# GPL # Original Authors: Evan J. Rosky (syrux), Chichiri, Jace Priester # import bpy import random import math from bpy.types import ( Operator, Menu, ) from mathutils import ( Vector, Quaternion, ) from bpy.props import ( BoolProperty, IntProperty, FloatProperty, StringProperty, ) # ################### Globals #################### # doprots = True # Datas in which we will build the new discombobulated mesh nPolygons = [] nVerts = [] Verts = [] Polygons = [] dVerts = [] dPolygons = [] i_prots = [] # index of the top polygons on which we"ll generate the doodads i_dood_type = [] # type of doodad (given by index of the doodad obj) # ############### Utility Functions ############### # def randnum(a, b): return random.random() * (b - a) + a def randVertex(a, b, c, d, Verts): """Return a vector of a random vertex on a quad-polygon""" i = random.randint(1, 2) A, B, C, D = 0, 0, 0, 0 if(a == 1): A, B, C, D = a, b, c, d else: A, B, C, D = a, d, c, b i = randnum(0.1, 0.9) vecAB = Verts[B] - Verts[A] E = Verts[A] + vecAB * i vecDC = Verts[C] - Verts[D] F = Verts[D] + vecDC * i i = randnum(0.1, 0.9) vecEF = F - E O = E + vecEF * i return O # ################## Protusions #################### # def fill_older_datas(verts, polygon): """ Specifically coded to be called by the function addProtusionToPolygon, its sets up a tuple which contains the vertices from the base and the top of the protusions. """ temp_vertices = [] temp_vertices.append(verts[polygon[0]].copy()) temp_vertices.append(verts[polygon[1]].copy()) temp_vertices.append(verts[polygon[2]].copy()) temp_vertices.append(verts[polygon[3]].copy()) temp_vertices.append(verts[polygon[0]].copy()) temp_vertices.append(verts[polygon[1]].copy()) temp_vertices.append(verts[polygon[2]].copy()) temp_vertices.append(verts[polygon[3]].copy()) return temp_vertices def extrude_top(temp_vertices, normal, height): """ This function extrude the polygon composed of the four first members of the tuple temp_vertices along the normal multiplied by the height of the extrusion. """ j = 0 while j < 3: temp_vertices[0][j] += normal[j] * height temp_vertices[1][j] += normal[j] * height temp_vertices[2][j] += normal[j] * height temp_vertices[3][j] += normal[j] * height j += 1 def scale_top(temp_vertices, center, normal, height, scale_ratio): """ This function scale the polygon composed of the four first members of the tuple temp_vertices. """ vec1 = [0, 0, 0] vec2 = [0, 0, 0] vec3 = [0, 0, 0] vec4 = [0, 0, 0] j = 0 while j < 3: center[j] += normal[j] * height vec1[j] = temp_vertices[0][j] - center[j] vec2[j] = temp_vertices[1][j] - center[j] vec3[j] = temp_vertices[2][j] - center[j] vec4[j] = temp_vertices[3][j] - center[j] temp_vertices[0][j] = center[j] + vec1[j] * (1 - scale_ratio) temp_vertices[1][j] = center[j] + vec2[j] * (1 - scale_ratio) temp_vertices[2][j] = center[j] + vec3[j] * (1 - scale_ratio) temp_vertices[3][j] = center[j] + vec4[j] * (1 - scale_ratio) j += 1 def add_prot_polygons(temp_vertices): """ Specifically coded to be called by addProtusionToPolygon, this function put the data from the generated protusion at the end the tuples Verts and Polygons, which will later used to generate the final mesh. """ global Verts global Polygons global i_prots findex = len(Verts) Verts += temp_vertices polygontop = [findex + 0, findex + 1, findex + 2, findex + 3] polygon1 = [findex + 0, findex + 1, findex + 5, findex + 4] polygon2 = [findex + 1, findex + 2, findex + 6, findex + 5] polygon3 = [findex + 2, findex + 3, findex + 7, findex + 6] polygon4 = [findex + 3, findex + 0, findex + 4, findex + 7] Polygons.append(polygontop) i_prots.append(len(Polygons) - 