# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### bl_addon_info = { "name": "Pipe Joints", "author": "Buerbaum Martin (Pontiac)", "version": (0, 10, 6), "blender": (2, 5, 3), "api": 32411, "location": "View3D > Add > Mesh > Pipe Joint", "description": "Adds 5 pipe Joint types to the Add Mesh menu", "warning": "", "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\ "Scripts/Add_Mesh/Add_Pipe_Joints", "tracker_url": "https://projects.blender.org/tracker/index.php?"\ "func=detail&aid=21443&group_id=153&atid=469", "category": "Add Mesh"} """ Pipe Joints This script lets the user create various types of pipe joints. Usage: You have to activated the script in the "Add-Ons" tab (user preferences). The functionality can then be accessed via the "Add Mesh" -> "Pipe Joints" menu. Note: Currently only the "Elbow" type supports odd number of vertices. Version history: v0.10.6 - Removed "recall properties" from all functions. Updated various code for new API. API: mathutils.RotationMatrix -> mathutils.Matrix.Rotation API: xxx.selected -> xxx.select API: "invoke" function for each operator. Updated for new bl_addon_info structure. New code for the "align_matrix". made script PEP8 compatible. v0.10.5 - createFaces can now create fan/star like faces. v0.10.4 - Updated the function "createFaces" a bit. No functional changes. v0.10.3 - Updated store_recall_properties, apply_object_align and create_mesh_object. Changed how recall data is stored. Added 'description'. v0.10.2 - API change Mathutils -> mathutils (r557) Fixed wiki url. v0.10.1 - Use hidden "edit" property for "recall" operator. v0.10 - Store "recall" properties in the created objects. Align the geometry to the view if the user preference says so. v0.9.10 - Use bl_addon_info for Add-On information. v0.9.9 - Changed the script so it can be managed from the "Add-Ons" tab in the user preferences. Added dummy "PLUGIN" icon. v0.9.8 - Fixed some new API stuff. Mainly we now have the register/unregister functions. Also the new() function for objects now accepts a mesh object. Corrected FSF address. Clean up of tooltips. v0.9.7 - Use "unit" settings for angles as well. This also lets me use radiant for all internal values.. v0.9.6 - Use "unit" settings (i.e. none/metric/imperial). v0.9.5 - Use mesh.from_pydata() for geometry creation. So we can remove unpack_list and unpack_face_list again. v0.9.4 - Creating of the pipe now works in mesh edit mode too. Thanks to ideasman42 (Campbell Barton) for his nice work on the torus script code :-). v0.9.3 - Changed to a saner vertex/polygon creation process (previously my usage of mesh.faces.add could only do quads) For this I've copied the functions unpack_list and unpack_face_list from import_scene_obj.py. Elbow joint actually supports 3 vertices per circle. Various comments. Script _should_ now be PEP8 compatible. v0.9.2 - Converted from tabs to spaces (4 spaces per tab). v0.9.1 - Converted add_mesh and add_object to their new counterparts "bpy.data.meshes.new() and "bpy.data.objects.new()" v0.9 - Converted to 2.5. Made mostly pep8 compatible (exept for tabs and stuff the check-script didn't catch). v0.8.5 - Fixed bug in Elbow joint. Same problem as in 0.8.1 v0.8.4 - Fixed bug in Y joint. Same problem as in 0.8.1 v0.8.3 - Fixed bug in N joint. Same problem as in 0.8.1 v0.8.2 - Fixed bug in X (cross) joint. Same problem as in 0.8.1 v0.8.1 - Fixed bug in T joint. Angles greater than 90 deg combined with a radius != 1 resulted in bad geometry (the radius was not taken into account when calculating the joint vertices). v0.8 - Added N-Joint. Removed all uses of baseJointLocZ. It just clutters the code. v0.7 - Added cross joint v0.6 - No visible changes. Lots of internal ones though (complete redesign of face creation process). As a bonus the code is a bit easier to read now. Added a nice&simple little "bridge" function (createFaces) for these changes. v0.5.1 - Made it possible to create asymmetric Y joints. Renamed the 2 Wye Joints to something more fitting and unique. One is now the Tee joint, the second one remains the Wye joint. v0.5 - Added real Y joint. v0.4.3 - Added check for odd vertex numbers. They are not (yet) supported. v0.4.2 - Added pipe length to the GUI. v0.4.1 - Removed the unfinished