# GPL # "author": "DreamPainter" import bpy from bpy.props import FloatProperty,BoolProperty,IntProperty from math import pi, cos, sin from mathutils import Vector from bpy_extras import object_utils # Create a new mesh (object) from verts/edges/faces. # verts/edges/faces ... List of vertices/edges/faces for the # new mesh (as used in from_pydata). # name ... Name of the new mesh (& object). def create_mesh_object(context, verts, edges, faces, name): # Create new mesh mesh = bpy.data.meshes.new(name) # Make a mesh from a list of verts/edges/faces. mesh.from_pydata(verts, edges, faces) # Update mesh geometry after adding stuff. mesh.update() from bpy_extras import object_utils return object_utils.object_data_add(context, mesh, operator=None) # A very simple "bridge" tool. def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False): faces = [] if not vertIdx1 or not vertIdx2: return None if len(vertIdx1) < 2 and len(vertIdx2) < 2: return None fan = False if (len(vertIdx1) != len(vertIdx2)): if (len(vertIdx1) == 1 and len(vertIdx2) > 1): fan = True else: return None total = len(vertIdx2) if closed: # Bridge the start with the end. if flipped: face = [ vertIdx1[0], vertIdx2[0], vertIdx2[total - 1]] if not fan: face.append(vertIdx1[total - 1]) faces.append(face) else: face = [vertIdx2[0], vertIdx1[0]] if not fan: face.append(vertIdx1[total - 1]) face.append(vertIdx2[total - 1]) faces.append(face) # Bridge the rest of the faces. for num in range(total - 1): if flipped: if fan: face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]] else: face = [vertIdx2[num], vertIdx1[num], vertIdx1[num + 1], vertIdx2[num + 1]] faces.append(face) else: if fan: face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]] else: face = [vertIdx1[num], vertIdx2[num], vertIdx2[num + 1], vertIdx1[num + 1]] faces.append(face) return faces def power(a,b): if a < 0: return -((-a)**b) return a**b def supertoroid(R,r,u,v,n1,n2): """ R = big radius r = small radius u = lateral segmentation v = radial segmentation n1 = value determines the shape of the torus n2 = value determines the shape of the cross-section """ # create the necessary constants a = 2*pi/u b = 2*pi/v verts = [] faces = [] # create each cross-section by calculating each vector on the # the wannabe circle # x = (cos(theta)**n1)*(R+r*(cos(phi)**n2)) # y = (sin(theta)**n1)*(R+r*(cos(phi)**n2)) # z = (r*sin(phi)**n2) # with theta and phi rangeing from 0 to 2pi for i in range(u): s = power(sin(i*a),n1) c = power(cos(i*a),n1) for j in range(v): c2 = R+r*power(cos(j*b),n2) s2 = r*power(sin(j*b),n2) verts.append(Vector((c*c2,s*c2,s2))) # bridge the last circle with the previous circle if i > 0: # but not for the first circle, 'cus there's no previous before the first f = createFaces(range((i-1)*v,i*v),range(i*v,(i+1)*v),closed = True) faces.extend(f) # bridge the last circle with the first f = createFaces(range((u-1)*v,u*v),range(v),closed=True) faces.extend(f) return verts, faces class add_supertoroid(bpy.types.Operator): """Add a SuperToroid""" bl_idname = "mesh.primitive_supertoroid_add" bl_label = "Add SuperToroid" bl_description = "Create a SuperToroid" bl_options = {'REGISTER', 'UNDO', 'PRESET'} R = FloatProperty(name = "big radius", description = "The radius inside the tube", default = 1.0, min = 0.01, max = 100.0) r = FloatProperty(name = "small radius", description = "The radius of the tube", default = 0.3, min = 0.01, max = 100.0) u = IntProperty(name = "U-segments", description = "radial segmentation", default = 16, min = 3, max = 265) v = IntProperty(name = "V-segments", description = "lateral segmentation", default = 8, min = 3, max = 265) n1 = FloatProperty(name = "Ring manipulator", description = "Manipulates the shape of the Ring", default = 1.0, min = 0.01, max = 100.0) n2 = FloatProperty(name = "Cross manipulator", description = "Manipulates the shape of the cross-section", default = 1.0, min = 0.01, max = 100.0) ie = BoolProperty(name = "Use Int.+Ext. radii", description = "Use internal and external radii", default = False) edit = BoolProperty(name="", description="", default=False, options={'HIDDEN'}) def execute(self,context): props = self.properties # check how the radii properties must be used if props.ie: rad1 = (props.R+props.r)/2 rad2 = (props.R-props.r)/2 # for consistency in the mesh, ie no crossing faces, make the largest of the two # the outer radius if rad2 > rad1: [rad1,rad2] = [rad2,rad1] else: rad1 = props.R rad2 = props.r # again for consistency, make the radius in the tube, # at least as big as the radius of the tube if rad2 > rad1: rad1 = rad2 # create mesh verts,faces = supertoroid(rad1, rad2, props.u, props.v, props.n1, props.n2) # create the object obj = create_mesh_object(context, verts, [], faces, "SuperToroid") return {'FINISHED'}