1) Polygons.append(polygon1) Polygons.append(polygon2) Polygons.append(polygon3) Polygons.append(polygon4) def addProtusionToPolygon(obpolygon, verts, minHeight, maxHeight, minTaper, maxTaper): """Create a protusion from the polygon "obpolygon" of the original object and use several values sent by the user. It calls in this order the following functions: - fill_older_data; - extrude_top; - scale_top; - add_prot_polygons; """ # some useful variables polygon = obpolygon.vertices tVerts = list(fill_older_datas(verts, polygon)) # list of temp vertices height = randnum(minHeight, maxHeight) # height of generated protusion scale_ratio = randnum(minTaper, maxTaper) # extrude the top polygon extrude_top(tVerts, obpolygon.normal, height) # Now, we scale, the top polygon along its normal scale_top(tVerts, GetPolyCentroid(obpolygon, verts), obpolygon.normal, height, scale_ratio) # Finally, we add the protusions to the list of polygons add_prot_polygons(tVerts) # ################# Divide a polygon ############### # def divide_one(list_polygons, list_vertices, verts, polygon, findex): """ called by divide_polygon, to generate a polygon from one polygon, maybe I could simplify this process """ temp_vertices = [] temp_vertices.append(verts[polygon[0]].copy()) temp_vertices.append(verts[polygon[1]].copy()) temp_vertices.append(verts[polygon[2]].copy()) temp_vertices.append(verts[polygon[3]].copy()) list_vertices += temp_vertices list_polygons.append([findex + 0, findex + 1, findex + 2, findex + 3]) def divide_two(list_polygons, list_vertices, verts, polygon, findex): """ called by divide_polygon, to generate two polygons from one polygon and add them to the list of polygons and vertices which form the discombobulated mesh """ temp_vertices = [] temp_vertices.append(verts[polygon[0]].copy()) temp_vertices.append(verts[polygon[1]].copy()) temp_vertices.append(verts[polygon[2]].copy()) temp_vertices.append(verts[polygon[3]].copy()) temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2) temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2) list_vertices += temp_vertices list_polygons.append([findex + 0, findex + 4, findex + 5, findex + 3]) list_polygons.append([findex + 1, findex + 2, findex + 5, findex + 4]) def divide_three(list_polygons, list_vertices, verts, polygon, findex, center): """ called by divide_polygon, to generate three polygons from one polygon and add them to the list of polygons and vertices which form the discombobulated mesh """ temp_vertices = [] temp_vertices.append(verts[polygon[0]].copy()) temp_vertices.append(verts[polygon[1]].copy()) temp_vertices.append(verts[polygon[2]].copy()) temp_vertices.append(verts[polygon[3]].copy()) temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2) temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2) temp_vertices.append((verts[polygon[1]] + verts[polygon[2]]) / 2) temp_vertices.append(center.copy()) list_vertices += temp_vertices list_polygons.append([findex + 0, findex + 4, findex + 5, findex + 3]) list_polygons.append([findex + 1, findex + 6, findex + 7, findex + 4]) list_polygons.append([findex + 6, findex + 2, findex + 5, findex + 7]) def divide_four(list_polygons, list_vertices, verts, polygon, findex, center): """ called by divide_polygon, to generate four polygons from one polygon and add them to the list of polygons and vertices which form the discombobulated mesh """ temp_vertices = [] temp_vertices.append(verts[polygon[0]].copy()) temp_vertices.append(verts[polygon[1]].copy()) temp_vertices.append(verts[polygon[2]].copy()) temp_vertices.append(verts[polygon[3]].copy()) temp_vertices.append((verts[polygon[0]] + verts[polygon[1]]) / 2) temp_vertices.append((verts[polygon[2]] + verts[polygon[3]]) / 