngleV[n]) else: downV = -downAngleV[n] * (1 - (1 - p.offset) / (1 - baseSize)) ** 2 # (110, 80) = (60, -50) if p.offset == 1: downRotMat = Matrix.Rotation(0, 3, 'X') else: downRotMat = Matrix.Rotation(downAngle[n] + downV, 3, 'X') # If the -ve flag for rotate is used we need to find which side of the stem # the last child point was and then grow in the opposite direction if rotate[n] < 0.0: oldRotate = -copysign(rotate[n], oldRotate) # Otherwise just generate a random number in the specified range else: oldRotate += rotate[n] bRotate = oldRotate + uniform(-rotateV[n], rotateV[n]) if (n == 1) and (rMode == "rotate"): bRotate = rot_a[i] rotMat = Matrix.Rotation(bRotate, 3, 'Z') # Rotate the direction of growth and set the new point coordinates tempPos.rotate(downRotMat) tempPos.rotate(rotMat) # use quat angle if (rMode == "rotate") and (n == 1) and (p.offset != 1): if useParentAngle: edir = p.quat.to_euler('XYZ', Euler((0, 0, bRotate), 'XYZ')) edir[0] = 0 edir[1] = 0 edir[2] = -edir[2] tempPos.rotate(edir) dec = declination(p.quat) tempPos.rotate(Matrix.Rotation(radians(dec), 3, 'X')) edir[2] = -edir[2] tempPos.rotate(edir) else: tempPos.rotate(p.quat) newPoint.handle_right = p.co + tempPos # Make length variation inversely proportional to segSplits # lenV = (1 - min(segSplits[n], 1)) * lengthV[n] # Find branch length and the number of child stems. maxbL = scaleVal for l in length[:n + 1]: maxbL *= l lMax = length[n] # * uniform(1 - lenV, 1 + lenV) if n == 1: lShape = shapeRatio(shape, (1 - p.stemOffset) / (1 - baseSize), custom=customShape) else: lShape = shapeRatio(shapeS, (1 - p.stemOffset) / (1 - baseSize)) branchL = p.lengthPar * lMax * lShape childStems = branches[min(3, n + 1)] * (0.1 + 0.9 * (branchL / maxbL)) # If this is the last level before leaves then we need to generate the child points differently if (storeN == levels - 1): if leaves < 0: childStems = False else: childStems = leaves * (0.1 + 0.9 * (branchL / maxbL)) * shapeRatio(leafDist, (1 - p.offset)) # print("n=%d, levels=%d, n'=%d, childStems=%s"%(n, levels, storeN, childStems)) # Determine the starting and ending radii of the stem using the tapering of the stem startRad = min((p.radiusPar[0] * ((branchL / p.lengthPar) ** ratioPower)) * radiusTweak[n], p.radiusPar[1]) if p.offset == 1: startRad = p.radiusPar[1] endRad = (startRad * (1 - taper[n])) ** ratioPower startRad = max(startRad, minRadius) endRad = max(endRad, minRadius) newPoint.radius = startRad # stem curvature curveVal = curve[n] / curveRes[n] curveVar = curveV[n] / curveRes[n] # curveVal = curveVal * (branchL / scaleVal) # Add the new stem to list of stems to grow and define which bone it will be parented to addstem( stemSpline( newSpline, curveVal, curveVar, attractUp[n], 0, curveRes[n], branchL / curveRes[n], childStems, startRad, endRad, len(cu.splines) - 1, 0, p.quat ) ) bone = roundBone(p.parBone, boneStep[n - 1]) if p.offset == 1: isend = True else: isend = False addsplinetobone((bone, isend)) def perform_pruning(baseSize, baseSplits, childP, cu, currentMax, currentMin, currentScale, curve, curveBack, curveRes, deleteSpline, forceSprout, handles, n, oldMax, originalSplineToBone, originalCo, originalCurv, originalCurvV, originalHandleL, originalHandleR, originalLength, originalSeg, prune, prunePowerHigh, prunePowerLow, pruneRatio, pruneWidth, pruneBase, pruneWidthPeak, randState, ratio, scaleVal, segSplits, splineToBone, splitAngle, splitAngleV, st, startPrune, branchDist, length, splitByLen, closeTip, nrings, splitBias, splitHeight, attractOut, rMode, lengthV, taperCrown, boneStep, rotate, rotateV): while startPrune and ((currentMax - currentMin) > 0.005): setstate(randState) # If