# SPDX-License-Identifier: GPL-2.0-or-later # Author: DreamPainter import bpy from math import sqrt from mathutils import Vector from functools import reduce from bpy.props import ( FloatProperty, EnumProperty, BoolProperty, ) from bpy_extras.object_utils import object_data_add # this function creates a chain of quads and, when necessary, a remaining tri # for each polygon created in this script. be aware though, that this function # assumes each polygon is convex. # poly: list of faces, or a single face, like those # needed for mesh.from_pydata. # returns the tessellated faces. def createPolys(poly): # check for faces if len(poly) == 0: return [] # one or more faces if type(poly[0]) == type(1): poly = [poly] # if only one, make it a list of one face faces = [] for i in poly: L = len(i) # let all faces of 3 or 4 verts be if L < 5: faces.append(i) # split all polygons in half and bridge the two halves else: f = [[i[x], i[x + 1], i[L - 2 - x], i[L - 1 - x]] for x in range(L // 2 - 1)] faces.extend(f) if L & 1 == 1: faces.append([i[L // 2 - 1 + x] for x in [0, 1, 2]]) return faces # function to make the reduce function work as a workaround to sum a list of vectors def vSum(list): return reduce(lambda a, b: a + b, list) # creates the 5 platonic solids as a base for the rest # plato: should be one of {"4","6","8","12","20"}. decides what solid the # outcome will be. # returns a list of vertices and faces def source(plato): verts = [] faces = [] # Tetrahedron if plato == "4": # Calculate the necessary constants s = sqrt(2) / 3.0 t = -1 / 3 u = sqrt(6) / 3 # create the vertices and faces v = [(0, 0, 1), (2 * s, 0, t), (-s, u, t), (-s, -u, t)] faces = [[0, 1, 2], [0, 2, 3], [0, 3, 1], [1, 3, 2]] # Hexahedron (cube) elif plato == "6": # Calculate the necessary constants s = 1 / sqrt(3) # create the vertices and faces v = [(-s, -s, -s), (s, -s, -s), (s, s, -s), (-s, s, -s), (-s, -s, s), (s, -s, s), (s, s, s), (-s, s, s)] faces = [[0, 3, 2, 1], [0, 1, 5, 4], [0, 4, 7, 3], [6, 5, 1, 2], [6, 2, 3, 7], [6, 7, 4, 5]] # Octahedron elif plato == "8": # create the vertices and faces v = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)] faces = [[4, 0, 2], [4, 2, 1], [4, 1, 3], [4, 3, 0], [5, 2, 0], [5, 1, 2], [5, 3, 1], [5, 0, 3]] # Dodecahedron elif plato == "12": # Calculate the necessary constants s = 1 / sqrt(3) t = sqrt((3 - sqrt(5)) / 6) u = sqrt((3 + sqrt(5)) / 6) # create the vertices and faces v = [(s, s, s), (s, s, -s), (s, -s, s), (s, -s, -s), (-s, s, s), (-s, s, -s), (-s, -s, s), (-s, -s, -s), (t, u, 0), (-t, u, 0), (t, -u, 0), (-t, -u, 0), (u, 0, t), (u, 0, -t), (-u, 0, t), (-u, 0, -t), (0, t, u), (0, -t, u), (0, t, -u), (0, -t, -u)] faces = [[0, 8, 9, 4, 16], [0, 12, 13, 1, 8], [0, 16, 17, 2, 12], [8, 1, 18, 5, 9], [12, 2, 10, 3, 13], [16, 4, 14, 6, 17], [9, 5, 15, 14, 4], [6, 11, 10, 2, 17], [3, 19, 18, 1, 13], [7, 15, 5, 18, 19], [7, 11, 6, 14, 15], [7, 19, 3, 10, 11]] # Icosahedron elif plato == "20": # Calculate the necessary constants s = (1 + sqrt(5)) / 2 t = sqrt(1 + s * s) s = s / t t = 1 / t # create the vertices and faces v = [(s, t, 0), (-s, t, 0), (s, -t, 0), (-s, -t, 0), (t, 0, s), (t, 0, -s), (-t, 0, s), (-t, 