2) temp_vertices.append((verts[polygon[1]] + verts[polygon[2]]) / 2) temp_vertices.append(center.copy()) temp_vertices.append((verts[polygon[0]] + verts[polygon[3]]) / 2) temp_vertices.append(center.copy()) list_vertices += temp_vertices list_polygons.append([findex + 0, findex + 4, findex + 7, findex + 8]) list_polygons.append([findex + 1, findex + 6, findex + 7, findex + 4]) list_polygons.append([findex + 6, findex + 2, findex + 5, findex + 7]) list_polygons.append([findex + 8, findex + 7, findex + 5, findex + 3]) def dividepolygon(obpolygon, verts, number): """Divide the poly into the wanted number of polygons""" global nPolygons global nVerts poly = obpolygon.vertices if(number == 1): divide_one(nPolygons, nVerts, verts, poly, len(nVerts)) elif(number == 2): divide_two(nPolygons, nVerts, verts, poly, len(nVerts)) elif(number == 3): divide_three(nPolygons, nVerts, verts, poly, len(nVerts), GetPolyCentroid(obpolygon, verts)) elif(number == 4): divide_four(nPolygons, nVerts, verts, poly, len(nVerts), GetPolyCentroid(obpolygon, verts)) # ################## Discombobulate ################ # def GetPolyCentroid(obpolygon, allvertcoords): centroid = Vector((0, 0, 0)) for vindex in obpolygon.vertices: centroid += Vector(allvertcoords[vindex]) centroid /= len(obpolygon.vertices) return centroid def division(obpolygons, verts, sf1, sf2, sf3, sf4): """Function to divide each of the selected polygons""" divide = [] if (sf1): divide.append(1) if (sf2): divide.append(2) if (sf3): divide.append(3) if (sf4): divide.append(4) for poly in obpolygons: if(poly.select is True and len(poly.vertices) == 4): a = random.randint(0, len(divide) - 1) dividepolygon(poly, verts, divide[a]) def protusion(obverts, obpolygons, minHeight, maxHeight, minTaper, maxTaper): """function to generate the protusions""" verts = [] for vertex in obverts: verts.append(vertex.co) for polygon in obpolygons: if(polygon.select is True): if(len(polygon.vertices) == 4): addProtusionToPolygon(polygon, verts, minHeight, maxHeight, minTaper, maxTaper) def test_v2_near_v1(v1, v2): if (v1.x - 0.1 <= v2.x <= v1.x + 0.1 and v1.y - 0.1 <= v2.y <= v1.y + 0.1 and v1.z - 0.1 <= v2.z <= v1.z + 0.1): return True return False def angle_between_nor(nor_orig, nor_result): angle = math.acos(nor_orig.dot(nor_result)) axis = nor_orig.cross(nor_result).normalized() q = Quaternion() q.x = axis.x * math.sin(angle / 2) q.y = axis.y * math.sin(angle / 2) q.z = axis.z * math.sin(angle / 2) q.w = math.cos(angle / 2) return q def doodads(self, object1, mesh1, dmin, dmax): """function to generate the doodads""" global dVerts global dPolygons i = 0 # on parcoure cette boucle pour ajouter des doodads a toutes les polygons # english translation: this loops adds doodads to all polygons while(i < len(object1.data.polygons)): if object1.data.polygons[i].select is False: continue doods_nbr = random.randint(dmin, dmax) j = 0 while(j <= doods_nbr): origin_dood = randVertex(object1.data.polygons[i].vertices[0], object1.data.polygons[i].vertices[1], object1.data.polygons[i].vertices[2], object1.data.polygons[i].vertices[3], Verts) type_dood = random.randint(0, len(self.DISC_doodads) - 1) polygons_add = [] verts_add = [] # First we have to apply scaling and rotation to the mesh bpy.ops.object.select_pattern(pattern=self.DISC_doodads[type_dood], extend=False) bpy.context.view_layer.objects.active = bpy.data.objects[self.DISC_doodads[type_dood]] bpy.ops.object.transform_apply(location=False, rotation=True, scale=True) for polygon in bpy.data.objects[self.DISC_doodads[type_dood]].data.polygons: polygons_add.append(polygon.vertices) for vertex in bpy.data.objects[self.DISC_doodads[type_dood]].data.vertices: verts_add.append(vertex.co.copy()) normal_original_polygon = object1.data.polygons[i].normal nor_def = Vector((0.0, 0.0, 1.0)) qr = nor_def.rotation_difference(normal_original_polygon.normalized()) if(test_v2_near_v1(nor_def, -normal_original_polygon)): qr = Quaternion((0.0, 0.0, 0.0, 0.0)) # qr = angle_between_nor(nor_def, normal_original_polygon) for vertex in verts_add: vertex.rotate(qr) vertex += origin_dood findex = len(dVerts) for polygon in polygons_add: dPolygons.append([polygon[0] + findex, polygon[1] + findex, polygon[2] + findex, polygon[3] + findex]) i_dood_type.append(bpy.data.objects[self.DISC_doodads[type_dood]].name) for vertex in verts_add: dVerts.append(vertex) j += 1 i += 5 def protusions_repeat(object1, mesh1, r_prot): for j in i_prots: if j < len(object1.data.polygons): object1.data.polygons[j].select = True else: print("Warning: hit end of polygons in object1") # add material to discombobulated mesh def setMatProt(discObj, origObj, sideProtMat, topProtMat): # First we put the materials in their slots bpy.ops.object.select_pattern(pattern=discObj.name, extend=False) bpy.context.view_layer.objects.active = bpy.data.objects[discObj.name] try: origObj.material_slots[topProtMat] origObj.material_slots[sideProtMat] except: return bpy.ops.object.material_slot_add() bpy.ops.object.material_slot_add() discObj.material_slots[0].material = origObj.material_slots[topProtMat].material discObj.material_slots[1].material = origObj.material_slots[sideProtMat].material # Then we assign materials to protusions for polygon in discObj.data.polygons: if polygon.index in i_prots: polygon.material_index = 0 else: polygon.material_index = 1 def setMatDood(self, doodObj): # First we add the materials slots bpy.ops.object.select_pattern(pattern=doodObj.name, extend=False) bpy.context.view_layer.objects.active = doodObj for name in self.DISC_doodads: try: bpy.ops.object.material_slot_add() doodObj.material_slots[-1].material = bpy.data.objects[name].material_slots[0].material for polygon in doodObj.data.polygons: if i_dood_type[polygon.index] == name: polygon.material_index = len(doodObj.material_slots) - 1 except: print() def clean_doodads(self): current_doodads = list(self.DISC_doodads) for name in current_doodads: if name not in bpy.data.objects: self.DISC_doodads.remove(name) def discombobulate(self, minHeight, maxHeight, minTaper, maxTaper, sf1, sf2, sf3, sf4, dmin, dmax, r_prot, sideProtMat, topProtMat, isLast): global doprots global nVerts global nPolygons global Verts global Polygons global dVerts global dPolygons global i_prots bpy.ops.object.mode_set(mode="OBJECT") # start by cleaning up doodads that don"t exist anymore clean_doodads(self) # Create the discombobulated mesh mesh = bpy.data.meshes.new("tmp") object = bpy.data.objects.new("tmp", mesh) bpy.context.collection.objects.link(object) # init final verts and polygons tuple nPolygons = [] nVerts = [] Polygons = [] Verts = [] dPolygons = [] dVerts = [] origObj = bpy.context.active_object # There we collect the rotation, translation and scaling datas from the original mesh to_translate = bpy.context.active_object.location to_scale = bpy.context.active_object.scale to_rotate = bpy.context.active_object.rotation_euler # First, we collect all the information we will need from the previous mesh obverts = bpy.context.active_object.data.vertices obpolygons = bpy.context.active_object.data.polygons verts = [] for vertex in obverts: verts.append(vertex.co) division(obpolygons, verts, sf1, sf2, sf3, sf4) # Fill in the discombobulated mesh with the new polygons mesh.from_pydata(nVerts, [], nPolygons) mesh.update(calc_edges=True) # Reload the