# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import bpy import time import copy from mathutils import * from math import pi,sin,degrees,radians,atan2,copysign,cos,acos from random import random,uniform,seed,choice,getstate,setstate from bpy.props import * from collections import deque # Initialise the split error and axis vectors splitError = 0.0 zAxis = Vector((0,0,1)) yAxis = Vector((0,1,0)) xAxis = Vector((1,0,0)) # This class will contain a part of the tree which needs to be extended and the required tree parameters class stemSpline: def __init__(self,spline,curvature,curvatureV,segments,maxSegs,segLength,childStems,stemRadStart,stemRadEnd,splineNum): self.spline = spline self.p = spline.bezier_points[-1] self.curv = curvature self.curvV = curvatureV self.seg = segments self.segMax = maxSegs self.segL = segLength self.children = childStems self.radS = stemRadStart self.radE = stemRadEnd self.splN = splineNum # This method determines the quaternion of the end of the spline def quat(self): if len(self.spline.bezier_points) == 1: return ((self.spline.bezier_points[-1].handle_right - self.spline.bezier_points[-1].co).normalized()).to_track_quat('Z','Y') else: return ((self.spline.bezier_points[-1].co - self.spline.bezier_points[-2].co).normalized()).to_track_quat('Z','Y') # Determine the declination def dec(self): tempVec = zAxis.copy() tempVec.rotate(self.quat()) return zAxis.angle(tempVec) # Update the end of the spline and increment the segment count def updateEnd(self): self.p = self.spline.bezier_points[-1] self.seg += 1 # Determine the spread angle for a split def spreadAng(self): return radians(choice([-1,1])*(20 + 0.75*(30 + abs(degrees(self.dec()) - 90))*random()**2)) # Determine the splitting angle for a split def splitAngle(self,splitAng,splitAngV): return max(0,splitAng+uniform(-splitAngV,splitAngV)-self.dec()) # This is used to change the the curvature per segment of the spline def curvAdd(self,curvD): self.curv += curvD # This class contains the data for a point where a new branch will sprout class childPoint: def __init__(self,coords,quat,radiusPar,offset,lengthPar,parBone): self.co = coords self.quat = quat self.radiusPar = radiusPar self.offset = offset self.lengthPar = lengthPar self.parBone = parBone # This function calculates the shape ratio as defined in the paper def shapeRatio(shape,ratio,pruneWidthPeak=0.0,prunePowerHigh=0.0,prunePowerLow=0.0): if shape == 0: return 0.2 + 0.8*ratio elif shape == 1: return 0.2 + 0.8*sin(pi*ratio) elif shape == 2: return 0.2 + 0.8*sin(0.5*pi*ratio) elif shape == 3: return 1.0 elif shape == 4: return 0.5 + 0.5*ratio elif shape == 5: if ratio <= 0.7: return ratio/0.7 else: return (1.0 - ratio)/0.3 elif shape == 6: return 1.0 - 0.8*ratio elif shape == 7: if ratio <= 0.7: return 0.5 + 0.5*ratio/0.7 else: return 0.5 + 0.5*(1.0 - ratio)/0.3 elif shape == 8: if (ratio < (1 - pruneWidthPeak)) and (ratio > 0.0): return ((ratio/(1 - pruneWidthPeak))**prunePowerHigh) elif (ratio >= (1 - pruneWidthPeak)) and (ratio < 1.0): return (((1 - ratio)/pruneWidthPeak)**prunePowerLow) else: return 0.0 # This function determines the actual number of splits at a given point using the global error def splits(n): global splitError nEff = round(n + splitError,0) splitError -= (nEff - n) return int(nEff) # Determine the declination from a given quaternion def declination(quat): tempVec = zAxis.copy() tempVec.rotate(quat) tempVec.normalize() return degrees(acos(tempVec.z)) # Determine the length of a child stem def lengthChild(lMax,offset,lPar,shape=False,lBase=None): if shape: return lPar*lMax*shapeRatio(shape,(lPar - offset) / max((lPar - lBase), 1e-6)) else: return lMax*(lPar - 0.6*offset) # Find the actual downAngle taking into account the special case def downAngle(downAng,downAngV,lPar=None,offset=None,lBase=None): if downAngV < 0: return downAng + (uniform(-downAngV,downAngV)*(1 - 2*shapeRatio(0,(lPar - offset) / max((lPar - lBase), 1e-6)))) else: return downAng + uniform(-downAngV,downAngV) # Returns the rotation matrix equivalent to i rotations by 2*pi/(n+1) def splitRotMat(n,i): return Matrix.Rotation(2*i*pi/(n+1),3,'Z') # Returns the split angle def angleSplit(splitAng,splitAngV,quat): return max(0,splitAng+uniform(-splitAngV,splitAngV)-declination(quat)) # Returns number of stems a stem will sprout def stems(stemsMax,lPar,offset,lChild=False,lChildMax=None): if lChild: return stemsMax*(0.2 + 0.8*(lChild/lPar)/lChildMax) else: return stemsMax*(1.0 - 0.5*offset/lPar) # Returns the spreading angle def spreadAng(dec): return radians(choice([-1,1])*(20 + 0.75*(30 + abs(dec - 