# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import os #remove this import bpy try: import mathutils MATHUTILS = mathutils except: import Mathutils MATHUTILS = Mathutils from math import * from bpy.props import IntProperty, FloatProperty ,EnumProperty from itertools import * NARROW_UI = 180 MAX_INPUT_NUMBER = 50 #Global_Scale = 0.001 #1 blender unit = X mm GLOBAL_SCALE = 0.1 #1 blender unit = X mm #Global_Scale = 1.0 #1 blender unit = X mm # next two utility functions are stolen from import_obj.py def unpack_list(list_of_tuples): l = [] for t in list_of_tuples: l.extend(t) return l def unpack_face_list(list_of_tuples): l = [] for t in list_of_tuples: face = [i for i in t] if len(face) != 3 and len(face) != 4: raise RuntimeError("{0} vertices in face.".format(len(face))) # rotate indices if the 4th is 0 if len(face) == 4 and face[3] == 0: face = [face[3], face[0], face[1], face[2]] if len(face) == 3: face.append(0) l.extend(face) return l ''' Remove Doubles takes a list on Verts and a list of Faces and removes the doubles, much like Blender does in edit mode. It doesn’t have the range function but it will round the corrdinates and remove verts that are very close togther. The function is useful because you can perform a “Remove Doubles” with out having to enter Edit Mode. Having to enter edit mode has the disadvantage of not being able to interactively change the properties. ''' def RemoveDoubles(verts,faces,Decimal_Places = 4): new_verts = [] new_faces = [] dict_verts = {} Rounded_Verts = [] for v in verts: Rounded_Verts.append([round(v[0],Decimal_Places),round(v[1],Decimal_Places),round(v[2],Decimal_Places)]) for face in faces: new_face = [] for vert_index in face: Real_co = tuple(verts[vert_index]) Rounded_co = tuple(Rounded_Verts[vert_index]) if Rounded_co not in dict_verts: dict_verts[Rounded_co] = len(dict_verts) new_verts.append(Real_co) if dict_verts[Rounded_co] not in new_face: new_face.append(dict_verts[Rounded_co]) if len(new_face) == 3 or len(new_face) == 4: new_faces.append(new_face) return new_verts,new_faces def Scale_Mesh_Verts(verts,scale_factor): Ret_verts = [] for v in verts: Ret_verts.append([v[0]*scale_factor,v[1]*scale_factor,v[2]*scale_factor]) return Ret_verts #Create a matrix representing a rotation. # #Parameters: # # * angle (float) - The angle of rotation desired. # * matSize (int) - The size of the rotation matrix to construct. Can be 2d, 3d, or 4d. # * axisFlag (string (optional)) - Possible values: # o "x - x-axis rotation" # o "y - y-axis rotation" # o "z - z-axis rotation" # o "r - arbitrary rotation around vector" # * axis (Vector object. (optional)) - The arbitrary axis of rotation used with "R" # #Returns: Matrix object. # A new rotation matrix. def Simple_RotationMatrix(angle, matSize, axisFlag): if matSize != 4 : print ("Simple_RotationMatrix can only do 4x4") q = radians(angle) #make the rotation go clockwise if axisFlag == 'x': matrix = MATHUTILS.Matrix([1,0,0,0],[0,cos(q),sin(q),0],[0,-sin(q),cos(q),0],[0,0,0,1]) elif axisFlag == 'y': matrix = MATHUTILS.Matrix([cos(q),0,-sin(q),0],[0,1,0,0],[sin(q),0,cos(q),0],[0,0,0,1]) elif axisFlag == 'z': matrix = MATHUTILS.Matrix([cos(q),sin(q),0,0],[-sin(q),cos(q),0,0],[0,0,1,0],[0,0,0,1]) else: print ("Simple_RotationMatrix can only do x y z axis") return matrix ########################################################################################## ########################################################################################## ## Converter Functions For Bolt Factory ########################################################################################## ########################################################################################## def Flat_To_Radius(FLAT): h = (float(FLAT)/2)/cos(radians(30)) return h def Get_Phillips_Bit_Height(Bit_Dia): Flat_Width_half = (Bit_Dia*(0.5/1.82))/2.0 Bit_Rad = Bit_Dia / 2.0 x = Bit_Rad - Flat_Width_half y = tan(radians(60))*x return float(y) ########################################################################################## ########################################################################################## ## Miscellaneous Utilities ########################################################################################## ########################################################################################## # Returns a list of verts rotated by the given matrix. Used by SpinDup def Rot_Mesh(verts,matrix): ret = [] #print ("rot mat",matrix) for v in verts: vec = MATHUTILS.Vector(v) * matrix ret.append([vec.x,vec.y,vec.z]) return ret # Returns a list of faces that has there index incremented by offset def Copy_Faces(faces,offset): ret = [] for f in faces: fsub = [] for i in range(len(f)): fsub.append(f[i]+ offset) ret.append(fsub) return ret # Much like Blenders built in SpinDup. def SpinDup(VERTS,FACES,DEGREE,DIVISIONS,AXIS): verts=[] faces=[] if DIVISIONS == 0: DIVISIONS = 1 step = DEGREE/DIVISIONS # set step so pieces * step = degrees in arc for i in range(int(DIVISIONS)): rotmat = Simple_RotationMatrix(step*i, 4, AXIS) # 4x4 rotation matrix, 30d about the x axis. Rot = Rot_Mesh(VERTS,rotmat) faces.extend(Copy_Faces(FACES,len(verts))) verts.extend(Rot) return verts,faces # Returns a list of verts that have been moved up the z axis by DISTANCE def Move_Verts_Up_Z(VERTS,DISTANCE): ret = [] for v in VERTS: ret.append([v[0],v[1],v[2]+DISTANCE]) return ret # Returns a list of verts and faces that has been mirrored in the AXIS def Mirror_Verts_Faces(VERTS,FACES,AXIS,FLIP_POINT =0): ret_vert = [] ret_face = [] offset = len(VERTS) if AXIS == 'y': for v in VERTS: Delta = v[0] - FLIP_POINT ret_vert.append([FLIP_POINT-Delta,v[1],v[2]]) if AXIS == 'x': for v in VERTS: Delta = v[1] - FLIP_POINT ret_vert.append([v[0],FLIP_POINT-Delta,v[2]]) if AXIS == 'z': for v in VERTS: Delta = v[2] - FLIP_POINT ret_vert.append([v[0],v[1],FLIP_POINT-Delta]) for f in FACES: fsub = [] for i in range(len(f)): fsub.append(f[i]+ offset) fsub.reverse() # flip the order to make norm point out ret_face.append(fsub) return ret_vert,ret_face # Returns a list of faces that # make up an array of 4 point polygon. def Build_Face_List_Quads(OFFSET,COLUM,ROW,FLIP = 0): Ret =[] RowStart = 0; for j in