datas bpy.ops.object.select_all(action="DESELECT") bpy.ops.object.select_pattern(pattern=object.name, extend=False) bpy.context.view_layer.objects.active = bpy.data.objects[object.name] obverts = bpy.context.active_object.data.vertices obpolygons = bpy.context.active_object.data.polygons protusion(obverts, obpolygons, minHeight, maxHeight, minTaper, maxTaper) # Fill in the discombobulated mesh with the new polygons mesh1 = bpy.data.meshes.new("discombobulated_object") object1 = bpy.data.objects.new("discombobulated_mesh", mesh1) bpy.context.collection.objects.link(object1) mesh1.from_pydata(Verts, [], Polygons) mesh1.update(calc_edges=True) # Set the material"s of discombobulated object setMatProt(object1, origObj, sideProtMat, topProtMat) bpy.ops.object.select_pattern(pattern=object1.name, extend=False) bpy.context.view_layer.objects.active = bpy.data.objects[object1.name] bpy.ops.object.mode_set(mode="EDIT") bpy.ops.mesh.normals_make_consistent(inside=False) bpy.ops.mesh.select_all(action="DESELECT") bpy.ops.object.mode_set(mode="OBJECT") # if(bpy.context.scene.repeatprot): protusions_repeat(object1, mesh1, r_prot) if(len(self.DISC_doodads) != 0 and self.dodoodads and isLast): doodads(self, object1, mesh1, dmin, dmax) mesh2 = bpy.data.meshes.new("dood_mesh") object2 = bpy.data.objects.new("dood_obj", mesh2) bpy.context.collection.objects.link(object2) mesh2.from_pydata(dVerts, [], dPolygons) mesh2.update(calc_edges=True) setMatDood(self, object2) object2.location = to_translate object2.rotation_euler = to_rotate object2.scale = to_scale bpy.ops.object.select_pattern(pattern=object.name, extend=False) bpy.context.view_layer.objects.active = bpy.data.objects[object.name] bpy.ops.object.delete() bpy.ops.object.select_pattern(pattern=object1.name, extend=False) bpy.context.view_layer.objects.active = bpy.data.objects[object1.name] bpy.context.view_layer.update() # translate, scale and rotate discombobulated results object1.location = to_translate object1.rotation_euler = to_rotate object1.scale = to_scale # set all polys to selected. this allows recursive discombobulating. for poly in mesh1.polygons: poly.select = True # ### Operators for selecting and deselecting an object as a doodad ### # class chooseDoodad(Operator): bl_idname = "object.discombobulate_set_doodad" bl_label = "Discombobulate set doodad object" bl_description = ("Save the Active Object as Doodad \n" "Object has to be quads only") bl_options = {"REGISTER"} @classmethod def poll(cls, context): obj = bpy.context.active_object if (obj is not None and obj.type == "MESH"): mesh = obj.data for polygon in mesh.polygons: is_ok = len(polygon.vertices) if is_ok != 4: return False return True return False def execute(self, context): obj_name = bpy.context.active_object.name msg = "Object with this name already saved" DISC_doodads = context.scene.discombobulator.DISC_doodads if obj_name not in DISC_doodads: DISC_doodads.append(obj_name) msg = "Saved Doodad object: {}".format(obj_name) self.report({"INFO"}, message=msg) def invoke(self, context, event): self.execute(context) return {"FINISHED"} class unchooseDoodad(Operator): bl_idname = "object.discombobulate_unset_doodad" bl_label = "Discombobulate unset doodad object" bl_description = "Remove the saved Doodad Object(s)" bl_options = {"REGISTER"} remove_all: bpy.props.BoolProperty( name="Remove all Doodads", default=False, ) def execute(self, context): msg = ("No doodads to remove") DISC_doodads = context.scene.discombobulator.DISC_doodads if len(DISC_doodads) > 0: if not self.remove_all: name = bpy.context.active_object.name if name in DISC_doodads: DISC_doodads.remove(name) msg = ("Removed Doodad object: {}".format(name)) else: DISC_doodads[:] = [] msg = "Removed all Doodads" else: msg = "No Doodads to Remove" self.report({"INFO"}, message=msg) def invoke(self, context, event): self.execute(context) return {"FINISHED"} # ################## Interpolygon ################## # class discombobulator(Operator): bl_idname = "object.discombobulate" bl_label = "Discombobulate" bl_description = "Apply" bl_options = {"REGISTER", "UNDO"} def execute(self, context): i = 0 while i < self.repeatprot: isLast = False if i == self.repeatprot - 1: isLast = True discombobulate(self.minHeight, self.maxHeight, self.minTaper, self.maxTaper, self.subpolygon1, self.subpolygon2, self.subpolygon3, self.subpolygon4, self.mindoodads, self.maxdoodads, self.repeatprot, self.sideProtMat, self.topProtMat, isLast) i += 1 return {"FINISHED"} class discombobulator_dodads_list(Menu): bl_idname = "OBJECT_MT_discombobulator_dodad_list" bl_label = "List of saved Doodads" bl_description = "List of the saved Doodad Object Names" bl_options = {"REGISTER"} def draw(self, context): layout = self.layout DISC_doodads = context.scene.discombobulator.DISC_doodads doodle = len(DISC_doodads) layout.label(text="Saved doodads : {}".format(doodle)) layout.separator() if doodle > 0: for name in DISC_doodads: layout.label(text=name) class discombob_help(Menu): bl_idname = "HELP_MT_discombobulator" bl_label = "Usage Information" bl_description = "Help" bl_options = {"REGISTER"} def draw(self, context): layout = self.layout layout.label(text="Usage Information:", icon="INFO") layout.separator() layout.label(text="Quads only, not Triangles or Ngons", icon="ERROR") layout.label(text="Works only with Mesh object that have faces") layout.separator() layout.label(text="Select a face or faces") layout.label(text="Press Discombobulate to create greebles") layout.label(text="In object mode, still needs a selection in Edit Mode") layout.separator() layout.label(text="Doodads - additional objects layered on the mesh surface") layout.label(text="(Similar to dupliverts - but as one separate object)") layout.separator() layout.label(text="Limitations:", icon="MOD_EXPLODE") layout.label(text="Be careful with the repeat protusions setting") layout.label(text="(Runs reqursively)") layout.label(text="If possible, avoid using on a high polycount base mesh") layout.label(text="(It can run out of memory and take a long time to compute)") class VIEW3D_OT_tools_discombobulate(Operator): bl_idname = "discombobulate.ops" bl_label = "Discombobulator" bl_description = ("Easily add sci-fi details to a surface \n" "Needs an existing active Mesh with Faces") bl_options = {"REGISTER", "UNDO"} executing = False # Protusions Buttons: repeatprot: IntProperty( name="Repeat protusions", description=("Make several layers of protusion \n" "Use carefully, runs recursively the discombulator"), default=1, min=1, max=4 # set to 4 because it's 2**n reqursive ) doprots: BoolProperty( name="Make protusions", description="Check if we want to add protusions to the mesh", default=True ) subpolygon1: BoolProperty( name="1", default=True ) subpolygon2: BoolProperty( name="2", default=True ) subpolygon3: BoolProperty( name="3", default=True ) subpolygon4: BoolProperty( name="4", default=True ) polygonschangedpercent: FloatProperty( name="Polygon %", description="Percentage of changed polygons", default=1.0 ) minHeight: FloatProperty( name="Min height", description="Minimal height of the protusions", default=0.2 ) maxHeight: FloatProperty( name="Max height", description="Maximal height of the protusions", default=0.4 ) minTaper: FloatProperty( name="Min taper", description="Minimal height of the