menu entries for now. v0.4 - Tried to clean up the face creation in addTeeJoint v0.3 - Code for wye (Y) shape (straight pipe with "branch" for now) v0.2 - Restructured to allow different types of pipe (joints). v0.1 - Initial revision. More links: http://gitorious.org/blender-scripts/blender-pipe-joint-script http://blenderartists.org/forum/showthread.php?t=154394 TODO: Use a rotation matrix for rotating the circle vertices: rotation_matrix = mathutils.Matrix.Rotation(-math.pi/2, 4, 'x') mesh.transform(rotation_matrix) """ import bpy import mathutils from math import * from bpy.props import * # Apply view rotation to objects if "Align To" for # new objects was set to "VIEW" in the User Preference. # Is now handled in the invoke functions # calculates the matrix for the new object # depending on user pref def align_matrix(context): loc = mathutils.Matrix.Translation(context.scene.cursor_location) obj_align = context.user_preferences.edit.object_align if (context.space_data.type == 'VIEW_3D' and obj_align == 'VIEW'): view_mat = context.space_data.region_3d.view_matrix rot = view_mat.rotation_part().invert().resize4x4() else: rot = mathutils.Matrix() align_matrix = loc * rot return align_matrix # Create a new mesh (object) from verts/edges/faces. # verts/edges/faces ... List of vertices/edges/faces for the # new mesh (as used in from_pydata). # name ... Name of the new mesh (& object). # edit ... Replace existing mesh data. # Note: Using "edit" will destroy/delete existing mesh data. def create_mesh_object(context, verts, edges, faces, name, edit, align_matrix): scene = context.scene obj_act = scene.objects.active # Can't edit anything, unless we have an active obj. if edit and not obj_act: return None # Create new mesh mesh = bpy.data.meshes.new(name) # Make a mesh from a list of verts/edges/faces. mesh.from_pydata(verts, edges, faces) # Update mesh geometry after adding stuff. mesh.update() # Deselect all objects. bpy.ops.object.select_all(action='DESELECT') if edit: # Replace geometry of existing object # Use the active obj and select it. ob_new = obj_act ob_new.select = True if obj_act.mode == 'OBJECT': # Get existing mesh datablock. old_mesh = ob_new.data # Set object data to nothing ob_new.data = None # Clear users of existing mesh datablock. old_mesh.user_clear() # Remove old mesh datablock if no users are left. if (old_mesh.users == 0): bpy.data.meshes.remove(old_mesh) # Assign new mesh datablock. ob_new.data = mesh else: # Create new object ob_new = bpy.data.objects.new(name, mesh) # Link new object to the given scene and select it. scene.objects.link(ob_new) ob_new.select = True # Place the object at the 3D cursor location. ob_new.matrix_world = align_matrix if obj_act and obj_act.mode == 'EDIT': if not edit: # We are in EditMode, switch to ObjectMode. bpy.ops.object.mode_set(mode='OBJECT') # Select the active object as well. obj_act.select = True # Apply location of new object. scene.update() # Join new object into the active. bpy.ops.object.join() # Switching back to EditMode. bpy.ops.object.mode_set(mode='EDIT') ob_new = obj_act else: # We are in ObjectMode. # Make the new object the active one. scene.objects.active = ob_new return ob_new # A very simple "bridge" tool. # Connects two equally long vertex rows with faces. # Returns a list of the new faces (list of lists) # # vertIdx1 ... First vertex list (list of vertex indices). # vertIdx2 ... Second vertex list (list of vertex indices). # closed ... Creates a loop (first & last are closed). # flipped ... Invert the normal of the face(s). # # Note: You can set vertIdx1 to a single vertex index to create # a fan/star of faces. # Note: If both vertex idx list are the same length they have # to have at least 2 vertices. def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False): faces = [] if not vertIdx1 or not vertIdx2: return None if len(vertIdx1) < 2 and len(vertIdx2) < 2: return None fan = False if (len(vertIdx1) != len(vertIdx2)): if (len(vertIdx1) == 1 and len(vertIdx2) > 1): fan = True else: return None total = len(vertIdx2) if closed: # Bridge the start with the end. if flipped: face = [ vertIdx1[0], vertIdx2[0], vertIdx2[total - 1]] if not fan: face.append(vertIdx1[total - 1]) faces.append(face) else: face = [vertIdx2[0], vertIdx1[0]] if not fan: face.append(vertIdx1[total - 1]) face.append(vertIdx2[total - 1]) faces.append(face) # Bridge the rest of the faces. for num in range(total - 1): if flipped: if fan: face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]] else: face = [vertIdx2[num], vertIdx1[num], vertIdx1[num + 1], vertIdx2[num + 1]] faces.append(face) else: if fan: face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]] else: face = [vertIdx1[num], vertIdx2[num], vertIdx2[num + 1], vertIdx1[num + 1]] faces.append(face) return faces class AddElbowJoint(bpy.types.Operator): # Create the vertices and polygons for a simple elbow (bent pipe). '''Add an Elbow pipe mesh''' bl_idname = "mesh.primitive_elbow_joint_add" bl_label = "Add Pipe Elbow" bl_options = {'REGISTER', 'UNDO'} # edit - Whether to add or update. edit = BoolProperty(name="", description="", default=False, options={'HIDDEN'}) radius = FloatProperty(name="Radius", description="The radius of the pipe.", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions).", default=32, min=3, max=256) angle = FloatProperty(name="Angle", description="The angle of the branching pipe (i.e. the 'arm')." \ " Measured from the center line of the main pipe.", default=radians(45.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") startLength = FloatProperty(name="Length Start", description="Length of the beginning of the pipe.", default=3.0, min=0.01, max=100.0, unit="LENGTH") endLength = FloatProperty(name="End Length", description="Length of the end of the pipe.", default=3.0, min=0.01, max=100.0, unit="LENGTH") align_matrix = mathutils.Matrix() def execute(self, context): edit = self.edit radius = self.radius div = self.div angle = self.angle startLength = self.startLength endLength = self.endLength verts = [] faces = [] loop1 = [] # The starting circle loop2 = [] # The elbow circle loop3 = [] # The end circle # Create start circle for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = -startLength loop1.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create deformed joint circle for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = locX * tan(angle / 2.0) loop2.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) # Create end circle baseEndLocX = -endLength * sin(angle) baseEndLocZ = endLength * cos(angle) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 - angle) locX = locX * sin(pi / 2.0 - angle) loop3.append(len(verts)) # Translate and add circle vertices to the list. verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create faces faces.extend(createFaces(loop1, loop2, closed=True)) faces.extend(createFaces(loop2, loop3, closed=True)) obj = create_mesh_object(context, verts, [], faces, "Elbow Joint", edit, self.align_matrix) return {'FINISHED'} def invoke(self, context, event): self.align_matrix = align_matrix(context) self.execute(context) return {'FINISHED'} class AddTeeJoint(bpy.types.Operator): # Create the vertices and polygons for a simple tee (T) joint. # The base arm of the T can be positioned in an angle if needed though. '''Add a Tee-Joint mesh''' bl_idname = "mesh.primitive_tee_joint_add" bl_label = "Add Pipe Tee-Joint" bl_options = {'REGISTER', 'UNDO'} # edit - Whether to add or update. edit = BoolProperty(name="", description="", default=False, options={'HIDDEN'}) radius = FloatProperty(name="Radius", description="The radius of the pipe.", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions).", default=32, min=4, max=256) angle = FloatProperty(name="Angle", description="The angle of the branching pipe (i.e. the 'arm')." \ " Measured from the center line of the main pipe.", default=radians(90.0), min=radians(0.1), max=radians(179.9), unit="ROTATION") startLength = FloatProperty(name="Length Start", description="Length of the beginning of the" \ " main pipe (the straight one).", default=3.0, min=0.01, max=100.0, unit="LENGTH") endLength = FloatProperty(name="End Length", description="Length of the end of the" \ " main pipe (the straight one).", default=3.0, min=0.01, max=100.0, unit="LENGTH") branchLength = FloatProperty(name="Arm Length", description="Length of the arm pipe (the bent one).", default=3.0, min=0.01, max=100.0, unit="LENGTH") align_matrix = mathutils.Matrix() def