range(ROW): for i in range(COLUM): Res1 = RowStart + i; Res2 = RowStart + i + (COLUM +1) Res3 = RowStart + i + (COLUM +1) +1 Res4 = RowStart+i+1 if FLIP: Ret.append([OFFSET+Res1,OFFSET+Res2,OFFSET+Res3,OFFSET+Res4]) else: Ret.append([OFFSET+Res4,OFFSET+Res3,OFFSET+Res2,OFFSET+Res1]) RowStart += COLUM+1 return Ret # Returns a list of faces that makes up a fill pattern for a # circle def Fill_Ring_Face(OFFSET,NUM,FACE_DOWN = 0): Ret =[] Face = [1,2,0] TempFace = [0,0,0] A = 0 B = 1 C = 2 if NUM < 3: return None for i in range(NUM-2): if (i%2): TempFace[0] = Face[C]; TempFace[1] = Face[C] + 1; TempFace[2] = Face[B]; if FACE_DOWN: Ret.append([OFFSET+Face[2],OFFSET+Face[1],OFFSET+Face[0]]) else: Ret.append([OFFSET+Face[0],OFFSET+Face[1],OFFSET+Face[2]]) else: TempFace[0] =Face[C]; if Face[C] == 0: TempFace[1] = NUM-1; else: TempFace[1] = Face[C] - 1; TempFace[2] = Face[B]; if FACE_DOWN: Ret.append([OFFSET+Face[0],OFFSET+Face[1],OFFSET+Face[2]]) else: Ret.append([OFFSET+Face[2],OFFSET+Face[1],OFFSET+Face[0]]) Face[0] = TempFace[0] Face[1] = TempFace[1] Face[2] = TempFace[2] return Ret ###################################################################################### ########################################################################################## ########################################################################################## ## Create Allen Bit ########################################################################################## ########################################################################################## def Allen_Fill(OFFSET,FLIP= 0): faces = [] Lookup = [[19,1,0], [19,2,1], [19,3,2], [19,20,3], [20,4,3], [20,5,4], [20,6,5], [20,7,6], [20,8,7], [20,9,8], [20,21,9], [21,10,9], [21,11,10], [21,12,11], [21,13,12], [21,14,13], [21,15,14], [21,22,15], [22,16,15], [22,17,16], [22,18,17] ] for i in Lookup: if FLIP: faces.append([OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]]) else: faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2]]) return faces def Allen_Bit_Dia(FLAT_DISTANCE): Flat_Radius = (float(FLAT_DISTANCE)/2.0)/cos(radians(30)) return (Flat_Radius * 1.05) * 2.0 def Allen_Bit_Dia_To_Flat(DIA): Flat_Radius = (DIA/2.0)/1.05 return (Flat_Radius * cos (radians(30)))* 2.0 def Create_Allen_Bit(FLAT_DISTANCE,HEIGHT): Div = 36 verts = [] faces = [] Flat_Radius = (float(FLAT_DISTANCE)/2.0)/cos(radians(30)) OUTTER_RADIUS = Flat_Radius * 1.05 Outter_Radius_Height = Flat_Radius * (0.1/5.77) FaceStart_Outside = len(verts) Deg_Step = 360.0 /float(Div) for i in range(int(Div/2)+1): # only do half and mirror later x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,0]) FaceStart_Inside = len(verts) Deg_Step = 360.0 /float(6) for i in range(int(6/2)+1): x = sin(radians(i*Deg_Step))* Flat_Radius y = cos(radians(i*Deg_Step))* Flat_Radius verts.append([x,y,0-Outter_Radius_Height]) faces.extend(Allen_Fill(FaceStart_Outside,0)) FaceStart_Bottom = len(verts) Deg_Step = 360.0 /float(6) for i in range(int(6/2)+1): x = sin(radians(i*Deg_Step))* Flat_Radius y = cos(radians(i*Deg_Step))* Flat_Radius verts.append([x,y,0-HEIGHT]) faces.extend(Build_Face_List_Quads(FaceStart_Inside,3,1,True)) faces.extend(Fill_Ring_Face(FaceStart_Bottom,4)) M_Verts,M_Faces = Mirror_Verts_Faces(verts,faces,'y') verts.extend(M_Verts) faces.extend(M_Faces) return verts,faces,OUTTER_RADIUS * 2.0 ########################################################################################## ########################################################################################## ## Create Phillips Bit ########################################################################################## ########################################################################################## def Phillips_Fill(OFFSET,FLIP= 0): faces = [] Lookup = [[0,1,10], [1,11,10], [1,2,11], [2,12,11], [2,3,12], [3,4,12], [4,5,12], [5,6,12], [6,7,12], [7,13,12], [7,8,13], [8,14,13], [8,9,14], [10,11,16,15], [11,12,16], [12,13,16], [13,14,17,16], [15,16,17,18] ] for i in Lookup: if FLIP: if len(i) == 3: faces.append([OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]]) else: faces.append([OFFSET+i[3],OFFSET+i[2],OFFSET+i[1],OFFSET+i[0]]) else: if len(i) == 3: faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2]]) else: faces.append([OFFSET+i[0],OFFSET+i[1],OFFSET+i[2],OFFSET+i[3]]) return faces def Create_Phillips_Bit(FLAT_DIA,FLAT_WIDTH,HEIGHT): Div = 36 verts = [] faces = [] FLAT_RADIUS = FLAT_DIA * 0.5 OUTTER_RADIUS = FLAT_RADIUS * 1.05 Flat_Half = float(FLAT_WIDTH)/2.0 FaceStart_Outside = len(verts) Deg_Step = 360.0 /float(Div) for i in range(int(Div/4)+1): # only do half and mirror later x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,0]) FaceStart_Inside = len(verts) verts.append([0,FLAT_RADIUS,0]) #10 verts.append([Flat_Half,FLAT_RADIUS,0]) #11 verts.append([Flat_Half,Flat_Half,0]) #12 verts.append([FLAT_RADIUS,Flat_Half,0]) #13 verts.append([FLAT_RADIUS,0,0]) #14 verts.append([0,Flat_Half,0-HEIGHT]) #15 verts.append([Flat_Half,Flat_Half,0-HEIGHT]) #16 verts.append([Flat_Half,0,0-HEIGHT]) #17 verts.append([0,0,0-HEIGHT]) #18 faces.extend(Phillips_Fill(FaceStart_Outside,True)) Spin_Verts,Spin_Face = SpinDup(verts,faces,360,4,'z') return Spin_Verts,Spin_Face,OUTTER_RADIUS * 2 ########################################################################################## ########################################################################################## ## Create Head Types ########################################################################################## ########################################################################################## def Max_Pan_Bit_Dia(HEAD_DIA): HEAD_RADIUS = HEAD_DIA * 0.5 XRad = HEAD_RADIUS * 1.976 return (sin(radians(10))*XRad) * 2.0 def Create_Pan_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2,FACE_OFFSET): DIV = 36 HOLE_RADIUS = HOLE_DIA * 0.5 HEAD_RADIUS = HEAD_DIA * 0.5 SHANK_RADIUS = SHANK_DIA * 0.5 verts = [] faces = [] Row = 0 BEVEL = HEIGHT * 0.01 #Dome_Rad = HEAD_RADIUS * (1.0/1.75) Dome_Rad = HEAD_RADIUS * 1.12 RAD_Offset = HEAD_RADIUS * 0.96 OtherRad = HEAD_RADIUS * 0.16 OtherRad_X_Offset = HEAD_RADIUS * 0.84 OtherRad_Z_Offset = HEAD_RADIUS * 0.504 XRad = HEAD_RADIUS * 1.976 ZRad = HEAD_RADIUS * 1.768 EndRad = HEAD_RADIUS * 0.284 EndZOffset = HEAD_RADIUS * 0.432 HEIGHT = HEAD_RADIUS * 0.59 # Dome_Rad = 5.6 # RAD_Offset = 4.9 # OtherRad = 0.8 # OtherRad_X_Offset = 4.2 # OtherRad_Z_Offset = 2.52 # XRad = 9.88 # ZRad = 8.84 # EndRad = 1.42 # EndZOffset = 2.16 # HEIGHT = 2.95 FaceStart = FACE_OFFSET z = cos(radians(10))*ZRad verts.append([HOLE_RADIUS,0.0,(0.0-ZRad)+z]) Start_Height = 0 - ((0.0-ZRad)+z) Row += 1 #for i in range(0,30,10): was 0 to 30 more work needed to make this look good. for i in range(10,30,10): x = sin(radians(i))*XRad z = cos(radians(i))*ZRad verts.append([x,0.0,(0.0-ZRad)+z]) Row += 1 for i in range(20,140,10): x = sin(radians(i))*EndRad z = cos(radians(i))*EndRad if ((0.0 - EndZOffset)+z) < (0.0-HEIGHT): verts.append([(HEAD_RADIUS -EndRad)+x,0.0,0.0 - HEIGHT]) else: verts.append([(HEAD_RADIUS -EndRad)+x,0.0,(0.0 - EndZOffset)+z]) Row += 1 verts.append([SHANK_RADIUS,0.0,(0.0-HEIGHT)]) Row += 1 verts.append([SHANK_RADIUS,0.0,(0.0-HEIGHT)-Start_Height]) Row += 1 sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z') sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV)) Global_Head_Height = HEIGHT ; return Move_Verts_Up_Z(sVerts,Start_Height),faces,HEIGHT def Create_Dome_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2,FACE_OFFSET): DIV = 36 HOLE_RADIUS = HOLE_DIA * 0.5 HEAD_RADIUS = HEAD_DIA * 0.5 SHANK_RADIUS = SHANK_DIA * 0.5 verts = [] faces = [] Row = 0 BEVEL = HEIGHT * 0.01 #Dome_Rad = HEAD_RADIUS * (1.0/1.75) Dome_Rad = HEAD_RADIUS * 1.12 #Head_Height = HEAD_RADIUS * 0.78 RAD_Offset = HEAD_RADIUS * 0.98 Dome_Height = HEAD_RADIUS * 0.64 OtherRad = HEAD_RADIUS * 0.16 OtherRad_X_Offset = HEAD_RADIUS * 0.84 OtherRad_Z_Offset = HEAD_RADIUS * 0.504 # Dome_Rad = 5.6 # RAD_Offset = 4.9 # Dome_Height = 3.2 # OtherRad = 0.8 # OtherRad_X_Offset = 4.2 # OtherRad_Z_Offset = 2.52 # FaceStart = FACE_OFFSET verts.append([HOLE_RADIUS,0.0,0.0]) Row += 1 for i in range(0,60,10): x = sin(radians(i))*Dome_Rad z = cos(radians(i))*Dome_Rad if ((0.0-RAD_Offset)+z) <= 0: verts.append([x,0.0,(0.0-RAD_Offset)+z]) Row += 1 for i in range(60,160,10): x = sin(radians(i))*OtherRad z = cos(radians(i))*OtherRad z = (0.0-OtherRad_Z_Offset)+z if z < (0.0-Dome_Height): z = (0.0-Dome_Height) verts.append([OtherRad_X_Offset+x,0.0,z]) Row += 1 verts.append([SHANK_RADIUS,0.0,(0.0-Dome_Height)]) Row += 1 sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z') sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV)) return sVerts,faces,Dome_Height def Create_CounterSink_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1): DIV = 36 HOLE_RADIUS = HOLE_DIA * 0.5 HEAD_RADIUS = HEAD_DIA * 0.5 SHANK_RADIUS = SHANK_DIA * 0.5 verts = [] faces = [] Row = 0 BEVEL = HEIGHT * 0.01 # HEAD_RADIUS = (HEIGHT/tan(radians(60))) + SHANK_RADIUS HEIGHT = tan(radians(60)) * (HEAD_RADIUS - SHANK_RADIUS) #print (RAD1) FaceStart = len(verts) verts.append([HOLE_RADIUS,0.0,0.0]) Row += 1 #rad for i in range(0,100,10): x = sin(radians(i))*RAD1 z = cos(radians(i))*RAD1 verts.append([(HEAD_RADIUS-RAD1)+x,0.0,(0.0-RAD1)+z]) Row += 1 verts.append([SHANK_RADIUS,0.0,0.0-HEIGHT]) Row += 1 sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z') sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV,1)) return sVerts,faces,HEIGHT def Create_Cap_Head(HOLE_DIA,HEAD_DIA,SHANK_DIA,HEIGHT,RAD1,RAD2): DIV = 36 HOLE_RADIUS = HOLE_DIA * 0.5 HEAD_RADIUS = HEAD_DIA * 0.5 SHANK_RADIUS = SHANK_DIA * 0.5 verts = [] faces = [] Row = 0 BEVEL = HEIGHT * 0.01 FaceStart = len(verts) verts.append([HOLE_RADIUS,0.0,0.0]) Row += 1 #rad for i in range(0,100,10): x = sin(radians(i))*RAD1 z = cos(radians(i))*RAD1 verts.append([(HEAD_RADIUS-RAD1)+x,0.0,(0.0-RAD1)+z]) Row += 1 verts.append([HEAD_RADIUS,0.0,0.0-HEIGHT+BEVEL]) Row += 1 verts.append([HEAD_RADIUS-BEVEL,0.0,0.0-HEIGHT]) Row += 1 #rad2 for i in range(0,100,10): x = sin(radians(i))*RAD2 z = cos(radians(i))*RAD2 verts.append([(SHANK_RADIUS+RAD2)-x,0.0,(0.0-HEIGHT-RAD2)+z]) Row += 1 sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z') sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV)) return sVerts,faces,HEIGHT+RAD2 def Create_Hex_Head(FLAT,HOLE_DIA,SHANK_DIA,HEIGHT): verts = [] faces = [] HOLE_RADIUS = HOLE_DIA * 0.5 Half_Flat = FLAT/2 TopBevelRadius = Half_Flat - (Half_Flat* (0.05/8)) Undercut_Height = (Half_Flat* (0.05/8)) Shank_Bevel = (Half_Flat* (0.05/8)) Flat_Height = HEIGHT - Undercut_Height - Shank_Bevel #Undercut_Height = 5 SHANK_RADIUS = SHANK_DIA/2 Row = 0; verts.append([0.0,0.0,0.0]) FaceStart = len(verts) #inner hole x = sin(radians(0))*HOLE_RADIUS y = cos(radians(0))*HOLE_RADIUS verts.append([x,y,0.0]) x = sin(radians(60/6))*HOLE_RADIUS y = cos(radians(60/6))*HOLE_RADIUS verts.append([x,y,0.0]) x = sin(radians(60/3))*HOLE_RADIUS y = cos(radians(60/3))*HOLE_RADIUS verts.append([x,y,0.0]) x = sin(radians(60/2))*HOLE_RADIUS y = cos(radians(60/2))*HOLE_RADIUS verts.append([x,y,0.0]) Row += 1 #bevel x = sin(radians(0))*TopBevelRadius y = cos(radians(0))*TopBevelRadius vec1 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,0.0]) x = sin(radians(60/6))*TopBevelRadius y = cos(radians(60/6))*TopBevelRadius vec2 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,0.0]) x = sin(radians(60/3))*TopBevelRadius y = cos(radians(60/3))*TopBevelRadius vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,0.0]) x = sin(radians(60/2))*TopBevelRadius y = cos(radians(60/2))*TopBevelRadius vec4 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,0.0]) Row += 1 #Flats x = tan(radians(0))*Half_Flat dvec = vec1 - MATHUTILS.Vector([x,Half_Flat,0.0]) verts.append([x,Half_Flat,-dvec.length]) x = tan(radians(60/6))*Half_Flat dvec = vec2 - MATHUTILS.Vector([x,Half_Flat,0.0]) verts.append([x,Half_Flat,-dvec.length]) x = tan(radians(60/3))*Half_Flat dvec = vec3 - MATHUTILS.Vector([x,Half_Flat,0.0]) Lowest_Point = -dvec.length verts.append([x,Half_Flat,-dvec.length]) x = tan(radians(60/2))*Half_Flat dvec = vec4 - MATHUTILS.Vector([x,Half_Flat,0.0]) Lowest_Point = -dvec.length verts.append([x,Half_Flat,-dvec.length]) Row += 1 #down Bits Tri x = tan(radians(0))*Half_Flat verts.append([x,Half_Flat,Lowest_Point]) x = tan(radians(60/6))*Half_Flat verts.append([x,Half_Flat,Lowest_Point]) x = tan(radians(60/3))*Half_Flat verts.append([x,Half_Flat,Lowest_Point]) x = tan(radians(60/2))*Half_Flat verts.append([x,Half_Flat,Lowest_Point]) Row += 1 #down Bits x = tan(radians(0))*Half_Flat verts.append([x,Half_Flat,-Flat_Height]) x = tan(radians(60/6))*Half_Flat verts.append([x,Half_Flat,-Flat_Height]) x = tan(radians(60/3))*Half_Flat verts.append([x,Half_Flat,-Flat_Height]) x = tan(radians(60/2))*Half_Flat verts.append([x,Half_Flat,-Flat_Height]) Row += 1 #under cut x = sin(radians(0))*Half_Flat y = cos(radians(0))*Half_Flat vec1 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height]) x = sin(radians(60/6))*Half_Flat y = cos(radians(60/6))*Half_Flat vec2 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height]) x = sin(radians(60/3))*Half_Flat y = cos(radians(60/3))*Half_Flat vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height]) x = sin(radians(60/2))*Half_Flat y = cos(radians(60/2))*Half_Flat vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height]) Row += 1 #under cut down bit x = sin(radians(0))*Half_Flat y = cos(radians(0))*Half_Flat vec1 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height]) x = sin(radians(60/6))*Half_Flat y = cos(radians(60/6))*Half_Flat vec2 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height]) x = sin(radians(60/3))*Half_Flat y = cos(radians(60/3))*Half_Flat vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height]) x = sin(radians(60/2))*Half_Flat y = cos(radians(60/2))*Half_Flat vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height]) Row += 1 #under cut to Shank BEVEAL x = sin(radians(0))*(SHANK_RADIUS+Shank_Bevel) y = cos(radians(0))*(SHANK_RADIUS+Shank_Bevel) vec1 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height]) x = sin(radians(60/6))*(SHANK_RADIUS+Shank_Bevel) y = cos(radians(60/6))*(SHANK_RADIUS+Shank_Bevel) vec2 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height]) x = sin(radians(60/3))*(SHANK_RADIUS+Shank_Bevel) y = cos(radians(60/3))*(SHANK_RADIUS+Shank_Bevel) vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height]) x = sin(radians(60/2))*(SHANK_RADIUS+Shank_Bevel) y = cos(radians(60/2))*(SHANK_RADIUS+Shank_Bevel) vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height]) Row += 1 #under cut to Shank BEVEAL x = sin(radians(0))*SHANK_RADIUS y = cos(radians(0))*SHANK_RADIUS vec1 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel]) x = sin(radians(60/6))*SHANK_RADIUS y = cos(radians(60/6))*SHANK_RADIUS vec2 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel]) x = sin(radians(60/3))*SHANK_RADIUS y = cos(radians(60/3))*SHANK_RADIUS vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel]) x = sin(radians(60/2))*SHANK_RADIUS y = cos(radians(60/2))*SHANK_RADIUS vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,-Flat_Height-Undercut_Height-Shank_Bevel]) Row += 1 #Global_Head_Height = 0 - (-HEIGHT-0.1) faces.extend(Build_Face_List_Quads(FaceStart,3,Row - 1)) Mirror_Verts,Mirror_Faces = Mirror_Verts_Faces(verts,faces,'y') verts.extend(Mirror_Verts) faces.extend(Mirror_Faces) Spin_Verts,Spin_Faces = SpinDup(verts,faces,360,6,'z') return Spin_Verts,Spin_Faces,0 - (-HEIGHT) ########################################################################################## ########################################################################################## ## Create External Thread ########################################################################################## ########################################################################################## def Thread_Start3(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset): Ret_Row = 0; Half_Pitch = float(PITCH)/2 Height_Start = Height_Offset - PITCH Height_Step = float(PITCH)/float(DIV) Deg_Step = 360.0 /float(DIV) Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100) Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100) Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0 #theard start Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV) for j in range(4): for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,z]) Height_Offset -= Crest_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,z ]) Height_Offset -= Crest_to_Root_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS if j == 0: x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) verts.append([x,y,z ]) Height_Offset -= Root_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS if j == 0: x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) verts.append([x,y,z ]) Height_Offset -= Root_to_Crest_Height Ret_Row += 1 return Ret_Row,Height_Offset def Create_Shank_Verts(START_DIA,OUTTER_DIA,LENGTH,Z_LOCATION = 0): verts = [] DIV = 36 START_RADIUS = START_DIA/2 OUTTER_RADIUS = OUTTER_DIA/2 Opp = abs(START_RADIUS - OUTTER_RADIUS) Taper_Lentgh = Opp/tan(radians(31)); if Taper_Lentgh > LENGTH: Taper_Lentgh = 0 Stright_Length = LENGTH - Taper_Lentgh Deg_Step = 360.0 /float(DIV) Row = 0 Lowest_Z_Vert = 0; Height_Offset = Z_LOCATION #ring for i in range(DIV+1): x = sin(radians(i*Deg_Step))*START_RADIUS y = cos(radians(i*Deg_Step))*START_RADIUS z = Height_Offset - 0 verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Stright_Length Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*START_RADIUS y = cos(radians(i*Deg_Step))*START_RADIUS z = Height_Offset - 0 verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Taper_Lentgh Row += 1 return verts,Row,Height_Offset def Create_Thread_Start_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0): verts = [] DIV = 36 INNER_RADIUS = INNER_DIA/2 OUTTER_RADIUS = OUTTER_DIA/2 Half_Pitch = float(PITCH)/2 Deg_Step = 360.0 /float(DIV) Height_Step = float(PITCH)/float(DIV) Row = 0 Lowest_Z_Vert = 0; Height_Offset = Z_LOCATION Height_Start = Height_Offset Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100) Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100) Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0 Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV) Height_Offset = Z_LOCATION + PITCH Cut_off = Z_LOCATION for j in range(1): for i in range(DIV+1): x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS z = Height_Offset - (Height_Step*i) if z > Cut_off : z = Cut_off verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Crest_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS z = Height_Offset - (Height_Step*i) if z > Cut_off : z = Cut_off verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Crest_to_Root_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS z = Height_Offset - (Height_Step*i) if z > Cut_off : z = Cut_off verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Root_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS z = Height_Offset - (Height_Step*i) if z > Cut_off : z = Cut_off verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Root_to_Crest_Height Row += 1 for j in range(2): for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Crest_Height Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,z ]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Crest_to_Root_Height Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS if j == 0: x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) verts.append([x,y,z ]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Root_Height Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS if j == 0: x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) verts.append([x,y,z ]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Root_to_Crest_Height Row += 1 return verts,Row,Height_Offset def Create_Thread_Verts(INNER_DIA,OUTTER_DIA,PITCH,HEIGHT,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0): verts = [] DIV = 36 INNER_RADIUS = INNER_DIA/2 OUTTER_RADIUS = OUTTER_DIA/2 Half_Pitch = float(PITCH)/2 Deg_Step = 360.0 /float(DIV) Height_Step = float(PITCH)/float(DIV) NUM_OF_START_THREADS = 4.0 NUM_OF_END_THREADS = 3.0 Num = int((HEIGHT- ((NUM_OF_START_THREADS*PITCH) + (NUM_OF_END_THREADS*PITCH) ))/PITCH) Row = 0 Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100) Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100) Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0 Height_Offset = Z_LOCATION Lowest_Z_Vert = 0; FaceStart = len(verts) for j in range(Num): for i in range(DIV+1): x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS z = Height_Offset - (Height_Step*i) verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Crest_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS z = Height_Offset - (Height_Step*i) verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Crest_to_Root_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS z = Height_Offset - (Height_Step*i) verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Root_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS z = Height_Offset - (Height_Step*i) verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Root_to_Crest_Height Row += 1 return verts,Row,Height_Offset def Create_Thread_End_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Z_LOCATION = 0): verts = [] DIV = 36 INNER_RADIUS = INNER_DIA/2 OUTTER_RADIUS = OUTTER_DIA/2 Half_Pitch = float(PITCH)/2 Deg_Step = 360.0 /float(DIV) Height_Step = float(PITCH)/float(DIV) Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100) Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100) Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0 Col = 0 Row = 0 Height_Offset = Z_LOCATION Tapper_Height_Start = Height_Offset - PITCH - PITCH Max_Height = Tapper_Height_Start - PITCH Lowest_Z_Vert = 0; FaceStart = len(verts) for j in range(4): for i in range(DIV+1): z = Height_Offset - (Height_Step*i) z = max(z,Max_Height) Tapper_Radius = OUTTER_RADIUS if z < Tapper_Height_Start: Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z) x = sin(radians(i*Deg_Step))*(Tapper_Radius) y = cos(radians(i*Deg_Step))*(Tapper_Radius) verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Crest_Height Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) z = max(z,Max_Height) Tapper_Radius = OUTTER_RADIUS if z < Tapper_Height_Start: Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z) x = sin(radians(i*Deg_Step))*(Tapper_Radius) y = cos(radians(i*Deg_Step))*(Tapper_Radius) verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Crest_to_Root_Height Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) z = max(z,Max_Height) Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z) if Tapper_Radius > INNER_RADIUS: Tapper_Radius = INNER_RADIUS x = sin(radians(i*Deg_Step))*(Tapper_Radius) y = cos(radians(i*Deg_Step))*(Tapper_Radius) verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Root_Height Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) z = max(z,Max_Height) Tapper_Radius = OUTTER_RADIUS - (Tapper_Height_Start - z) if Tapper_Radius > INNER_RADIUS: Tapper_Radius = INNER_RADIUS x = sin(radians(i*Deg_Step))*(Tapper_Radius) y = cos(radians(i*Deg_Step))*(Tapper_Radius) verts.append([x,y,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Height_Offset -= Root_to_Crest_Height Row += 1 return verts,Row,Height_Offset,Lowest_Z_Vert def Create_External_Thread(SHANK_DIA,SHANK_LENGTH,INNER_DIA,OUTTER_DIA,PITCH,LENGTH,CREST_PERCENT,ROOT_PERCENT): verts = [] faces = [] DIV = 36 Total_Row = 0 Thread_Len = 0; Face_Start = len(verts) Offset = 0.0; Shank_Verts,Shank_Row,Offset = Create_Shank_Verts(SHANK_DIA,OUTTER_DIA,SHANK_LENGTH,Offset) Total_Row += Shank_Row Thread_Start_Verts,Thread_Start_Row,Offset = Create_Thread_Start_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Offset) Total_Row += Thread_Start_Row Thread_Verts,Thread_Row,Offset = Create_Thread_Verts(INNER_DIA,OUTTER_DIA,PITCH,LENGTH,CREST_PERCENT,ROOT_PERCENT,Offset) Total_Row += Thread_Row Thread_End_Verts,Thread_End_Row,Offset,Lowest_Z_Vert = Create_Thread_End_Verts(INNER_DIA,OUTTER_DIA,PITCH,CREST_PERCENT,ROOT_PERCENT,Offset ) Total_Row += Thread_End_Row verts.extend(Shank_Verts) verts.extend(Thread_Start_Verts) verts.extend(Thread_Verts) verts.extend(Thread_End_Verts) faces.extend(Build_Face_List_Quads(Face_Start,DIV,Total_Row -1,0)) faces.extend(Fill_Ring_Face(len(verts)-DIV,DIV,1)) return verts,faces,0.0 - Lowest_Z_Vert ########################################################################################## ########################################################################################## ## Create Nut ########################################################################################## ########################################################################################## def