0, -s), (0, s, t), (0, -s, t), (0, s, -t), (0, -s, -t)] faces = [[0, 8, 4], [0, 5, 10], [2, 4, 9], [2, 11, 5], [1, 6, 8], [1, 10, 7], [3, 9, 6], [3, 7, 11], [0, 10, 8], [1, 8, 10], [2, 9, 11], [3, 11, 9], [4, 2, 0], [5, 0, 2], [6, 1, 3], [7, 3, 1], [8, 6, 4], [9, 4, 6], [10, 5, 7], [11, 7, 5]] # convert the tuples to Vectors verts = [Vector(i) for i in v] return verts, faces # processes the raw data from source def createSolid(plato, vtrunc, etrunc, dual, snub): # the duals from each platonic solid dualSource = {"4": "4", "6": "8", "8": "6", "12": "20", "20": "12"} # constants saving space and readability vtrunc *= 0.5 etrunc *= 0.5 supposedSize = 0 noSnub = (snub == "None") or (etrunc == 0.5) or (etrunc == 0) lSnub = (snub == "Left") and (0 < etrunc < 0.5) rSnub = (snub == "Right") and (0 < etrunc < 0.5) # no truncation if vtrunc == 0: if dual: # dual is as simple as another, but mirrored platonic solid vInput, fInput = source(dualSource[plato]) supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0]) vInput = [-i * supposedSize for i in vInput] # mirror it return vInput, fInput return source(plato) elif 0 < vtrunc <= 0.5: # simple truncation of the source vInput, fInput = source(plato) else: # truncation is now equal to simple truncation of the dual of the source vInput, fInput = source(dualSource[plato]) supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0]) vtrunc = 1 - vtrunc # account for the source being a dual if vtrunc == 0: # no truncation needed if dual: vInput, fInput = source(plato) vInput = [i * supposedSize for i in vInput] return vInput, fInput vInput = [-i * supposedSize for i in vInput] return vInput, fInput # generate connection database vDict = [{} for i in vInput] # for every face, store what vertex comes after and before the current vertex for x in range(len(fInput)): i = fInput[x] for j in range(len(i)): vDict[i[j - 1]][i[j]] = [i[j - 2], x] if len(vDict[i[j - 1]]) == 1: vDict[i[j - 1]][-1] = i[j] # the actual connection database: exists out of: # [vtrunc pos, etrunc pos, connected vert IDs, connected face IDs] vData = [[[], [], [], []] for i in vInput] fvOutput = [] # faces created from truncated vertices feOutput = [] # faces created from truncated edges vOutput = [] # newly created vertices for x in range(len(vInput)): i = vDict[x] # lookup the current vertex current = i[-1] while True: # follow the chain to get a ccw order of connected verts and faces vData[x][2].append(i[current][0]) vData[x][3].append(i[current][1]) # create truncated vertices vData[x][0].append((1 - vtrunc) * vInput[x] + vtrunc * vInput[vData[x][2][-1]]) current = i[current][0] if current == i[-1]: break # if we're back at the first: stop the loop fvOutput.append([]) # new face from truncated vert fOffset = x * (len(i) - 1) # where to start off counting faceVerts # only create one vert where one is needed (v1 todo: done) if etrunc == 0.5: for j in range(len(i) - 1): vOutput.append((vData[x][0][j] + vData[x][0][j - 1]) * etrunc) # create vert fvOutput[x].append(fOffset + j) # add to face fvOutput[x] = fvOutput[x][1:] + [fvOutput[x][0]] # rotate face for ease later on # create faces from truncated edges. for j in range(len(i) - 1): if x > vData[x][2][j]: # only create when other vertex has been added index = vData[vData[x][2][j]][2].index(x) feOutput.append([fvOutput[x][j], fvOutput[x][j - 1], fvOutput[vData[x][2][j]][index], fvOutput[vData[x][2][j]][index - 1]]) # edge truncation between none and full elif etrunc > 0: for j in range(len(i) - 1): # create snubs from selecting verts from rectified meshes if rSnub: vOutput.append(etrunc * vData[x][0][j] + (1 - etrunc) * vData[x][0][j - 1]) fvOutput[x].append(fOffset + j) elif lSnub: vOutput.append((1 - etrunc) * vData[x][0][j] + etrunc * vData[x][0][j - 1]) fvOutput[x].append(fOffset + j) else: # noSnub, select both verts from rectified mesh vOutput.append(etrunc * vData[x][0][j] + (1 - etrunc) * vData[x][0][j - 1]) vOutput.append((1 - etrunc) * vData[x][0][j] + etrunc * vData[x][0][j - 1]) fvOutput[x].append(2 * fOffset + 2 * j) fvOutput[x].append(2 * fOffset + 2 * j + 1) # rotate face for ease later on if noSnub: fvOutput[x] = fvOutput[x][2:] + fvOutput[x][:2] else: fvOutput[x] = fvOutput[x][1:] + [fvOutput[x][0]] # create single face for each edge if noSnub: for j in range(len(i) - 1): if x > vData[x][2][j]: index = vData[vData[x][2][j]][2].index(x) feOutput.append([fvOutput[x][j * 2], fvOutput[x][2 * j - 1], fvOutput[vData[x][2][j]][2 * index], fvOutput[vData[x][2][j]][2 * index - 1]]) # create 2 tri's for each edge for the snubs elif rSnub: for j in range(len(i) - 1): if x > vData[x][2][j]: index = vData[vData[x][2][j]][2].index(x) feOutput.append([fvOutput[x][j], fvOutput[x][j - 1], fvOutput[vData[x][2][j]][index]]) feOutput.append([fvOutput[x][j], fvOutput[vData[x][2][j]][index], fvOutput[vData[x][2][j]][index - 1]]) elif lSnub: for j in range(len(i) - 1): if x > vData[x][2][j]: index = vData[vData[x][2][j]][2].index(x) feOutput.append([fvOutput[x][j], fvOutput[x][j - 1], fvOutput[vData[x][2][j]][index - 1]]) feOutput.append([fvOutput[x][j - 1], fvOutput[vData[x][2][j]][index], fvOutput[vData[x][2][j]][index - 1]]) # special rules for birectified mesh (v1 todo: done) elif vtrunc == 0.5: for j in range(len(i) - 1): if x < vData[x][2][j]: # use current vert, since other one has not passed yet vOutput.append(vData[x][0][j]) fvOutput[x].append(len(vOutput) - 1) else: # search for other edge to avoid duplicity connectee = vData[x][2][j] fvOutput[x].append(fvOutput[connectee][vData[connectee][2].index(x)]) else: # vert truncation only vOutput.extend(vData[x][0]) # use generated verts from way above for j in range(len(i) - 1): # create face from them fvOutput[x].append(fOffset + j) # calculate supposed vertex length to ensure continuity if supposedSize and not dual: # this to make the vtrunc > 1 work supposedSize *= len(fvOutput[0]) / vSum(vOutput[i] for i in fvOutput[0]).length vOutput = [-i * supposedSize for i in vOutput] # create new faces by replacing old vert IDs by newly generated verts ffOutput = [[] for i in fInput] for x in range(len(fInput)): # only one generated vert per vertex, so choose accordingly if etrunc == 0.5 or (etrunc == 0 and vtrunc == 0.5) or lSnub or rSnub: ffOutput[x] = [fvOutput[i][vData[i][3].index(x) - 1] for i in fInput[x]] # two generated verts per vertex elif etrunc > 0: for i in fInput[x]: ffOutput[x].append(fvOutput[i][2 * vData[i][3].index(x) - 1]) ffOutput[x].append(fvOutput[i][2 * vData[i][3].index(x) - 2]) else: # cutting off corners also makes 2 verts for i in fInput[x]: ffOutput[x].append(fvOutput[i][vData[i][3].index(x)]) ffOutput[x].append(fvOutput[i][vData[i][3].index(x) - 1]) if not dual: return vOutput, fvOutput + feOutput + ffOutput else: # do the same procedure as above, only now on the generated mesh # generate connection database vDict = [{} for i in vOutput] dvOutput = [0 for i in fvOutput + feOutput + ffOutput] dfOutput = [] for x in range(len(dvOutput)): # for every face i = (fvOutput + feOutput + ffOutput)[x] # choose face to work with # find vertex from face normal = (vOutput[i[0]] - vOutput[i[1]]).cross(vOutput[i[2]] - vOutput[i[1]]).normalized() dvOutput[x] = normal / (normal.dot(vOutput[i[0]])) for j in range(len(i)): # create vert chain vDict[i[j - 1]][i[j]] = [i[j - 2], x] if len(vDict[i[j - 1]]) == 1: vDict[i[j - 1]][-1] = i[j] # calculate supposed size for continuity supposedSize = vSum([vInput[i] for i in fInput[0]]).length / len(fInput[0]) supposedSize /= dvOutput[-1].length dvOutput = [i * supposedSize for i in dvOutput] # use chains to create faces for x in range(len(vOutput)): i = vDict[x] current = i[-1] face = [] while True: face.append(i[current][1]) current = i[current][0] if current == i[-1]: break dfOutput.append(face) return dvOutput, dfOutput class Solids(bpy.types.Operator): """Add one of the (regular) solids (mesh)""" bl_idname = "mesh.primitive_solid_add" bl_label = "(Regular) solids" bl_description = "Add one of the Platonic, Archimedean or Catalan solids" bl_options = {'REGISTER', 'UNDO', 'PRESET'} source: EnumProperty( items=(("4", "Tetrahedron", ""), ("6", "Hexahedron", ""), ("8", "Octahedron", ""), ("12", "Dodecahedron", ""), ("20", "Icosahedron", "")), name="Source", description="Starting point of your solid" ) size: FloatProperty( name="Size", description="Radius of the sphere through the vertices", min=0.01, soft_min=0.01, max=100, soft_max=100, default=1.0 ) vTrunc: FloatProperty( name="Vertex Truncation", description="Amount of vertex truncation", min=0.0, soft_min=0.0, max=2.0, soft_max=2.0, default=0.0, precision=3, step=0.5 ) eTrunc: FloatProperty( name="Edge Truncation", description="Amount of edge truncation", min=0.0, soft_min=0.0, max=1.0, soft_max=1.0, default=0.0, precision=3, step=0.2 ) snub: EnumProperty( items=(("None", "No Snub", ""), ("Left", "Left Snub", ""), ("Right", "Right Snub", "")), name="Snub", description="Create the snub version" ) dual: BoolProperty( name="Dual", description="Create the dual of the current solid", default=False ) keepSize: BoolProperty( name="Keep Size", description="Keep the whole solid at a constant size", default=False ) preset: EnumProperty( items=(("0", "Custom", ""), ("t4", "Truncated Tetrahedron", ""), ("r4", "Cuboctahedron", ""), ("t6", "Truncated Cube", ""), ("t8", "Truncated Octahedron", ""), ("b6", "Rhombicuboctahedron", ""), ("c6", "Truncated Cuboctahedron", ""), ("s6", "Snub Cube", ""), ("r12", "Icosidodecahedron", ""), ("t12", "Truncated Dodecahedron", ""), ("t20", "Truncated Icosahedron", ""), ("b12", "Rhombicosidodecahedron", ""), ("c12", "Truncated