90))*random()**2)) # Determines the angle of upward rotation of a segment due to attractUp def curveUp(attractUp,quat,curveRes): tempVec = yAxis.copy() tempVec.rotate(quat) tempVec.normalize() return attractUp*radians(declination(quat))*abs(tempVec.z)/curveRes # Evaluate a bezier curve for the parameter 0<=t<=1 along its length def evalBez(p1,h1,h2,p2,t): return ((1-t)**3)*p1 + (3*t*(1-t)**2)*h1 + (3*(t**2)*(1-t))*h2 + (t**3)*p2 # Evaluate the unit tangent on a bezier curve for t def evalBezTan(p1,h1,h2,p2,t): return ((-3*(1-t)**2)*p1 + (-6*t*(1-t) + 3*(1-t)**2)*h1 + (-3*(t**2) + 6*t*(1-t))*h2 + (3*t**2)*p2).normalized() # Determine the range of t values along a splines length where child stems are formed def findChildPoints(stemList,numChild): numPoints = sum([len(n.spline.bezier_points) for n in stemList]) numSplines = len(stemList) numSegs = numPoints - numSplines numPerSeg = numChild/numSegs numMain = round(numPerSeg*stemList[0].segMax,0) return [(a+1)/(numMain) for a in range(int(numMain))] # Find the coordinates, quaternion and radius for each t on the stem def interpStem(stem,tVals,lPar,parRad): tempList = deque() addpoint = tempList.append checkVal = (stem.segMax - len(stem.spline.bezier_points) + 1)/stem.segMax points = stem.spline.bezier_points numPoints = len(stem.spline.bezier_points) # Loop through all the parametric values to be determined for t in tVals: if (t >= checkVal) and (t < 1.0): scaledT = (t - checkVal) / max(tVals[-1] - checkVal, 1e-6) length = (numPoints-1)*t#scaledT index = int(length) if scaledT == 1.0: coord = points[-1].co quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z','Y') radius = parRad#points[-2].radius else: tTemp = length - index coord = evalBez(points[index].co,points[index].handle_right,points[index+1].handle_left,points[index+1].co,tTemp) quat = (evalBezTan(points[index].co,points[index].handle_right,points[index+1].handle_left,points[index+1].co,tTemp)).to_track_quat('Z','Y') radius = (1-tTemp)*points[index].radius + tTemp*points[index+1].radius # Not sure if this is the parent radius at the child point or parent start radius addpoint(childPoint(coord,quat,(parRad, radius),t*lPar,lPar,'bone'+(str(stem.splN).rjust(3,'0'))+'.'+(str(index).rjust(3,'0')))) return tempList # Convert a list of degrees to radians def toRad(list): return [radians(a) for a in list] # This is the function which extends (or grows) a given stem. def growSpline(stem,numSplit,splitAng,splitAngV,splineList,attractUp,hType,splineToBone): # First find the current direction of the stem dir = stem.quat() # If the stem splits, we need to add new splines etc if numSplit > 0: # Get the curve data cuData = stem.spline.id_data.name cu = bpy.data.curves[cuData] # Now for each split add the new spline and adjust the growth direction for i in range(numSplit): newSpline = cu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] (newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (stem.p.co,'VECTOR','VECTOR') newPoint.radius = stem.radS*(1 - stem.seg/stem.segMax) + stem.radE*(stem.seg/stem.segMax) # Here we make the new "sprouting" stems diverge from the current direction angle = stem.splitAngle(splitAng,splitAngV) divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')#CurveUP should go after curve is applied dirVec = zAxis.copy() dirVec.rotate(divRotMat) dirVec.rotate(splitRotMat(numSplit,i+1)) dirVec.rotate(dir) # if attractUp != 0.0: # Shouldn't have a special case as this will mess with random number generation divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X') dirVec = zAxis.copy() dirVec.rotate(divRotMat) dirVec.rotate(splitRotMat(numSplit,i+1)) dirVec.rotate(dir) #Different version of the commented code above. We could use the inbuilt vector rotations but given this is a special case, it can be quicker to initialise the vector to the correct value. # angle = stem.splitAngle(splitAng,splitAngV) # curveUpAng = curveUp(attractUp,dir,stem.segMax) # angleX = angle + stem.curv + uniform(-stem.curvV,stem.curvV) - curveUpAng # angleZ = 2*i*pi/(numSplit+1) # dirVec = Vector((sin(angleX)*sin(angleZ), -sin(angleX)*cos(angleZ), cos(angleX))) # dirVec.rotate(dir) # Spread the stem out in a random fashion spreadMat = Matrix.Rotation(spreadAng(degrees(dirVec.z)),3,'Z') dirVec.rotate(spreadMat) # Introduce upward curvature upRotAxis = xAxis.copy() upRotAxis.rotate(dirVec.to_track_quat('Z','Y')) curveUpAng = curveUp(attractUp,dirVec.to_track_quat('Z','Y'),stem.segMax) upRotMat = Matrix.Rotation(-curveUpAng,3,upRotAxis) dirVec.rotate(upRotMat) # Make the growth vec the length of a stem segment dirVec.normalize() dirVec *= stem.segL # Get the end point position end_co = stem.p.co.copy() # Add the new point and adjust its coords, handles and radius newSpline.bezier_points.add() newPoint = newSpline.bezier_points[-1] (newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (end_co + dirVec,hType,hType) newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax) # If this isn't the last point on a stem, then we need to add it to the list of stems to continue growing if stem.seg != stem.segMax: splineList.append(stemSpline(newSpline,stem.curv-angle/(stem.segMax-stem.seg),stem.curvV,stem.seg+1,stem.segMax,stem.segL,stem.children,stem.radS,stem.radE,len(cu.splines)-1)) splineToBone.append('bone'+(str(stem.splN)).rjust(3,'0')+'.'+(str(len(stem.spline.bezier_points)-2)).rjust(3,'0')) # The original spline also needs to keep growing so adjust its direction too angle = stem.splitAngle(splitAng,splitAngV) divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X') dirVec = zAxis.copy() dirVec.rotate(divRotMat) dirVec.rotate(dir) spreadMat = Matrix.Rotation(spreadAng(degrees(dirVec.z)),3,'Z') dirVec.rotate(spreadMat) else: # If there are no splits then generate the growth direction without accounting for spreading of stems dirVec = zAxis.copy() #curveUpAng = curveUp(attractUp,dir,stem.segMax) divRotMat = Matrix.Rotation(stem.curv + uniform(-stem.curvV,stem.curvV),3,'X') dirVec.rotate(divRotMat) #dirVec = Vector((0,-sin(stem.curv - curveUpAng),cos(stem.curv - curveUpAng))) dirVec.rotate(dir) upRotAxis = xAxis.copy() upRotAxis.rotate(dirVec.to_track_quat('Z','Y')) curveUpAng = curveUp(attractUp,dirVec.to_track_quat('Z','Y'),stem.segMax) upRotMat = Matrix.Rotation(-curveUpAng,3,upRotAxis) dirVec.rotate(upRotMat) dirVec.normalize() dirVec *= stem.segL # Get the end point position end_co = stem.p.co.copy() stem.spline.bezier_points.add() newPoint = stem.spline.bezier_points[-1] (newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (end_co + dirVec,hType,hType) newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax) # There are some cases where a point cannot have handles as VECTOR straight away, set these now. if numSplit != 0: tempPoint = stem.spline.bezier_points[-2] (tempPoint.handle_left_type,tempPoint.handle_right_type) = ('VECTOR','VECTOR') if len(stem.spline.bezier_points) == 2: tempPoint = stem.spline.bezier_points[0] (tempPoint.handle_left_type,tempPoint.handle_right_type) = ('VECTOR','VECTOR') # Update the last point in the spline to be the newly added one stem.updateEnd() #return splineList def genLeafMesh(leafScale,leafScaleX,loc,quat,index,downAngle,downAngleV,rotate,rotateV,oldRot,bend,leaves, leafShape): if leafShape == 'hex': verts = [Vector((0,0,0)),Vector((0.5,0,1/3)),Vector((0.5,0,2/3)),Vector((0,0,1)),Vector((-0.5,0,2/3)),Vector((-0.5,0,1/3))] edges = [[0,1],[1,2],[2,3],[3,4],[4,5],[5,0],[0,3]] faces = [[0,1,2,3],[0,3,4,5]] elif leafShape == 'rect': verts = [Vector((1,0,0)),Vector((1,0,1)),Vector((-1,0,1)),Vector((-1,0,0))] edges = [[0,1],[1,2],[2,3],[3,0]] faces = [[0,1,2,3],] #faces = [[0,1,5],[1,2,4,5],[2,3,4]] vertsList = [] facesList = [] # If the special -ve flag is used we need a different rotation of the leaf geometry if leaves < 0: rotMat = Matrix.Rotation(oldRot,3,'Y') oldRot += rotate/abs(leaves) else: oldRot += rotate+uniform(-rotateV,rotateV) downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV,downAngleV),3,'X') rotMat = Matrix.Rotation(oldRot,3,'Z') normal = yAxis.copy() #dirVec = zAxis.copy() orientationVec = zAxis.copy() # If the bending of the leaves is used we need to rotated them differently if (bend != 0.0) and (leaves >= 0): # normal.rotate(downRotMat) # orientationVec.rotate(downRotMat) # # normal.rotate(rotMat) # orientationVec.rotate(rotMat) normal.rotate(quat) orientationVec.rotate(quat) thetaPos = atan2(loc.y,loc.x) thetaBend = thetaPos - atan2(normal.y,normal.x) rotateZ = Matrix.Rotation(bend*thetaBend,3,'Z') normal.rotate(rotateZ) orientationVec.rotate(rotateZ) phiBend = atan2((normal.xy).length,normal.z) orientation = atan2(orientationVec.y,orientationVec.x) rotateZOrien = Matrix.Rotation(orientation,3,'X') rotateX = Matrix.Rotation(bend*phiBend,3,'Z') rotateZOrien2 = Matrix.Rotation(-orientation,3,'X') # For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh for v in verts: v.z *= leafScale v.x *= leafScaleX*leafScale if leaves > 0: v.rotate(downRotMat) v.rotate(rotMat) v.rotate(quat) if (bend != 0.0) and (leaves > 0): # Correct the rotation v.rotate(rotateZ) v.rotate(rotateZOrien) v.rotate(rotateX) v.rotate(rotateZOrien2) #v.rotate(quat) for v in verts: v += loc vertsList.append([v.x,v.y,v.z]) for