# GPL "author": "Dominic Kröper, (dommetysk)" import bpy from math import pi, sin, cos, tan from bpy.types import Operator from bpy.props import IntProperty, FloatProperty, BoolProperty from mathutils import Vector, Euler # mesh/object generating function, returns final object def addBrilliant(context, s, table_w, crown_h, girdle_t, pavi_d, bezel_f, pavi_f, culet, girdle_real, keep_lga, g_real_smooth): # # possible user inputs ( output 100% = 2 blender units ) # s # no. of girdle facets (steps) default: 16 # table_w # table width default: 0.530 # crown_h # crown height default: 0.162 # girdle_t # girdle thickness default: 0.017 # pavi_d # pavillion depth default: 0.431 # bezel_f # bezel factor default: 0.250 # pavi_f # pavillion factor default: 0.400 # culet # culet size default: 0.000 # girdle_real # type of girdle flat/real default: True # g_real_smooth # smooth or flat shading default: False # keep_lga # when culet > 0, keep lga default: False # variables / shortcuts if s % 2: # prevent odd number of steps (messes up mesh) s = s - 1 if not girdle_real: g_real_smooth = False ang = 2*pi/s # angle step size Verts = [] # collect all vertices Faces = [] # collect all faces ca = cos(ang) ca2 = cos(ang/2) sa4 = sin(ang/4) ta4 = tan(ang/4) ta8 = tan(ang/8) def fa(*vs): # shortcut Faces.append v = [] for u in vs: v.append(u) Faces.append(v) def va(vx, vz, iang, sang, n): # shortcut Verts.append for i in range(n): v = Vector((vx, 0, vz)) ai = sang + iang*i E_rot = Euler((0, 0, ai), 'XYZ') v.rotate(E_rot) Verts.append((v.x, v.y, v.z)) # upper girdle angle uga = (1-bezel_f) * crown_h*2 / (ca2 - (table_w + (1-table_w) * bezel_f) * ca2/ca) # lower girdle angle if keep_lga: if pavi_f > 0 and pavi_f < 1: lga = (1-pavi_f) * pavi_d*2 / (ca2 - pavi_f*ca2 / ca) elif pavi_f == 1: lga = 0 else: lga = 2*pavi_d*ca else: lga = (1-pavi_f) * pavi_d*2 / (ca2 - (culet + (1-culet) * pavi_f) * ca2/ca) # append girdle vertices va(1, 0, ang, 0, s) va(1, 2*girdle_t, ang, 0, s) # append real girdle vertices if girdle_real: dnu = uga * (1 - ca2) dfu = uga * (ta8 + ta4) * sa4 dnl = lga * (1 - ca2) dfl = lga * (ta8 + ta4) * sa4 if abs(dnu) + abs(dnl) > 2*girdle_t or dnu < 0 or dnl < 0: girdle_real = False else: va(1, dnl, ang, ang/2, s) va(1, 2*girdle_t - dnu, ang, ang/2, s) va(1, dfl, ang/2, ang/4, 2*s) va(1, 2*girdle_t - dfu, ang/2, ang/4, 2*s) # make girdle faces l1 = len(Verts) # 2*s / 8*s for i in range(l1): if girdle_real: if i < s: fa(i, i + s, 2*i + 6*s, 2*i + 4*s) if i == 0: fa(i, s, l1 - 1, 6*s - 1) else: fa(i, i + s, 2*i + 6*s - 1, 2*i + 4*s - 1) elif i > 2*s - 1 and i < 3*s: fa(i, i + s, 2 * (i+s), 2*i) fa(i, i + s, 2 * (i+s) + 1, 2*i + 1) else: if i < s - 1: fa(i, i + s, i + s + 1, i + 1) elif i == s - 1: fa(i, i + s, s, 0) # append upper girdle facet vertices va((table_w + (1-table_w) * bezel_f) / ca, (1-bezel_f) * 2*crown_h + 2*girdle_t, 2*ang, ang, int(s/2)) # make upper girdle facet faces l2 = len(Verts) # 2.5*s / 8.5*s for i in range(l2): if i > s and i < 2*s - 1 and i % 2 != 0: if girdle_real: fa(i, 2 * (i + 2*s), i + 2*s, 2 * (i + 2*s) + 1, i + 1, int(7.5*s) + int((i-1) / 2)) fa(i, 2 * (i + 2*s) - 1, i + 2*s - 1, 2 * (i + 2*s - 1), i - 1, int(7.5*s) + int((i-1) / 2)) else: fa(i, i + 1, int((i + 3*s) / 