the search will halt after this iteration, then set the adjustment of stem # length to take into account the pruning ratio if (currentMax - currentMin) < 0.01: currentScale = (currentScale - 1) * pruneRatio + 1 startPrune = False forceSprout = True # Change the segment length of the stem by applying some scaling st.segL = originalLength * currentScale # To prevent millions of splines being created we delete any old ones and # replace them with only their first points to begin the spline again if deleteSpline: for x in splineList: cu.splines.remove(x.spline) newSpline = cu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] newPoint.co = originalCo newPoint.handle_right = originalHandleR newPoint.handle_left = originalHandleL (newPoint.handle_left_type, newPoint.handle_right_type) = ('VECTOR', 'VECTOR') st.spline = newSpline st.curv = originalCurv st.curvV = originalCurvV st.seg = originalSeg st.p = newPoint newPoint.radius = st.radS splineToBone = originalSplineToBone # Initialise the spline list for those contained in the current level of branching splineList = [st] # split length variation stemsegL = splineList[0].segL # initial segment length used for variation splineList[0].segL = stemsegL * uniform(1 - lengthV[n], 1 + lengthV[n]) # variation for first stem # For each of the segments of the stem which must be grown we have to add to each spline in splineList for k in range(curveRes[n]): # Make a copy of the current list to avoid continually adding to the list we're iterating over tempList = splineList[:] # print('Leng: ', len(tempList)) # for curve variation if curveRes[n] > 1: kp = (k / (curveRes[n] - 1)) # * 2 else: kp = 1.0 # split bias splitValue = segSplits[n] if n == 0: splitValue = ((2 * splitBias) * (kp - .5) + 1) * splitValue splitValue = max(splitValue, 0.0) # For each of the splines in this list set the number of splits and then grow it for spl in tempList: # adjust numSplit lastsplit = getattr(spl, 'splitlast', 0) splitVal = splitValue if lastsplit == 0: splitVal = splitValue * 1.33 elif lastsplit == 1: splitVal = splitValue * splitValue if k == 0: numSplit = 0 elif (n == 0) and (k < ((curveRes[n] - 1) * splitHeight)) and (k != 1): numSplit = 0 elif (k == 1) and (n == 0): numSplit = baseSplits # always split at splitHeight elif (n == 0) and (k == int((curveRes[n] - 1) * splitHeight) + 1) and (splitVal > 0): numSplit = 1 else: if (n >= 1) and splitByLen: L = ((spl.segL * curveRes[n]) / scaleVal) lf = 1 for l in length[:n + 1]: lf *= l L = L / lf numSplit = splits2(splitVal * L) else: numSplit = splits2(splitVal) if (k == int(curveRes[n] / 2 + 0.5)) and (curveBack[n] != 0): spl.curv += 2 * (curveBack[n] / curveRes[n]) # was -4 * growSpline( n, spl, numSplit, splitAngle[n], splitAngleV[n], splineList, handles, splineToBone, closeTip, kp, splitHeight, attractOut[n], stemsegL, lengthV[n], taperCrown, boneStep, rotate, rotateV ) # If pruning is enabled then we must check to see if the end of the spline is within the envelope if prune: # Check each endpoint to see if it is inside for s in splineList: coordMag = (s.spline.bezier_points[-1].co.xy).length ratio = (scaleVal - s.spline.bezier_points[-1].co.z) / (scaleVal * max(1 - pruneBase, 1e-6)) # Don't think this if part is needed if (n == 0) and (s.spline.bezier_points[-1].co.z < pruneBase * scaleVal): insideBool = True # Init to avoid UnboundLocalError later else: insideBool = ( (coordMag / scaleVal) < pruneWidth * shapeRatio(9, ratio, pruneWidthPeak, prunePowerHigh, prunePowerLow)) # If the point is not inside then we adjust the scale and current search bounds if not insideBool: oldMax = currentMax currentMax = currentScale