f in faces: facesList.append([f[0] + index,f[1] + index,f[2] + index,f[3] + index]) return vertsList,facesList,oldRot def create_armature(armAnim, childP, cu, frameRate, leafMesh, leafObj, leafShape, leaves, levelCount, splineToBone, treeOb, windGust, windSpeed): arm = bpy.data.armatures.new('tree') armOb = bpy.data.objects.new('treeArm', arm) bpy.context.scene.objects.link(armOb) # Create a new action to store all animation newAction = bpy.data.actions.new(name='windAction') armOb.animation_data_create() armOb.animation_data.action = newAction arm.draw_type = 'STICK' arm.use_deform_delay = True # Add the armature modifier to the curve armMod = treeOb.modifiers.new('windSway', 'ARMATURE') #armMod.use_apply_on_spline = True armMod.object = armOb armMod.use_bone_envelopes = True armMod.use_vertex_groups = False # curves don't have vertex groups (yet) # If there are leaves then they need a modifier if leaves: armMod = leafObj.modifiers.new('windSway', 'ARMATURE') armMod.object = armOb armMod.use_bone_envelopes = True armMod.use_vertex_groups = True # Make sure all objects are deselected (may not be required?) for ob in bpy.data.objects: ob.select = False # Set the armature as active and go to edit mode to add bones bpy.context.scene.objects.active = armOb bpy.ops.object.mode_set(mode='EDIT') masterBones = [] offsetVal = 0 # For all the splines in the curve we need to add bones at each bezier point for i, parBone in enumerate(splineToBone): s = cu.splines[i] b = None # Get some data about the spline like length and number of points numPoints = len(s.bezier_points) - 1 splineL = numPoints * ((s.bezier_points[0].co - s.bezier_points[1].co).length) # Set the random phase difference of the animation bxOffset = uniform(0, 2 * pi) byOffset = uniform(0, 2 * pi) # Set the phase multiplier for the spline bMult = (s.bezier_points[0].radius / max(splineL, 1e-6)) * (1 / 15) * (1 / frameRate) # For all the points in the curve (less the last) add a bone and name it by the spline it will affect for n in range(numPoints): oldBone = b boneName = 'bone' + (str(i)).rjust(3, '0') + '.' + (str(n)).rjust(3, '0') b = arm.edit_bones.new(boneName) b.head = s.bezier_points[n].co b.tail = s.bezier_points[n + 1].co b.head_radius = s.bezier_points[n].radius b.tail_radius = s.bezier_points[n + 1].radius b.envelope_distance = 0.001 #0.001 # If there are leaves then we need a new vertex group so they will attach to the bone if (len(levelCount) > 1) and (i >= levelCount[-2]) and leafObj: leafObj.vertex_groups.new(boneName) elif (len(levelCount) == 1) and leafObj: leafObj.vertex_groups.new(boneName) # If this is first point of the spline then it must be parented to the level above it if n == 0: if parBone: b.parent = arm.edit_bones[parBone] # if len(parBone) > 11: # b.use_connect = True # Otherwise, we need to attach it to the previous bone in the spline else: b.parent = oldBone b.use_connect = True # If there isn't a previous bone then it shouldn't be attached if not oldBone: b.use_connect = False #tempList.append(b) # Add the animation to the armature if required if armAnim: # Define all the required parameters of the wind sway by the dimension of the spline a0 = 4 * splineL * (1 - n / (numPoints + 1)) / max(s.bezier_points[n].radius, 1e-6) a1 = (windSpeed / 50) * a0 a2 = (windGust / 50) * a0 + a1 / 2 # Add new fcurves for each sway as well as the modifiers swayX = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler', 0) swayY = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler', 2) swayXMod1 = swayX.modifiers.new(type='FNGENERATOR') swayXMod2 = swayX.modifiers.new(type='FNGENERATOR') swayYMod1 = swayY.modifiers.new(type='FNGENERATOR') swayYMod2 = swayY.modifiers.new(type='FNGENERATOR') # Set the parameters for each modifier swayXMod1.amplitude = radians(a1) / numPoints swayXMod1.phase_offset = bxOffset swayXMod1.phase_multiplier = degrees(bMult) swayXMod2.amplitude = radians(a2) / numPoints swayXMod2.phase_offset = 0.7 * bxOffset swayXMod2.phase_multiplier = 0.7 * degrees( bMult) # This shouldn't have to be in degrees but it looks much better in animation swayXMod2.use_additive = True swayYMod1.amplitude = radians(a1) / numPoints swayYMod1.phase_offset = byOffset swayYMod1.phase_multiplier = degrees( bMult) # This shouldn't have to be in degrees but it looks much better in animation swayYMod2.amplitude = radians(a2) / numPoints swayYMod2.phase_offset = 0.7 * byOffset swayYMod2.phase_multiplier = 0.7 * degrees( bMult) # This shouldn't have to be in degrees but it looks much better in animation swayYMod2.use_additive = True # If