add_Hex_Nut(FLAT,HOLE_DIA,HEIGHT): global Global_Head_Height global Global_NutRad verts = [] faces = [] HOLE_RADIUS = HOLE_DIA * 0.5 Half_Flat = FLAT/2 Half_Height = HEIGHT/2 TopBevelRadius = Half_Flat - 0.05 Global_NutRad = TopBevelRadius Row = 0; Lowest_Z_Vert = 0.0; verts.append([0.0,0.0,0.0]) FaceStart = len(verts) #inner hole x = sin(radians(0))*HOLE_RADIUS y = cos(radians(0))*HOLE_RADIUS #print ("rad 0 x;", x, "y:" ,y ) verts.append([x,y,0.0]) x = sin(radians(60/6))*HOLE_RADIUS y = cos(radians(60/6))*HOLE_RADIUS #print ("rad 60/6x;", x, "y:" ,y ) verts.append([x,y,0.0]) x = sin(radians(60/3))*HOLE_RADIUS y = cos(radians(60/3))*HOLE_RADIUS #print ("rad 60/3x;", x, "y:" ,y ) verts.append([x,y,0.0]) x = sin(radians(60/2))*HOLE_RADIUS y = cos(radians(60/2))*HOLE_RADIUS #print ("rad 60/2x;", x, "y:" ,y ) verts.append([x,y,0.0]) Row += 1 #bevel x = sin(radians(0))*TopBevelRadius y = cos(radians(0))*TopBevelRadius vec1 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,0.0]) x = sin(radians(60/6))*TopBevelRadius y = cos(radians(60/6))*TopBevelRadius vec2 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,0.0]) x = sin(radians(60/3))*TopBevelRadius y = cos(radians(60/3))*TopBevelRadius vec3 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,0.0]) x = sin(radians(60/2))*TopBevelRadius y = cos(radians(60/2))*TopBevelRadius vec4 = MATHUTILS.Vector([x,y,0.0]) verts.append([x,y,0.0]) Row += 1 #Flats x = tan(radians(0))*Half_Flat dvec = vec1 - MATHUTILS.Vector([x,Half_Flat,0.0]) verts.append([x,Half_Flat,-dvec.length]) Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length) x = tan(radians(60/6))*Half_Flat dvec = vec2 - MATHUTILS.Vector([x,Half_Flat,0.0]) verts.append([x,Half_Flat,-dvec.length]) Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length) x = tan(radians(60/3))*Half_Flat dvec = vec3 - MATHUTILS.Vector([x,Half_Flat,0.0]) Lowest_Point = -dvec.length verts.append([x,Half_Flat,-dvec.length]) Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length) x = tan(radians(60/2))*Half_Flat dvec = vec4 - MATHUTILS.Vector([x,Half_Flat,0.0]) Lowest_Point = -dvec.length verts.append([x,Half_Flat,-dvec.length]) Lowest_Z_Vert = min(Lowest_Z_Vert,-dvec.length) Row += 1 #down Bits Tri x = tan(radians(0))*Half_Flat verts.append([x,Half_Flat,Lowest_Point]) x = tan(radians(60/6))*Half_Flat verts.append([x,Half_Flat,Lowest_Point]) x = tan(radians(60/3))*Half_Flat verts.append([x,Half_Flat,Lowest_Point]) x = tan(radians(60/2))*Half_Flat verts.append([x,Half_Flat,Lowest_Point]) Lowest_Z_Vert = min(Lowest_Z_Vert,Lowest_Point) Row += 1 #down Bits x = tan(radians(0))*Half_Flat verts.append([x,Half_Flat,-Half_Height]) x = tan(radians(60/6))*Half_Flat verts.append([x,Half_Flat,-Half_Height]) x = tan(radians(60/3))*Half_Flat verts.append([x,Half_Flat,-Half_Height]) x = tan(radians(60/2))*Half_Flat verts.append([x,Half_Flat,-Half_Height]) Lowest_Z_Vert = min(Lowest_Z_Vert,-Half_Height) Row += 1 faces.extend(Build_Face_List_Quads(FaceStart,3,Row - 1)) Global_Head_Height = HEIGHT Tvert,tface = Mirror_Verts_Faces(verts,faces,'z',Lowest_Z_Vert) verts.extend(Tvert) faces.extend(tface) Tvert,tface = Mirror_Verts_Faces(verts,faces,'y') verts.extend(Tvert) faces.extend(tface) S_verts,S_faces = SpinDup(verts,faces,360,6,'z') #return verts,faces,TopBevelRadius return S_verts,S_faces,TopBevelRadius def add_Nylon_Head(OUTSIDE_RADIUS,Z_LOCATION = 0): DIV = 36 verts = [] faces = [] Row = 0 INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.25/4.75)) EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4/4.75)) RAD1 = (OUTSIDE_RADIUS * (0.5/4.75)) OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0/4.75)) FaceStart = len(verts) Start_Height = 0 - 3 Height_Offset = Z_LOCATION Lowest_Z_Vert = 0 x = INNER_HOLE z = (Height_Offset - OVER_ALL_HEIGTH) + EDGE_THICKNESS verts.append([x,0.0,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Row += 1 x = INNER_HOLE z = (Height_Offset - OVER_ALL_HEIGTH) verts.append([x,0.0,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Row += 1 for i in range(180,80,-10): x = sin(radians(i))*RAD1 z = cos(radians(i))*RAD1 verts.append([(OUTSIDE_RADIUS-RAD1)+x,0.0,((Height_Offset - OVER_ALL_HEIGTH)+RAD1)+z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Row += 1 x = OUTSIDE_RADIUS - 0 z = Height_Offset verts.append([x,0.0,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Row += 1 sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z') sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV)) return Move_Verts_Up_Z(sVerts,0),faces,Lowest_Z_Vert def add_Nylon_Part(OUTSIDE_RADIUS,Z_LOCATION = 0): DIV = 36 verts = [] faces = [] Row = 0 INNER_HOLE = OUTSIDE_RADIUS - (OUTSIDE_RADIUS * (1.5/4.75)) EDGE_THICKNESS = (OUTSIDE_RADIUS * (0.4/4.75)) RAD1 = (OUTSIDE_RADIUS * (0.5/4.75)) OVER_ALL_HEIGTH = (OUTSIDE_RADIUS * (2.0/4.75)) PART_THICKNESS = OVER_ALL_HEIGTH - EDGE_THICKNESS PART_INNER_HOLE = (OUTSIDE_RADIUS * (2.5/4.75)) FaceStart = len(verts) Start_Height = 0 - 3 Height_Offset = Z_LOCATION Lowest_Z_Vert = 0 x = INNER_HOLE + EDGE_THICKNESS z = Height_Offset verts.append([x,0.0,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Row += 1 x = PART_INNER_HOLE z = Height_Offset verts.append([x,0.0,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Row += 1 x = PART_INNER_HOLE z = Height_Offset - PART_THICKNESS verts.append([x,0.0,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Row += 1 x = INNER_HOLE + EDGE_THICKNESS z = Height_Offset - PART_THICKNESS verts.append([x,0.0,z]) Lowest_Z_Vert = min(Lowest_Z_Vert,z) Row += 1 sVerts,sFaces = SpinDup(verts,faces,360,DIV,'z') sVerts.extend(verts) #add the start verts to the Spin verts to complete the loop faces.extend(Build_Face_List_Quads(FaceStart,Row-1,DIV,1)) return sVerts,faces,0 - Lowest_Z_Vert ########################################################################################## ########################################################################################## ## Create Internal Thread ########################################################################################## ########################################################################################## def