Icosidodecahedron", ""), ("s12", "Snub Dodecahedron", ""), ("dt4", "Triakis Tetrahedron", ""), ("dr4", "Rhombic Dodecahedron", ""), ("dt6", "Triakis Octahedron", ""), ("dt8", "Tetrakis Hexahedron", ""), ("db6", "Deltoidal Icositetrahedron", ""), ("dc6", "Disdyakis Dodecahedron", ""), ("ds6", "Pentagonal Icositetrahedron", ""), ("dr12", "Rhombic Triacontahedron", ""), ("dt12", "Triakis Icosahedron", ""), ("dt20", "Pentakis Dodecahedron", ""), ("db12", "Deltoidal Hexecontahedron", ""), ("dc12", "Disdyakis Triacontahedron", ""), ("ds12", "Pentagonal Hexecontahedron", "")), name="Presets", description="Parameters for some hard names" ) # actual preset values p = {"t4": ["4", 2 / 3, 0, 0, "None"], "r4": ["4", 1, 1, 0, "None"], "t6": ["6", 2 / 3, 0, 0, "None"], "t8": ["8", 2 / 3, 0, 0, "None"], "b6": ["6", 1.0938, 1, 0, "None"], "c6": ["6", 1.0572, 0.585786, 0, "None"], "s6": ["6", 1.0875, 0.704, 0, "Left"], "r12": ["12", 1, 0, 0, "None"], "t12": ["12", 2 / 3, 0, 0, "None"], "t20": ["20", 2 / 3, 0, 0, "None"], "b12": ["12", 1.1338, 1, 0, "None"], "c12": ["20", 0.921, 0.553, 0, "None"], "s12": ["12", 1.1235, 0.68, 0, "Left"], "dt4": ["4", 2 / 3, 0, 1, "None"], "dr4": ["4", 1, 1, 1, "None"], "dt6": ["6", 2 / 3, 0, 1, "None"], "dt8": ["8", 2 / 3, 0, 1, "None"], "db6": ["6", 1.0938, 1, 1, "None"], "dc6": ["6", 1.0572, 0.585786, 1, "None"], "ds6": ["6", 1.0875, 0.704, 1, "Left"], "dr12": ["12", 1, 0, 1, "None"], "dt12": ["12", 2 / 3, 0, 1, "None"], "dt20": ["20", 2 / 3, 0, 1, "None"], "db12": ["12", 1.1338, 1, 1, "None"], "dc12": ["20", 0.921, 0.553, 1, "None"], "ds12": ["12", 1.1235, 0.68, 1, "Left"]} # previous preset, for User-friendly reasons previousSetting = "" def execute(self, context): # piece of code to make presets remain until parameters are changed if self.preset != "0": # if preset, set preset if self.previousSetting != self.preset: using = self.p[self.preset] self.source = using[0] self.vTrunc = using[1] self.eTrunc = using[2] self.dual = using[3] self.snub = using[4] else: using = self.p[self.preset] result0 = self.source == using[0] result1 = abs(self.vTrunc - using[1]) < 0.004 result2 = abs(self.eTrunc - using[2]) < 0.0015 result4 = using[4] == self.snub or ((using[4] == "Left") and self.snub in ["Left", "Right"]) if (result0 and result1 and result2 and result4): if self.p[self.previousSetting][3] != self.dual: if self.preset[0] == "d": self.preset = self.preset[1:] else: self.preset = "d" + self.preset else: self.preset = "0" self.previousSetting = self.preset # generate mesh verts, faces = createSolid(self.source, self.vTrunc, self.eTrunc, self.dual, self.snub ) # turn n-gons in quads and tri's faces = createPolys(faces) # resize to normal size, or if keepSize, make sure all verts are of length 'size' if self.keepSize: rad = self.size / verts[-1 if self.dual else 0].length else: rad = self.size verts = [i * rad for i in verts] # generate object # Create new mesh mesh = bpy.data.meshes.new("Solid") # Make a mesh from a list of verts/edges/faces. mesh.from_pydata(verts, [], faces) # Update mesh geometry after adding stuff. mesh.update() object_data_add(context, mesh, operator=None) # object generation done return {'FINISHED'}