there are leaves we need to assign vertices to their vertex groups if leaves: offsetVal = 0 leafVertSize = 6 if leafShape == 'rect': leafVertSize = 4 for i, cp in enumerate(childP): for v in leafMesh.vertices[leafVertSize * i:(leafVertSize * i + leafVertSize)]: leafObj.vertex_groups[cp.parBone].add([v.index], 1.0, 'ADD') # Now we need the rotation mode to be 'XYZ' to ensure correct rotation bpy.ops.object.mode_set(mode='OBJECT') for p in armOb.pose.bones: p.rotation_mode = 'XYZ' treeOb.parent = armOb def kickstart_trunk(addstem, branches, cu, curve, curveRes, curveV, length, lengthV, ratio, resU, scale0, scaleV0, scaleVal, taper, vertAtt): vertAtt = 0.0 newSpline = cu.splines.new('BEZIER') cu.resolution_u = resU newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0, 0, 0)) newPoint.handle_right = Vector((0, 0, 1)) newPoint.handle_left = Vector((0, 0, -1)) # (newPoint.handle_right_type,newPoint.handle_left_type) = ('VECTOR','VECTOR') branchL = (scaleVal) * (length[0] + uniform(-lengthV[0], lengthV[0])) childStems = branches[1] startRad = branchL * ratio * (scale0 + uniform(-scaleV0, scaleV0)) endRad = startRad * (1 - taper[0]) newPoint.radius = startRad addstem( stemSpline(newSpline, curve[0] / curveRes[0], curveV[0] / curveRes[0], 0, curveRes[0], branchL / curveRes[0], childStems, startRad, endRad, 0)) return vertAtt def fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack, curveRes, curveV, downAngle, downAngleV, leafDist, leaves, length, lengthV, levels, n, oldRotate, ratioPower, resU, rotate, rotateV, scaleVal, shape, storeN, taper, vertAtt): for p in childP: # Add a spline and set the coordinate of the first point. newSpline = cu.splines.new('BEZIER') cu.resolution_u = resU newPoint = newSpline.bezier_points[-1] newPoint.co = p.co tempPos = zAxis.copy() # If the -ve flag for downAngle is used we need a special formula to find it if downAngleV[n] < 0.0: downV = downAngleV[n] * ( 1 - 2 * shapeRatio(0, (p.lengthPar - p.offset) / (p.lengthPar - baseSize * scaleVal))) random() # Otherwise just find a random value else: downV = uniform(-downAngleV[n], downAngleV[n]) downRotMat = Matrix.Rotation(downAngle[n] + downV, 3, 'X') tempPos.rotate(downRotMat) # If the -ve flag for rotate is used we need to find which side of the stem the last child point was and then grow in the opposite direction. if rotate[n] < 0.0: oldRotate = -copysign(rotate[n] + uniform(-rotateV[n], rotateV[n]), oldRotate) # Otherwise just generate a random number in the specified range else: oldRotate += rotate[n] + uniform(-rotateV[n], rotateV[n]) # Rotate the direction of growth and set the new point coordinates rotMat = Matrix.Rotation(oldRotate, 3, 'Z') tempPos.rotate(rotMat) tempPos.rotate(p.quat) newPoint.handle_right = p.co + tempPos if (storeN >= levels): # If this is the last level before leaves then we need to generate the child points differently branchL = (length[n] + uniform(-lengthV[n], lengthV[n])) * (p.lengthPar - 0.6 * p.offset) if leaves < 0: childStems = False else: childStems = leaves * shapeRatio(leafDist, p.offset / p.lengthPar) elif n == 1: # If this is the first level of branching then upward attraction has no effect and a special formula is used to find branch length and the number of child stems vertAtt = 0.0 lMax = length[1] + uniform(-lengthV[1], lengthV[1]) lMax += copysign(1e-6, lMax) # Move away from zero to avoid div by zero branchL = p.lengthPar * lMax * shapeRatio(shape, (p.lengthPar - p.offset) / (p.lengthPar - baseSize * scaleVal)) childStems = branches[2] * (0.2 + 0.8 * (branchL / p.lengthPar) / lMax) else: branchL = (length[n] + uniform(-lengthV[n], lengthV[n])) * (p.lengthPar - 0.6 * p.offset) childStems = branches[min(3, n + 1)] * (1.0 - 0.5 * p.offset / p.lengthPar) #print("n=%d, levels=%d, n'=%d, childStems=%s"%(n, levels, storeN, childStems)) branchL = max(branchL, 0.0) # Determine the starting and ending radii of the stem using the tapering of the stem startRad = min(p.radiusPar[0] * ((branchL / p.lengthPar) ** ratioPower), p.radiusPar[1]) endRad = startRad * (1 - taper[n]) newPoint.radius = startRad # If curveBack is used then the curviness of the stem is different for the first half if curveBack[n] == 0: curveVal = curve[n] / curveRes[n] else: curveVal = 2 * curve[n] / curveRes[n] # Add the new stem to list of stems to grow and define which bone it will be parented to addstem( stemSpline(newSpline, curveVal, curveV[n] / curveRes[n], 0, curveRes[n], branchL / curveRes[n], childStems, startRad, endRad, len(cu.splines) - 1)) addsplinetobone(p.parBone) return vertAtt def