Create_Internal_Thread_Start_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset): Ret_Row = 0; Height_Offset = Height_Offset + PITCH #Move the offset up so that the verts start at #at the correct place (Height_Start) Half_Pitch = float(PITCH)/2 Height_Start = Height_Offset - PITCH Height_Step = float(PITCH)/float(DIV) Deg_Step = 360.0 /float(DIV) Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100) Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100) Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0 Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV) for j in range(1): for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,z]) Height_Offset -= Crest_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,z ]) Height_Offset -= Crest_to_Root_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS if j == 0: x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) verts.append([x,y,z ]) Height_Offset -= Root_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z > Height_Start: z = Height_Start x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS if j == 0: x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS - (i*Rank)) verts.append([x,y,z ]) Height_Offset -= Root_to_Crest_Height Ret_Row += 1 return Ret_Row,Height_Offset def Create_Internal_Thread_End_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset): Ret_Row = 0; Half_Pitch = float(PITCH)/2 #Height_End = Height_Offset - PITCH - PITCH - PITCH- PITCH - PITCH- PITCH Height_End = Height_Offset - PITCH #Height_End = -2.1 Height_Step = float(PITCH)/float(DIV) Deg_Step = 360.0 /float(DIV) Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100) Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100) Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0 Rank = float(OUTTER_RADIUS - INNER_RADIUS)/float(DIV) Num = 0 for j in range(2): for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z < Height_End: z = Height_End x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,z]) Height_Offset -= Crest_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z < Height_End: z = Height_End x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,z ]) Height_Offset -= Crest_to_Root_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z < Height_End: z = Height_End x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS if j == Num: x = sin(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank)) y = cos(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank)) if j > Num: x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS) y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS ) verts.append([x,y,z ]) Height_Offset -= Root_Height Ret_Row += 1 for i in range(DIV+1): z = Height_Offset - (Height_Step*i) if z < Height_End: z = Height_End x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS if j == Num: x = sin(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank)) y = cos(radians(i*Deg_Step))*(INNER_RADIUS + (i*Rank)) if j > Num: x = sin(radians(i*Deg_Step))*(OUTTER_RADIUS ) y = cos(radians(i*Deg_Step))*(OUTTER_RADIUS ) verts.append([x,y,z ]) Height_Offset -= Root_to_Crest_Height Ret_Row += 1 return Ret_Row,Height_End # send back Height End as this is the lowest point def Create_Internal_Thread(INNER_DIA,OUTTER_DIA,PITCH,HEIGHT,CREST_PERCENT,ROOT_PERCENT,INTERNAL = 1): verts = [] faces = [] DIV = 36 INNER_RADIUS = INNER_DIA/2 OUTTER_RADIUS = OUTTER_DIA/2 Half_Pitch = float(PITCH)/2 Deg_Step = 360.0 /float(DIV) Height_Step = float(PITCH)/float(DIV) Num = int(round((HEIGHT- PITCH)/PITCH)) # less one pitch for the start and end that is 1/2 pitch high Col = 0 Row = 0 Crest_Height = float(PITCH) * float(CREST_PERCENT)/float(100) Root_Height = float(PITCH) * float(ROOT_PERCENT)/float(100) Root_to_Crest_Height = Crest_to_Root_Height = (float(PITCH) - (Crest_Height + Root_Height))/2.0 Height_Offset = 0 FaceStart = len(verts) Row_Inc,Height_Offset = Create_Internal_Thread_Start_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset) Row += Row_Inc for j in range(Num): for i in range(DIV+1): x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,Height_Offset - (Height_Step*i) ]) Height_Offset -= Crest_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*OUTTER_RADIUS y = cos(radians(i*Deg_Step))*OUTTER_RADIUS verts.append([x,y,Height_Offset - (Height_Step*i) ]) Height_Offset -= Crest_to_Root_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS verts.append([x,y,Height_Offset - (Height_Step*i) ]) Height_Offset -= Root_Height Row += 1 for i in range(DIV+1): x = sin(radians(i*Deg_Step))*INNER_RADIUS y = cos(radians(i*Deg_Step))*INNER_RADIUS verts.append([x,y,Height_Offset - (Height_Step*i) ]) Height_Offset -= Root_to_Crest_Height Row += 1 Row_Inc,Height_Offset = Create_Internal_Thread_End_Verts(verts,INNER_RADIUS,OUTTER_RADIUS,PITCH,DIV,CREST_PERCENT,ROOT_PERCENT,Height_Offset) Row += Row_Inc faces.extend(Build_Face_List_Quads(FaceStart,DIV,Row -1,INTERNAL)) return verts,faces,0 - Height_Offset def Nut_Mesh(props, context): verts = [] faces = [] Head_Verts = [] Head_Faces= [] #sc = context.scene New_Nut_Height = 5 Face_Start = len(verts) Thread_Verts,Thread_Faces,New_Nut_Height = Create_Internal_Thread(props.bf_Minor_Dia,props.bf_Major_Dia,props.bf_Pitch,props.bf_Hex_Nut_Height,props.bf_Crest_Percent,props.bf_Root_Percent,1) verts.extend(Thread_Verts) faces.extend(Copy_Faces(Thread_Faces,Face_Start)) Face_Start = len(verts) Head_Verts,Head_Faces,Lock_Nut_Rad = add_Hex_Nut(props.bf_Hex_Nut_Flat_Distance,props.bf_Major_Dia,New_Nut_Height) verts.extend((Head_Verts)) faces.extend(Copy_Faces(Head_Faces,Face_Start)) LowZ = 0 - New_Nut_Height if props.bf_Nut_Type == 'bf_Nut_Lock': Face_Start = len(verts) Nylon_Head_Verts,Nylon_Head_faces,LowZ = add_Nylon_Head(Lock_Nut_Rad,0-New_Nut_Height) verts.extend((Nylon_Head_Verts)) faces.extend(Copy_Faces(Nylon_Head_faces,Face_Start)) Face_Start = len(verts) Nylon_Verts,Nylon_faces,Temp_LowZ = add_Nylon_Part(Lock_Nut_Rad,0-New_Nut_Height) verts.extend((Nylon_Verts)) faces.extend(Copy_Faces(Nylon_faces,Face_Start)) return Move_Verts_Up_Z(verts,0 - LowZ),faces ########################################################################################## ########################################################################################## ########################################################################################## ## Create