currentScale = 0.5 * (currentMax + currentMin) break # If the scale is the original size and the point is inside then # we need to make sure it won't be pruned or extended to the edge of the envelope if insideBool and (currentScale != 1): currentMin = currentScale currentMax = oldMax currentScale = 0.5 * (currentMax + currentMin) if insideBool and ((currentMax - currentMin) == 1): currentMin = 1 # If the search will halt on the next iteration then we need # to make sure we sprout child points to grow the next splines or leaves if (((currentMax - currentMin) < 0.005) or not prune) or forceSprout: if (n == 0) and (rMode != "original"): tVals = findChildPoints2(splineList, st.children) else: tVals = findChildPoints(splineList, st.children) # print("debug tvals[%d] , splineList[%d], %s" % ( len(tVals), len(splineList), st.children)) # If leaves is -ve then we need to make sure the only point which sprouts is the end of the spline if not st.children: tVals = [1.0] # remove some of the points because of baseSize trimNum = int(baseSize * (len(tVals) + 1)) tVals = tVals[trimNum:] # grow branches in rings if (n == 0) and (nrings > 0): # tVals = [(floor(t * nrings)) / nrings for t in tVals[:-1]] tVals = [(floor(t * nrings) / nrings) * uniform(.995, 1.005) for t in tVals[:-1]] tVals.append(1) tVals = [t for t in tVals if t > baseSize] # branch distribution if n == 0: tVals = [((t - baseSize) / (1 - baseSize)) for t in tVals] if branchDist < 1.0: tVals = [t ** (1 / branchDist) for t in tVals] else: tVals = [1 - (1 - t) ** branchDist for t in tVals] tVals = [t * (1 - baseSize) + baseSize for t in tVals] # For all the splines, we interpolate them and add the new points to the list of child points maxOffset = max([s.offsetLen + (len(s.spline.bezier_points) - 1) * s.segL for s in splineList]) for s in splineList: # print(str(n)+'level: ', s.segMax*s.segL) childP.extend(interpStem(s, tVals, s.segMax * s.segL, s.radS, maxOffset, baseSize)) # Force the splines to be deleted deleteSpline = True # If pruning isn't enabled then make sure it doesn't loop if not prune: startPrune = False return ratio, splineToBone # calculate taper automatically def findtaper(length, taper, shape, shapeS, levels, customShape): taperS = [] for i, t in enumerate(length): if i == 0: shp = 1.0 elif i == 1: shp = shapeRatio(shape, 0, custom=customShape) else: shp = shapeRatio(shapeS, 0) t = t * shp taperS.append(t) taperP = [] for i, t in enumerate(taperS): pm = 1 for x in range(i + 1): pm *= taperS[x] taperP.append(pm) taperR = [] for i, t in enumerate(taperP): t = sum(taperP[i:levels]) taperR.append(t) taperT = [] for i, t in enumerate(taperR): try: t = taperP[i] / taperR[i] except ZeroDivisionError: t = 1.0 taperT.append(t) taperT = [t * taper[i] for i, t in enumerate(taperT)] return taperT def addTree(props): global splitError # startTime = time.time() # Set the seed for repeatable results seed(props.seed) # Set all other variables levels = props.levels length = props.length lengthV = props.lengthV taperCrown = props.taperCrown branches = props.branches curveRes = props.curveRes curve = toRad(props.curve) curveV = toRad(props.curveV) curveBack = toRad(props.curveBack) baseSplits = props.baseSplits segSplits = props.segSplits splitByLen = props.splitByLen rMode = props.rMode splitAngle = toRad(props.splitAngle) splitAngleV = toRad(props.splitAngleV) scale = props.scale scaleV = props.scaleV attractUp = props.attractUp attractOut = props.attractOut shape = int(props.shape) shapeS = int(props.shapeS) customShape = props.customShape branchDist = props.branchDist nrings = props.nrings baseSize = props.baseSize baseSize_s = props.baseSize_s