perform_pruning(baseSize, baseSplits, childP, cu, currentMax, currentMin, currentScale, curve, curveBack, curveRes, deleteSpline, forceSprout, handles, n, oldMax, orginalSplineToBone, originalCo, originalCurv, originalCurvV, originalHandleL, originalHandleR, originalLength, originalSeg, prune, prunePowerHigh, prunePowerLow, pruneRatio, pruneWidth, pruneWidthPeak, randState, ratio, scaleVal, segSplits, splineToBone, splitAngle, splitAngleV, st, startPrune, vertAtt): while startPrune and ((currentMax - currentMin) > 0.005): setstate(randState) # If the search will halt after this iteration, then set the adjustment of stem length to take into account the pruning ratio if (currentMax - currentMin) < 0.01: currentScale = (currentScale - 1) * pruneRatio + 1 startPrune = False forceSprout = True # Change the segment length of the stem by applying some scaling st.segL = originalLength * currentScale # To prevent millions of splines being created we delete any old ones and replace them with only their first points to begin the spline again if deleteSpline: for x in splineList: cu.splines.remove(x.spline) newSpline = cu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] newPoint.co = originalCo newPoint.handle_right = originalHandleR newPoint.handle_left = originalHandleL (newPoint.handle_left_type, newPoint.handle_right_type) = ('VECTOR', 'VECTOR') st.spline = newSpline st.curv = originalCurv st.curvV = originalCurvV st.seg = originalSeg st.p = newPoint newPoint.radius = st.radS splineToBone = orginalSplineToBone # Initialise the spline list for those contained in the current level of branching splineList = [st] # For each of the segments of the stem which must be grown we have to add to each spline in splineList for k in range(curveRes[n]): # Make a copy of the current list to avoid continually adding to the list we're iterating over tempList = splineList[:] # print('Leng: ',len(tempList)) # For each of the splines in this list set the number of splits and then grow it for spl in tempList: if k == 0: numSplit = 0 elif (k == 1) and (n == 0): numSplit = baseSplits else: numSplit = splits(segSplits[n]) if (k == int(curveRes[n] / 2)) and (curveBack[n] != 0): spl.curvAdd(-2 * curve[n] / curveRes[n] + 2 * curveBack[n] / curveRes[n]) growSpline(spl, numSplit, splitAngle[n], splitAngleV[n], splineList, vertAtt, handles, splineToBone) # Add proper refs for radius and attractUp # If pruning is enabled then we must to the check to see if the end of the spline is within the evelope if prune: # Check each endpoint to see if it is inside for s in splineList: coordMag = (s.spline.bezier_points[-1].co.xy).length ratio = (scaleVal - s.spline.bezier_points[-1].co.z) / (scaleVal * max(1 - baseSize, 1e-6)) # Don't think this if part is needed if (n == 0) and (s.spline.bezier_points[-1].co.z < baseSize * scaleVal): insideBool = True # Init to avoid UnboundLocalError later else: insideBool = ( (coordMag / scaleVal) < pruneWidth * shapeRatio(8, ratio, pruneWidthPeak, prunePowerHigh, prunePowerLow)) # If the point is not inside then we adjust the scale and current search bounds if not insideBool: oldMax = currentMax currentMax = currentScale currentScale = 0.5 * (currentMax + currentMin) break # If the scale is the original size and the point is inside then we need to make sure it won't be pruned or extended to the edge of the envelope if insideBool and (currentScale != 1): currentMin = currentScale currentMax = oldMax currentScale = 0.5 * (currentMax + currentMin) if insideBool and ((currentMax - currentMin) == 1): currentMin = 1 # If the search will halt on the next iteration then we need to make sure we sprout child points to grow the next splines or leaves if (((currentMax - currentMin) < 0.005) or not prune) or forceSprout: tVals = findChildPoints(splineList, st.children) #print("debug tvals[%d] , splineList[%d], %s" % ( len(tVals), len(splineList), st.children)) # If leaves is -ve then we need to make sure the only point which sprouts is the end of the spline # if not st.children: if not st.children: tVals = [0.9] # If this is the trunk then we need to remove some of the points because of baseSize if n == 0: trimNum = int(baseSize * (len(tVals) + 1)) tVals = tVals[trimNum:] # For all the splines, we interpolate them and add the new points to the list of child points for s in splineList: #print(str(n)+'level: ',s.segMax*s.segL) childP.extend(interpStem(s, tVals, s.segMax * s.segL, s.radS)) # Force the splines to be deleted deleteSpline = True # If pruning isn't enabled then make sure it doesn't loop if not prune: startPrune = False return ratio, splineToBone def addTree(props): global