Bolt ########################################################################################## ########################################################################################## def Bolt_Mesh(props, context): verts = [] faces = [] Bit_Verts = [] Bit_Faces = [] Bit_Dia = 0.001 Head_Verts = [] Head_Faces= [] Head_Height = 0.0 #sc = context.scene ReSized_Allen_Bit_Flat_Distance = props.bf_Allen_Bit_Flat_Distance # set default Head_Height = props.bf_Hex_Head_Height # will be changed by the Head Functions if props.bf_Bit_Type == 'bf_Bit_Allen' and props.bf_Head_Type == 'bf_Head_Pan': #need to size Allen bit if it is too big. if Allen_Bit_Dia(props.bf_Allen_Bit_Flat_Distance) > Max_Pan_Bit_Dia(props.bf_Pan_Head_Dia): ReSized_Allen_Bit_Flat_Distance = Allen_Bit_Dia_To_Flat(Max_Pan_Bit_Dia(props.bf_Pan_Head_Dia)) * 1.05 #print ("Resized Allen Bit Flat Distance to ",ReSized_Allen_Bit_Flat_Distance) #bit Mesh if props.bf_Bit_Type == 'bf_Bit_Allen': Bit_Verts,Bit_Faces,Bit_Dia = Create_Allen_Bit(ReSized_Allen_Bit_Flat_Distance,props.bf_Allen_Bit_Depth) if props.bf_Bit_Type == 'bf_Bit_Philips': Bit_Verts,Bit_Faces,Bit_Dia = Create_Phillips_Bit(props.bf_Philips_Bit_Dia,props.bf_Philips_Bit_Dia*(0.5/1.82),props.bf_Phillips_Bit_Depth) #Head Mesh if props.bf_Head_Type =='bf_Head_Hex': Head_Verts,Head_Faces,Head_Height = Create_Hex_Head(props.bf_Hex_Head_Flat_Distance,Bit_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height) elif props.bf_Head_Type == 'bf_Head_Cap': Head_Verts,Head_Faces,Head_Height = Create_Cap_Head(Bit_Dia,props.bf_Cap_Head_Dia,props.bf_Shank_Dia,props.bf_Cap_Head_Height,props.bf_Cap_Head_Dia*(1.0/19.0),props.bf_Cap_Head_Dia*(1.0/19.0)) elif props.bf_Head_Type =='bf_Head_Dome': Head_Verts,Head_Faces,Head_Height = Create_Dome_Head(Bit_Dia,props.bf_Dome_Head_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height,1,1,0) elif props.bf_Head_Type == 'bf_Head_Pan': Head_Verts,Head_Faces,Head_Height = Create_Pan_Head(Bit_Dia,props.bf_Pan_Head_Dia,props.bf_Shank_Dia,props.bf_Hex_Head_Height,1,1,0) elif props.bf_Head_Type == 'bf_Head_CounterSink': Head_Verts,Head_Faces,Head_Height = Create_CounterSink_Head(Bit_Dia,props.bf_CounterSink_Head_Dia,props.bf_Shank_Dia,props.bf_CounterSink_Head_Dia,props.bf_CounterSink_Head_Dia*(0.09/6.31)) #Head_Verts,Head_Faces,Head_Height = Create_CounterSink_Head(Bit_Dia,props.bf_CounterSink_Head_Dia,props.bf_Shank_Dia,props.bf_CounterSink_Head_Dia,props.bf_CounterSink_Head_Dia*(1.0/19.0)) Face_Start = len(verts) verts.extend(Move_Verts_Up_Z(Bit_Verts,Head_Height)) faces.extend(Copy_Faces(Bit_Faces,Face_Start)) Face_Start = len(verts) verts.extend(Move_Verts_Up_Z(Head_Verts,Head_Height)) faces.extend(Copy_Faces(Head_Faces,Face_Start)) Face_Start = len(verts) Thread_Verts,Thread_Faces,Thread_Height = Create_External_Thread(props.bf_Shank_Dia,props.bf_Shank_Length,props.bf_Minor_Dia,props.bf_Major_Dia,props.bf_Pitch,props.bf_Thread_Length,props.bf_Crest_Percent,props.bf_Root_Percent) verts.extend(Move_Verts_Up_Z(Thread_Verts,00)) faces.extend(Copy_Faces(Thread_Faces,Face_Start)) return Move_Verts_Up_Z(verts,Thread_Height),faces # calculates the matrix for the new object # depending on user pref def align_matrix(context): loc = Matrix.Translation(context.scene.cursor_location) obj_align = context.user_preferences.edit.object_align if (context.space_data.type == 'VIEW_3D' and obj_align == 'VIEW'): rot = context.space_data.region_3d.view_matrix.rotation_part().invert().resize4x4() else: rot = Matrix() align_matrix = loc * rot return align_matrix # Create a new mesh (object) from verts/edges/faces. # verts/edges/faces ... List of vertices/edges/faces for the # new mesh (as used in from_pydata). # name ... Name of the new mesh (& object). # edit ... Replace existing mesh data. # Note: Using "edit" will destroy/delete existing mesh data. def create_mesh_object(context, verts, edges, faces, name, edit, align_matrix): scene = context.scene obj_act = scene.objects.active # Can't edit anything, unless we have an active obj. if edit and not obj_act: return None # Create new mesh mesh = bpy.data.meshes.new(name) # Make a mesh from a list of verts/edges/faces. mesh.from_pydata(verts, edges, faces) # Update mesh geometry after adding stuff. mesh.update() # Deselect all objects. bpy.ops.object.select_all(action='DESELECT') if edit: # Replace geometry of existing object # Use the active obj and select it. ob_new = obj_act ob_new.select = True if obj_act.mode == 'OBJECT': # Get existing mesh datablock. old_mesh = ob_new.data # Set object data to nothing ob_new.data = None # Clear users of existing mesh datablock. old_mesh.user_clear() # Remove old mesh datablock if no users are left. if (old_mesh.users == 0): bpy.data.meshes.remove(old_mesh) # Assign new mesh datablock. ob_new.data = mesh else: # Create new object ob_new = bpy.data.objects.new(name, mesh) # Link new object to the given scene and select it. scene.objects.link(ob_new) ob_new.select = True # Place the object at the 3D cursor location. # apply viewRotaion ob_new.matrix_world = align_matrix if obj_act and obj_act.mode == 'EDIT': if not edit: # We are in EditMode, switch to ObjectMode. bpy.ops.object.mode_set(mode='OBJECT') # Select the active object as well. obj_act.select = True # Apply location of new object. scene.update() # Join new object into the active. bpy.ops.object.join() # Switching back to EditMode. bpy.ops.object.mode_set(mode='EDIT') ob_new = obj_act else: # We are in ObjectMode. # Make the new object the active one. scene.objects.active = ob_new return ob_new def Create_New_Mesh(props, context, align_matrix): verts = [] faces = [] sMeshName ='' sObjName ='' if props.bf_Model_Type == 'bf_Model_Bolt': #print('Create Bolt') verts, faces = Bolt_Mesh(props, context) sMeshName = 'Bolt' sObjName = 'Bolt' if props.bf_Model_Type == 'bf_Model_Nut': #print('Create Nut') verts, faces = Nut_Mesh(props, context) sMeshName = 'Nut' sObjName = 'Nut' verts, faces = RemoveDoubles(verts, faces) verts = Scale_Mesh_Verts(verts,GLOBAL_SCALE) obj = create_mesh_object(context, verts, [], faces,sObjName, props.edit, align_matrix) #print("Created_Object") return