splitHeight = props.splitHeight splitBias = props.splitBias ratio = props.ratio minRadius = props.minRadius closeTip = props.closeTip rootFlare = props.rootFlare autoTaper = props.autoTaper taper = props.taper radiusTweak = props.radiusTweak ratioPower = props.ratioPower downAngle = toRad(props.downAngle) downAngleV = toRad(props.downAngleV) rotate = toRad(props.rotate) rotateV = toRad(props.rotateV) scale0 = props.scale0 scaleV0 = props.scaleV0 prune = props.prune pruneWidth = props.pruneWidth pruneBase = props.pruneBase pruneWidthPeak = props.pruneWidthPeak prunePowerLow = props.prunePowerLow prunePowerHigh = props.prunePowerHigh pruneRatio = props.pruneRatio leafDownAngle = radians(props.leafDownAngle) leafDownAngleV = radians(props.leafDownAngleV) leafRotate = radians(props.leafRotate) leafRotateV = radians(props.leafRotateV) leafScale = props.leafScale leafScaleX = props.leafScaleX leafScaleT = props.leafScaleT leafScaleV = props.leafScaleV leafShape = props.leafShape leafDupliObj = props.leafDupliObj bend = props.bend leafangle = props.leafangle horzLeaves = props.horzLeaves leafDist = int(props.leafDist) bevelRes = props.bevelRes resU = props.resU useArm = props.useArm previewArm = props.previewArm armAnim = props.armAnim leafAnim = props.leafAnim frameRate = props.frameRate loopFrames = props.loopFrames # windSpeed = props.windSpeed # windGust = props.windGust wind = props.wind gust = props.gust gustF = props.gustF af1 = props.af1 af2 = props.af2 af3 = props.af3 makeMesh = props.makeMesh armLevels = props.armLevels boneStep = props.boneStep useOldDownAngle = props.useOldDownAngle useParentAngle = props.useParentAngle if not makeMesh: boneStep = [1, 1, 1, 1] # taper if autoTaper: taper = findtaper(length, taper, shape, shapeS, levels, customShape) # pLevels = branches[0] # taper = findtaper(length, taper, shape, shapeS, pLevels, customShape) leafObj = None # Some effects can be turned ON and OFF, the necessary variables are changed here if not props.bevel: bevelDepth = 0.0 else: bevelDepth = 1.0 if not props.showLeaves: leaves = 0 else: leaves = props.leaves if props.handleType == '0': handles = 'AUTO' else: handles = 'VECTOR' for ob in bpy.context.view_layer.objects: ob.select_set(state=False) # Initialise the tree object and curve and adjust the settings cu = bpy.data.curves.new('tree', 'CURVE') treeOb = bpy.data.objects.new('tree', cu) bpy.context.scene.collection.objects.link(treeOb) # treeOb.location=bpy.context.scene.cursor.location attractUp cu.dimensions = '3D' cu.fill_mode = 'FULL' cu.bevel_depth = bevelDepth cu.bevel_resolution = bevelRes # Fix the scale of the tree now scaleVal = scale + uniform(-scaleV, scaleV) scaleVal += copysign(1e-6, scaleVal) # Move away from zero to avoid div by zero pruneBase = min(pruneBase, baseSize) # If pruning is turned on we need to draw the pruning envelope if prune: enHandle = 'VECTOR' enNum = 128 enCu = bpy.data.curves.new('envelope', 'CURVE') enOb = bpy.data.objects.new('envelope', enCu) enOb.parent = treeOb bpy.context.scene.collection.objects.link(enOb) newSpline = enCu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0, 0, scaleVal)) (newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle) # Set the coordinates by varying the z value, envelope will be aligned to the x-axis for c in range(enNum): newSpline.bezier_points.add(1) newPoint = newSpline.bezier_points[-1] ratioVal = (c + 1) / (enNum) zVal = scaleVal - scaleVal * (1 - pruneBase) * ratioVal newPoint.co = Vector( ( scaleVal * pruneWidth * shapeRatio(9, ratioVal, pruneWidthPeak, prunePowerHigh, prunePowerLow), 0, zVal ) ) (newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle) newSpline = enCu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0, 0, scaleVal)) (newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle) # Create a second envelope but this time on the y-axis for c in range(enNum): newSpline.bezier_points.add(1) newPoint = newSpline.bezier_points[-1] ratioVal = (c + 1) / (enNum) zVal = scaleVal - scaleVal * (1 - pruneBase) * ratioVal newPoint.co = Vector( ( 0, scaleVal * pruneWidth * shapeRatio(9, ratioVal, pruneWidthPeak, prunePowerHigh, prunePowerLow), zVal ) ) (newPoint.handle_right_type, newPoint.handle_left_type) = (enHandle, enHandle) childP = [] stemList = [] levelCount = [] splineToBone = deque(['']) addsplinetobone = splineToBone.append # Each of the levels needed by the user we grow all the splines for n in range(levels): storeN = n stemList = deque() addstem = stemList.append # If n is used as an index to access parameters for the tree # it must be at most 3 or it will reference outside the array index n = min(3, n) splitError = 0.0 # closeTip only on last level closeTipp = all([(n == levels - 1), closeTip]) # If this is the first level of growth (the trunk) then we need some special work to begin the tree if n == 0: kickstart_trunk(addstem, levels, leaves, branches, cu, curve, curveRes, curveV, attractUp, length, lengthV, ratio, ratioPower, resU, scale0, scaleV0, scaleVal, taper, minRadius, rootFlare) # If this isn't the trunk then we may have multiple stem to initialise else: # For each of the points defined in the list of stem starting points we need to grow a stem. fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack, curveRes, curveV, attractUp, downAngle, downAngleV, leafDist, leaves, length, lengthV, levels, n, ratioPower, resU, rotate, rotateV, scaleVal, shape, storeN, taper, shapeS, minRadius, radiusTweak, customShape, rMode, segSplits, useOldDownAngle, useParentAngle, boneStep) # change base size for each level if n > 0: baseSize *= baseSize_s # decrease at each level if (n == levels - 1): baseSize = 0 childP = [] # Now grow each of the stems in the list of those to be extended for st in stemList: # When using pruning, we need to ensure that the random effects # will be the same for each iteration to make sure the problem is linear randState = getstate() startPrune = True lengthTest = 0.0 # Store all the original values for the stem to make sure # we have access after it has been modified by pruning originalLength = st.segL originalCurv = st.curv originalCurvV = st.curvV originalSeg = st.seg originalHandleR = st.p.handle_right.copy() originalHandleL = st.p.handle_left.copy() originalCo = st.p.co.copy() currentMax = 1.0 currentMin = 0.0 currentScale = 1.0 oldMax = 1.0 deleteSpline = False originalSplineToBone = copy.copy(splineToBone) forceSprout = False # Now do the iterative pruning, this uses a binary search and halts once the difference # between upper and lower bounds of the search are less than 0.005 ratio, splineToBone = perform_pruning( baseSize, baseSplits, childP, cu, currentMax, currentMin, currentScale, curve, curveBack, curveRes, deleteSpline, forceSprout, handles, n, oldMax, originalSplineToBone, originalCo, originalCurv, originalCurvV, originalHandleL, originalHandleR, originalLength, originalSeg, prune, prunePowerHigh, prunePowerLow, pruneRatio, pruneWidth, pruneBase, pruneWidthPeak, randState, ratio, scaleVal, segSplits, splineToBone, splitAngle, splitAngleV, st, startPrune, branchDist, length, splitByLen, closeTipp, nrings, splitBias, splitHeight, attractOut, rMode, lengthV, taperCrown, boneStep, rotate, rotateV ) levelCount.append(len(cu.splines)) # If we need to add leaves, we do it here leafVerts = [] leafFaces = [] leafNormals = [] leafMesh = None # in case we aren't creating leaves, we'll still have the variable leafP = [] if leaves: oldRot = 0.0 n = min(3, n + 1) # For each of the child points we add leaves for cp in childP: # If the special flag is set then we need to add several leaves at the same location if leaves < 0: oldRot = -leafRotate / 2 for g in range(abs(leaves)): (vertTemp, faceTemp, normal, oldRot) = genLeafMesh( leafScale, leafScaleX, leafScaleT, leafScaleV, cp.co, cp.quat, cp.offset, len(leafVerts), leafDownAngle, leafDownAngleV, leafRotate, leafRotateV, oldRot, bend, leaves, leafShape, leafangle, horzLeaves ) leafVerts.extend(vertTemp) leafFaces.extend(faceTemp) leafNormals.extend(normal) leafP.append(cp) # Otherwise just add the leaves like splines else: (vertTemp, faceTemp, normal, oldRot) = genLeafMesh( leafScale, leafScaleX, leafScaleT, leafScaleV, cp.co, cp.quat, cp.offset, len(leafVerts), leafDownAngle, leafDownAngleV, leafRotate, leafRotateV, oldRot, bend, leaves, leafShape, leafangle, horzLeaves ) leafVerts.extend(vertTemp) leafFaces.extend(faceTemp) leafNormals.extend(normal) leafP.append(cp) # Create the leaf mesh and object, add geometry using from_pydata, # edges are currently added by validating the mesh which isn't great leafMesh = bpy.data.meshes.new('leaves') leafObj = bpy.data.objects.new('leaves', leafMesh) bpy.context.scene.collection.objects.link(leafObj) leafObj.parent = treeOb leafMesh.from_pydata(leafVerts, (), leafFaces) # set vertex normals for dupliVerts if leafShape == 'dVert': leafMesh.vertices.foreach_set('normal', leafNormals) # enable duplication if leafShape == 'dFace': leafObj.instance_type = "FACES" leafObj.use_instance_faces_scale = True leafObj.instance_faces_scale = 10.0 try: if leafDupliObj not in "NONE": bpy.data.objects[leafDupliObj].parent = leafObj except KeyError: pass elif leafShape == 'dVert': leafObj.instance_type = "VERTS" leafObj.use_instance_vertices_rotation = True try: if leafDupliObj not in "NONE": bpy.data.objects[leafDupliObj].parent = leafObj except KeyError: pass # add leaf UVs if leafShape == 'rect': leafMesh.uv_layers.new(name='leafUV') uvlayer = leafMesh.uv_layers.active.data u1 = .5 * (1 - leafScaleX) u2 = 1 - u1 for i in range(0, len(leafFaces)): uvlayer[i * 4 + 0].uv = Vector((u2, 0)) uvlayer[i * 4 + 1].uv = Vector((u2, 1)) uvlayer[i * 4 + 2].uv = Vector((u1, 1)) uvlayer[i * 4 + 3].uv = Vector((u1, 0)) elif leafShape == 'hex': leafMesh.uv_layers.new(name='leafUV') uvlayer = leafMesh.uv_layers.active.data u1 = .5 * (1 - leafScaleX) u2 = 1 - u1 for i in range(0, int(len(leafFaces) / 2)): uvlayer[i * 8 + 0].uv = Vector((.5, 0)) uvlayer[i * 8 + 1].uv = Vector((u1, 1 / 3)) uvlayer[i * 8 + 2].uv = Vector((u1, 2 / 3)) uvlayer[i * 8 + 3].uv = Vector((.5, 1)) uvlayer[i * 8 + 4].uv = Vector((.5, 0)) uvlayer[i * 8 + 5].uv = Vector((.5, 1)) uvlayer[i * 8 + 6].uv = Vector((u2, 2 / 3)) uvlayer[i * 8 + 7].uv = Vector((u2, 1 / 3)) leafMesh.validate() leafVertSize = {'hex': 6, 'rect': 4, 'dFace': 4, 'dVert': 1}[leafShape] armLevels = min(armLevels, levels) armLevels -= 1 # unpack vars from splineToBone splineToBone1 = splineToBone splineToBone = [s[0] if len(s) > 1 else s for s in splineToBone1] isend = [s[1] if len(s) > 1 else False for s in splineToBone1] issplit = [s[2] if len(s) > 2 else False for s in splineToBone1] splitPidx = [s[3] if len(s) > 2 else 0 for s in splineToBone1] # If we need an armature we add it if useArm: # Create the armature and objects create_armature( armAnim, leafP, cu, frameRate, leafMesh, leafObj, leafVertSize, leaves, levelCount, splineToBone, treeOb, wind, gust, gustF, af1, af2, af3, leafAnim, loopFrames, previewArm, armLevels, makeMesh, boneStep ) # print(time.time()-startTime) # mesh branches if makeMesh: t1 = time.time() treeMesh = bpy.data.meshes.new('treemesh') treeObj = bpy.data.objects.new('treemesh', treeMesh) bpy.context.scene.collection.objects.link(treeObj) treeVerts = [] treeEdges = [] root_vert = [] vert_radius = [] vertexGroups = OrderedDict() lastVerts = [] for i, curve in enumerate(cu.splines): points = curve.bezier_points # find branching level level = 0 for l, c in enumerate(levelCount): if i < c: level = l break level = min(level, 3) step = boneStep[level] vindex = len(treeVerts) p1 = points[0] # add extra vertex for splits if issplit[i]: pb = int(splineToBone[i][4:-4]) pn = splitPidx[i] # int(splineToBone[i][-3:]) p_1 = cu.splines[pb].bezier_points[pn] p_2 = cu.splines[pb].bezier_points[pn + 1] p = evalBez(p_1.co, p_1.handle_right, p_2.handle_left, p_2.co, 1 - 1 / (resU + 1)) treeVerts.append(p) root_vert.append(False) vert_radius.append((p1.radius * .75, p1.radius * .75)) treeEdges.append([vindex, vindex + 1]) vindex += 1 if isend[i]: parent = lastVerts[int(splineToBone[i][4:-4])] vindex -= 1 else: # add first point treeVerts.append(p1.co) root_vert.append(True) vert_radius.append((p1.radius, p1.radius)) """ # add extra vertex for splits if issplit[i]: p2 = points[1] p = evalBez(p1.co, p1.handle_right, p2.handle_left, p2.co, .001) treeVerts.append(p) root_vert.append(False) vert_radius.append((p1.radius, p1.radius)) #(p1.radius * .95, p1.radius * .95) treeEdges.append([vindex,vindex+1]) vindex += 1 """ # dont make vertex group if above armLevels if (i >= levelCount[armLevels]): idx = i groupName = splineToBone[idx] g = True while groupName not in vertexGroups: # find parent bone of parent bone b = splineToBone[idx] idx = int(b[4:-4]) groupName = splineToBone[idx] else: g = False for n, p2 in enumerate(points[1:]): if not g: groupName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0') groupName = roundBone(groupName, step) if groupName not in vertexGroups: vertexGroups[groupName] = [] # parent first vert in split to parent branch bone if issplit[i] and n == 0: if g: vertexGroups[groupName].append(vindex - 1) else: vertexGroups[splineToBone[i]].append(vindex - 1) for f in range(1, resU + 1): pos = f / resU p = evalBez(p1.co, p1.handle_right, p2.handle_left, p2.co, pos) radius = p1.radius + (p2.radius - p1.radius) * pos treeVerts.append(p) root_vert.append(False) vert_radius.append((radius, radius)) if (isend[i]) and (n == 0) and (f == 1): edge = [parent, n * resU + f + vindex] else: edge = [n * resU + f + vindex - 1, n * resU + f + vindex] # add vert to group vertexGroups[groupName].append(n * resU + f + vindex - 1) treeEdges.append(edge) vertexGroups[groupName].append(n * resU + resU + vindex) p1 = p2 lastVerts.append(len(treeVerts) - 1) treeMesh.from_pydata(treeVerts, treeEdges, ()) for group in vertexGroups: treeObj.vertex_groups.new(name=group) treeObj.vertex_groups[group].add(vertexGroups[group], 1.0, 'ADD') # add armature if useArm: armMod = treeObj.modifiers.new('windSway', 'ARMATURE') if previewArm: bpy.data.objects['treeArm'].hide_viewport = True bpy.data.armatures['tree'].display_type = 'STICK' armMod.object = bpy.data.objects['treeArm'] armMod.use_bone_envelopes = False armMod.use_vertex_groups = True treeObj.parent = bpy.data.objects['treeArm'] # add skin modifier and set data skinMod = treeObj.modifiers.new('Skin', 'SKIN') skinMod.use_smooth_shade = True if previewArm: skinMod.show_viewport = False skindata = treeObj.data.skin_vertices[0].data for i, radius in enumerate(vert_radius): skindata[i].radius = radius skindata[i].use_root = root_vert[i] print("mesh time", time.time() - t1)