splitError #startTime = time.time() # Set the seed for repeatable results seed(props.seed)# # Set all other variables levels = props.levels# length = props.length# lengthV = props.lengthV# branches = props.branches# curveRes = props.curveRes# curve = toRad(props.curve)# curveV = toRad(props.curveV)# curveBack = toRad(props.curveBack)# baseSplits = props.baseSplits# segSplits = props.segSplits# splitAngle = toRad(props.splitAngle)# splitAngleV = toRad(props.splitAngleV)# scale = props.scale# scaleV = props.scaleV# attractUp = props.attractUp# shape = int(props.shape)# baseSize = props.baseSize ratio = props.ratio taper = props.taper# ratioPower = props.ratioPower# downAngle = toRad(props.downAngle)# downAngleV = toRad(props.downAngleV)# rotate = toRad(props.rotate)# rotateV = toRad(props.rotateV)# scale0 = props.scale0# scaleV0 = props.scaleV0# prune = props.prune# pruneWidth = props.pruneWidth# pruneWidthPeak = props.pruneWidthPeak# prunePowerLow = props.prunePowerLow# prunePowerHigh = props.prunePowerHigh# pruneRatio = props.pruneRatio# leafScale = props.leafScale# leafScaleX = props.leafScaleX# leafShape = props.leafShape bend = props.bend# leafDist = int(props.leafDist)# bevelRes = props.bevelRes# resU = props.resU# useArm = props.useArm frameRate = props.frameRate windSpeed = props.windSpeed windGust = props.windGust armAnim = props.armAnim leafObj = None # Some effects can be turned ON and OFF, the necessary variables are changed here if not props.bevel: bevelDepth = 0.0 else: bevelDepth = 1.0 if not props.showLeaves: leaves = 0 else: leaves = props.leaves if props.handleType == '0': handles = 'AUTO' else: handles = 'VECTOR' for ob in bpy.data.objects: ob.select = False childP = [] stemList = [] # Initialise the tree object and curve and adjust the settings cu = bpy.data.curves.new('tree','CURVE') treeOb = bpy.data.objects.new('tree',cu) bpy.context.scene.objects.link(treeOb) treeOb.location=bpy.context.scene.cursor_location cu.dimensions = '3D' cu.fill_mode = 'FULL' cu.bevel_depth = bevelDepth cu.bevel_resolution = bevelRes # Fix the scale of the tree now scaleVal = scale + uniform(-scaleV,scaleV) scaleVal += copysign(1e-6, scaleVal) # Move away from zero to avoid div by zero # If pruning is turned on we need to draw the pruning envelope if prune: enHandle = 'VECTOR' enNum = 128 enCu = bpy.data.curves.new('envelope','CURVE') enOb = bpy.data.objects.new('envelope',enCu) enOb.parent = treeOb bpy.context.scene.objects.link(enOb) newSpline = enCu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0,0,scaleVal)) (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle) # Set the coordinates by varying the z value, envelope will be aligned to the x-axis for c in range(enNum): newSpline.bezier_points.add() newPoint = newSpline.bezier_points[-1] ratioVal = (c+1)/(enNum) zVal = scaleVal - scaleVal*(1-baseSize)*ratioVal newPoint.co = Vector((scaleVal*pruneWidth*shapeRatio(8,ratioVal,pruneWidthPeak,prunePowerHigh,prunePowerLow),0,zVal)) (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle) newSpline = enCu.splines.new('BEZIER') newPoint = newSpline.bezier_points[-1] newPoint.co = Vector((0,0,scaleVal)) (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle) # Create a second envelope but this time on the y-axis for c in range(enNum): newSpline.bezier_points.add() newPoint = newSpline.bezier_points[-1] ratioVal = (c+1)/(enNum) zVal = scaleVal - scaleVal*(1-baseSize)*ratioVal newPoint.co = Vector((0,scaleVal*pruneWidth*shapeRatio(8,ratioVal,pruneWidthPeak,prunePowerHigh,prunePowerLow),zVal)) (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle) leafVerts = [] leafFaces = [] levelCount = [] splineToBone = deque(['']) addsplinetobone = splineToBone.append leafMesh = None # in case we aren't creating leaves, we'll still have the variable # Each of the levels needed by the user we grow all the splines for n in range(levels): storeN = n stemList = deque() addstem = stemList.append # If n is used as an index to access parameters for the tree it must be at most 3 or it will reference outside the array index n = min(3,n) vertAtt = attractUp splitError = 0.0 # If this is the first level of growth (the trunk) then we need some special work to begin the tree if n == 0: vertAtt = kickstart_trunk(addstem, branches, cu, curve, curveRes, curveV, length, lengthV, ratio, resU, scale0, scaleV0, scaleVal, taper, vertAtt) # If this isn't the trunk then we may have multiple stem to intialise else: # Store the old rotation to allow new stems to be rotated away from the previous one. oldRotate = 0 # For each of the points defined in the list