2)) fa(i, i - 1, int((i + 3*s) / 2)) elif i == s: if girdle_real: fa(i, l1 - 1, 4*s - 1, l1 - 2, 2*i - 1, l2 - 1) fa(2*i - 2, l1 - 4, 4*s - 2, l1 - 3, 2*i - 1, l2 - 1) else: fa(i, 2*i - 1, l2 - 1) fa(2*i - 1, 2*i - 2, l2 - 1) # append table vertices va(table_w, (crown_h + girdle_t)*2, 2*ang, 0, int(s/2)) # make bezel facet faces and star facet faces l3 = len(Verts) # 3*s / 9*s for i in range(l3): if i > l2 - 1 and i < l3 - 1: fa(i, i + 1, i - int(s/2)) fa(i + 1, i - int(s/2), 2 * (i-l2) + 2 + s, i - int(s/2) + 1) elif i == l3 - 1: fa(i, l2, l2 - 1) fa(s, l2 - 1, l2, l2 - int(s/2)) # make table facet face tf = [] for i in range(l3): if i > l2 - 1: tf.append(i) fa(*tf) # append lower girdle facet vertices if keep_lga: va(pavi_f/ca, (pavi_f-1) * pavi_d*2, 2*ang, ang, int(s/2)) else: va((pavi_f * (1-culet) + culet) / ca, (pavi_f-1) * pavi_d*2, 2*ang, ang, int(s/2)) # make lower girdle facet faces l4 = len(Verts) # 3.5*s / 9.5*s for i in range(l4): if i > 0 and i < s - 1 and i % 2 == 0: if girdle_real: fa(i, 2 * (i + 2*s), i + 2*s, 2 * (i + 2*s) + 1, i + 1, int(i/2) + 9*s) fa(i, 2 * (i + 2*s) - 1, i + 2*s - 1, 2 * (i + 2*s - 1), i-1, int(i/2) + 9*s - 1) else: fa(i, i + 1, int(i/2) + l4 - int(s/2)) fa(i, i - 1, int(i/2) + l4 - int(s/2) - 1) elif i == 0: if girdle_real: fa(0, 4*s, 2*s, 4*s + 1, 1, 9*s) fa(0, 6*s - 1, 3*s - 1, 6*s - 2, s - 1, l4 - 1) else: fa(0, 1, l4 - int(s/2)) fa(0, s - 1, l4 - 1) # append culet vertice(s) if culet == 0: va(0, pavi_d*(-2), 0, 0, 1) else: if keep_lga: va(culet * pavi_f / ca, pavi_d*(-2) + culet * pavi_f * 2 * pavi_d, 2*ang, ang, int(s/2)) else: va(culet/ca, pavi_d*(-2), 2*ang, ang, int(s/2)) # make pavillion facet face l5 = len(Verts) # 4*s / 10*s //if !culet: 3.5*s+1 / 9.5*s+1 for i in range(l5): if i > 0 and i < s - 1 and i % 2 == 0: if culet: fa(i, l3 + int(i/2), l3 + int((s+i) / 2), l3 + int((s+i) / 2) - 1, l3 + int(i/2) - 1) else: fa(i, l3 + int(i/2), l5 - 1, l3 + int(i/2) - 1) elif i == 0: if culet: fa(i, l3, l4, l5 - 1, l4 - 1) else: fa(i, l3, l5 - 1, l4 - 1) # make culet facet face if culet: cf = [] for i in range(l5): if i > l4 - 1: cf.append(i) fa(*cf) # bpy variables / shortcuts scene = bpy.context.scene # deactivate possible active Objects bpy.context.scene.objects.active = None # create actual mesh and object based on Verts and Faces given dmesh = bpy.data.meshes.new("dmesh") dmesh.from_pydata(Verts, [], Faces) dmesh.update() dobj = bpy.data.objects.new("dobj", dmesh) # link object into scene scene.objects.link(dobj) # activate and select object scene.objects.active = dobj dobj.select = True obj = bpy.context.active_object # flip all face normals outside bpy.ops.object.mode_set(mode='EDIT', toggle=False) sel_mode = bpy.context.tool_settings.mesh_select_mode bpy.context.tool_settings.mesh_select_mode = [False, False, True] bpy.ops.object.mode_set(mode='OBJECT', toggle=False) for i, face in enumerate(obj.data.polygons): face.select = True bpy.ops.object.mode_set(mode='EDIT', toggle=False) bpy.ops.mesh.normals_make_consistent(inside=False) bpy.context.tool_settings.mesh_select_mode = sel_mode bpy.ops.object.mode_set(mode='OBJECT', toggle=False) # make girdle smooth for complex girdle if girdle_real and g_real_smooth: bpy.ops.object.mode_set(mode='EDIT', toggle=False) bpy.ops.mesh.select_all(action='DESELECT') # deselect all mesh data bpy.ops.object.mode_set(mode='OBJECT') pls = [] dp = obj.data.polygons[:4*s] # only consider faces of girdle ov = obj.data.vertices for i, p in enumerate(dp): pls.extend(p.vertices) # list all verts of girdle for i, e in enumerate(obj.data.edges): # select egdes to mark sharp if e.vertices[0] in pls and e.vertices[1] in pls and abs( ov[e.vertices[0]].co.x - ov[e.vertices[1]].co.x): obj.data.edges[i].select = True continue obj.data.edges[i].select = False bpy.ops.object.mode_set(mode='EDIT', toggle=False) bpy.ops.mesh.mark_sharp() bpy.context.tool_settings.mesh_select_mode = [False, False, True] bpy.ops.object.mode_set(mode='OBJECT', toggle=False) bpy.ops.object.select_all(action='DESELECT') for i, face in enumerate(obj.data.polygons): if i < 4*s: face.select = True continue face.select = False bpy.ops.object.mode_set(mode='EDIT', toggle=False) bpy.ops.mesh.faces_shade_smooth() bpy.ops.object.modifier_add(type='EDGE_SPLIT') bpy.context.tool_settings.mesh_select_mode = sel_mode bpy.ops.object.mode_set(mode='OBJECT', toggle=False) bpy.ops.object.modifier_apply(apply_as='DATA', modifier="EdgeSplit") return dobj # add new operator for object class MESH_OT_primitive_brilliant_add(bpy.types.Operator): bl_idname = "mesh.primitive_brilliant_add" bl_label = "Custom Brilliant" bl_options = {'REGISTER', 'UNDO', 'PRESET'} # set user options s = IntProperty(name="Segments", description="Longitudial segmentation", step=1, min=6, max=128, default=16, subtype='FACTOR') table_w = FloatProperty(name="Table width", description="Width of table", min=0.001, max=1.0, default=0.53, subtype='PERCENTAGE') crown_h = FloatProperty(name="Crown height", description="Heigth of crown", min=0.0, max=1.0, default=0.162, subtype='PERCENTAGE') girdle_t = FloatProperty(name="Girdle height", description="Height of girdle", min=0.0, max=0.5, default=0.017, subtype='PERCENTAGE') girdle_real = BoolProperty(name="Real girdle", description="More beautiful girdle; has more polygons", default=True) g_real_smooth = BoolProperty(name="Smooth girdle", description= "smooth shading for girdle, only available for real girdle", default=False) pavi_d = FloatProperty(name="Pavilion depth", description="Height of pavillion", min=0.0, max=1.0, default=0.431, subtype='PERCENTAGE') bezel_f = FloatProperty(name="Upper facet factor", description= "Determines the form of bezel and upper girdle facets", min=0.0, max=1.0, default=0.250, subtype='PERCENTAGE') pavi_f = FloatProperty(name="Lower facet factor", description= "Determines the form of pavillion and lower girdle facets", min=0.001, max=1.0, default=0.400, subtype='PERCENTAGE') culet = FloatProperty(name="Culet size", description="0: no culet (default)", min=0.0, max=0.999, default=0.0, subtype='PERCENTAGE') keep_lga = BoolProperty(name="Retain lower angle", description="If culet > 0, retains angle of pavillion facets", default=False) # call mesh/object generator function with user inputs def execute(self, context): ob = addBrilliant(context, self.s, self.table_w, self.crown_h, self.girdle_t, self.pavi_d, self.bezel_f, self.pavi_f, self.culet, self.girdle_real, self.keep_lga, self.g_real_smooth) return {'FINISHED'}