protusions", default=0.15, min=0.0, max=1.0, subtype='PERCENTAGE' ) maxTaper: FloatProperty( name="Max taper", description="Maximal height of the protusions", default=0.35, min=0.0, max=1.0, subtype='PERCENTAGE' ) # Doodads buttons: dodoodads: BoolProperty( name="Make doodads", description="Check if we want to generate doodads", default=False ) mindoodads: IntProperty( name="Minimum doodads number", description="Ask for the minimum number of doodads to generate per polygon", default=1, min=0, max=50 ) maxdoodads: IntProperty( name="Maximum doodads number", description="Ask for the maximum number of doodads to generate per polygon", default=6, min=1, max=50 ) doodMinScale: FloatProperty( name="Scale min", description="Minimum scaling of doodad", default=0.5, min=0.0, max=1.0, subtype='PERCENTAGE' ) doodMaxScale: FloatProperty( name="Scale max", description="Maximum scaling of doodad", default=1.0, min=0.0, max=1.0, subtype='PERCENTAGE' ) # Materials buttons: sideProtMat: IntProperty( name="Side's prot mat", description="Material of protusion's sides", default=0, min=0 ) topProtMat: IntProperty( name="Prot's top mat", description="Material of protusion's top", default=0, min=0 ) @classmethod def poll(cls, context): return (context.active_object is not None and context.active_object.type == "MESH") def draw(self, context): layout = self.layout self.DISC_doodads = bpy.context.scene.discombobulator.DISC_doodads row = layout.row() row.menu("HELP_MT_discombobulator", icon="INFO") box = layout.box() box.label(text="Protusions settings") row = box.row() row.prop(self, "doprots") row = box.row() row.prop(self, "minHeight") row = box.row() row.prop(self, "maxHeight") row = box.row() row.prop(self, "minTaper") row = box.row() row.prop(self, "maxTaper") row = box.row() col1 = row.column(align=True) col1.prop(self, "subpolygon1") col2 = row.column(align=True) col2.prop(self, "subpolygon2") col3 = row.column(align=True) col3.prop(self, "subpolygon3") col4 = row.column(align=True) col4.prop(self, "subpolygon4") row = box.row() row.prop(self, "repeatprot") box = layout.box() box.label(text="Doodads settings") row = box.row() is_doodad = self.dodoodads row.prop(self, "dodoodads") row = box.row() row.enabled = is_doodad row.prop(self, "mindoodads") row = box.row() row.enabled = is_doodad row.prop(self, "maxdoodads") row = box.row() row.enabled = is_doodad oper = row.operator("object.discombobulate_set_doodad", text="Pick doodad") row = box.row() splits = row.split(factor = 0.5) splits.enabled = is_doodad splits.operator("object.discombobulate_unset_doodad", text="Remove active doodad").remove_all = False splits.operator("object.discombobulate_unset_doodad", text="Remove all doodads").remove_all = True col = box.column(align=True) doodle = len(self.DISC_doodads) col.enabled = (True if doodle > 0 else False) col.menu("OBJECT_MT_discombobulator_dodad_list", text="List of saved Doodads ({})".format(doodle)) box = layout.box() box.label(text="Materials settings") row = box.row() row.prop(self, "topProtMat") row = box.row() row.prop(self, "sideProtMat") def invoke(self, context, event): return context.window_manager.invoke_props_dialog(self, width=300) def check(self, context): return not self.executing def execute(self, context): self.executing = True i = 0 while i < self.repeatprot: isLast = False if i == self.repeatprot - 1: isLast = True discombobulate(self, self.minHeight, self.maxHeight, self.minTaper, self.maxTaper, self.subpolygon1, self.subpolygon2, self.subpolygon3, self.subpolygon4, self.mindoodads, self.maxdoodads, self.repeatprot, self.sideProtMat, self.topProtMat, isLast) i += 1 return {"FINISHED"} #bpy.ops.object.discombobulate("INVOKE_DEFAULT")