of stem starting points we need to grow a stem. vertAtt = fabricate_stems(addsplinetobone, addstem, baseSize, branches, childP, cu, curve, curveBack, curveRes, curveV, downAngle, downAngleV, leafDist, leaves, length, lengthV, levels, n, oldRotate, ratioPower, resU, rotate, rotateV, scaleVal, shape, storeN, taper, vertAtt) childP = [] # Now grow each of the stems in the list of those to be extended for st in stemList: # When using pruning, we need to ensure that the random effects will be the same for each iteration to make sure the problem is linear. randState = getstate() startPrune = True lengthTest = 0.0 # Store all the original values for the stem to make sure we have access after it has been modified by pruning originalLength = st.segL originalCurv = st.curv originalCurvV = st.curvV originalSeg = st.seg originalHandleR = st.p.handle_right.copy() originalHandleL = st.p.handle_left.copy() originalCo = st.p.co.copy() currentMax = 1.0 currentMin = 0.0 currentScale = 1.0 oldMax = 1.0 deleteSpline = False orginalSplineToBone = copy.copy(splineToBone) forceSprout = False # Now do the iterative pruning, this uses a binary search and halts once the difference between upper and lower bounds of the search are less than 0.005 ratio, splineToBone = perform_pruning(baseSize, baseSplits, childP, cu, currentMax, currentMin, currentScale, curve, curveBack, curveRes, deleteSpline, forceSprout, handles, n, oldMax, orginalSplineToBone, originalCo, originalCurv, originalCurvV, originalHandleL, originalHandleR, originalLength, originalSeg, prune, prunePowerHigh, prunePowerLow, pruneRatio, pruneWidth, pruneWidthPeak, randState, ratio, scaleVal, segSplits, splineToBone, splitAngle, splitAngleV, st, startPrune, vertAtt) levelCount.append(len(cu.splines)) # If we need to add leaves, we do it here if (storeN == levels-1) and leaves: oldRot = 0.0 n = min(3,n+1) # For each of the child points we add leaves for cp in childP: # If the special flag is set then we need to add several leaves at the same location if leaves < 0: oldRot = -rotate[n]/2 for g in range(abs(leaves)): (vertTemp,faceTemp,oldRot) = genLeafMesh(leafScale,leafScaleX,cp.co,cp.quat,len(leafVerts),downAngle[n],downAngleV[n],rotate[n],rotateV[n],oldRot,bend,leaves, leafShape) leafVerts.extend(vertTemp) leafFaces.extend(faceTemp) # Otherwise just add the leaves like splines. else: (vertTemp,faceTemp,oldRot) = genLeafMesh(leafScale,leafScaleX,cp.co,cp.quat,len(leafVerts),downAngle[n],downAngleV[n],rotate[n],rotateV[n],oldRot,bend,leaves, leafShape) leafVerts.extend(vertTemp) leafFaces.extend(faceTemp) # Create the leaf mesh and object, add geometry using from_pydata, edges are currently added by validating the mesh which isn't great leafMesh = bpy.data.meshes.new('leaves') leafObj = bpy.data.objects.new('leaves',leafMesh) bpy.context.scene.objects.link(leafObj) leafObj.parent = treeOb leafMesh.from_pydata(leafVerts,(),leafFaces) if leafShape == 'rect': leafMesh.uv_textures.new("leafUV") uvlayer = leafMesh.uv_layers.active.data for i in range(0, len(leafFaces)): uvlayer[i*4 + 0].uv = Vector((1, 0)) uvlayer[i*4 + 1].uv = Vector((1, 1)) uvlayer[i*4 + 2].uv = Vector((1 - leafScaleX, 1)) uvlayer[i*4 + 3].uv = Vector((1 - leafScaleX, 0)) leafMesh.validate() # This can be used if we need particle leaves # if (storeN == levels-1) and leaves: # normalList = [] # oldRot = 0.0 # n = min(3,n+1) # oldRot = 0.0 # # For each of the child points we add leaves # for cp in childP: # # Here we make the new "sprouting" stems diverge from the current direction # dirVec = zAxis.copy() # oldRot += rotate[n]+uniform(-rotateV[n],rotateV[n]) # downRotMat = Matrix.Rotation(downAngle[n]+uniform(-downAngleV[n],downAngleV[n]),3,'X') # rotMat = Matrix.Rotation(oldRot,3,'Z') # dirVec.rotate(downRotMat) # dirVec.rotate(rotMat) # dirVec.rotate(cp.quat) # normalList.extend([dirVec.x,dirVec.y,dirVec.z]) # leafVerts.append(cp.co) # # Create the leaf mesh and object, add geometry using from_pydata, edges are currently added by validating the mesh which isn't great # edgeList = [(a,a+1) for a in range(len(childP)-1)] # leafMesh = bpy.data.meshes.new('leaves') # leafObj = bpy.data.objects.new('leaves',leafMesh) # bpy.context.scene.objects.link(leafObj) # leafObj.parent = treeOb # leafMesh.from_pydata(leafVerts,edgeList,()) # leafMesh.vertices.foreach_set('normal',normalList) # If we need and armature we add it if useArm: # Create the armature and objects create_armature(armAnim, childP, cu, frameRate, leafMesh, leafObj, leafShape, leaves, levelCount, splineToBone, treeOb, windGust, windSpeed) #print(time.time()-startTime)