execute(self, context): edit = self.edit radius = self.radius div = self.div angle = self.angle startLength = self.startLength endLength = self.endLength branchLength = self.branchLength if (div % 2): # Odd vertice number not supported (yet). return {'CANCELLED'} verts = [] faces = [] # List of vert indices of each cross section loopMainStart = [] # Vert indices for the # beginning of the main pipe. loopJoint1 = [] # Vert indices for joint that is used # to connect the joint & loopMainStart. loopJoint2 = [] # Vert indices for joint that is used # to connect the joint & loopArm. loopJoint3 = [] # Vert index for joint that is used # to connect the joint & loopMainEnd. loopArm = [] # Vert indices for the end of the arm. loopMainEnd = [] # Vert indices for the # end of the main pipe. # Create start circle (main pipe) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = -startLength loopMainStart.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create deformed joint circle vertTemp1 = None vertTemp2 = None for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) if vertIdx == 0: vertTemp1 = len(verts) if vertIdx == div / 2: # @todo: This will possibly break if we # ever support odd divisions. vertTemp2 = len(verts) loopJoint1.append(len(verts)) if (vertIdx < div / 2): # Straight side of main pipe. locZ = 0 loopJoint3.append(len(verts)) else: # Branching side locZ = locX * tan(angle / 2.0) loopJoint2.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) # Create 2. deformed joint (half-)circle loopTemp = [] for vertIdx in range(div): if (vertIdx > div / 2): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = -cos(curVertAngle) locZ = -(radius * locX * tan((pi - angle) / 2.0)) loopTemp.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) loopTemp2 = loopTemp[:] # Finalise 2. loop loopTemp.reverse() loopTemp.append(vertTemp1) loopJoint2.reverse() loopJoint2.extend(loopTemp) loopJoint2.reverse() # Finalise 3. loop loopTemp2.append(vertTemp2) loopTemp2.reverse() loopJoint3.extend(loopTemp2) # Create end circle (branching pipe) baseEndLocX = -branchLength * sin(angle) baseEndLocZ = branchLength * cos(angle) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 - angle) locX = locX * sin(pi / 2.0 - angle) loopArm.append(len(verts)) # Add translated circle. verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create end circle (main pipe) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = endLength loopMainEnd.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create faces faces.extend(createFaces(loopMainStart, loopJoint1, closed=True)) faces.extend(createFaces(loopJoint2, loopArm, closed=True)) faces.extend(createFaces(loopJoint3, loopMainEnd, closed=True)) obj = create_mesh_object(context, verts, [], faces, "Tee Joint", edit, self.align_matrix) return {'FINISHED'} def invoke(self, context, event): self.align_matrix = align_matrix(context) self.execute(context) return {'FINISHED'} class AddWyeJoint(bpy.types.Operator): '''Add a Wye-Joint mesh''' bl_idname = "mesh.primitive_wye_joint_add" bl_label = "Add Pipe Wye-Joint" bl_options = {'REGISTER', 'UNDO'} # edit - Whether to add or update. edit = BoolProperty(name="", description="", default=False, options={'HIDDEN'}) radius = FloatProperty(name="Radius", description="The radius of the pipe.", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions).", default=32, min=4, max=256) angle1 = FloatProperty(name="Angle 1", description="The angle of the 1. branching pipe." \ " Measured from the center line of the main pipe.", default=radians(45.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") angle2 = FloatProperty(name="Angle 2", description="The angle of the 2. branching pipe." \ " Measured from the center line of the main pipe.", default=radians(45.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") startLength = FloatProperty(name="Length Start", description="Length of the beginning of the" \ " main pipe (the straight one).", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch1Length = FloatProperty(name="Length Arm 1", description="Length of the 1. arm.", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch2Length = FloatProperty(name="Length Arm 2", description="Length of the 2. arm.", default=3.0, min=0.01, max=100.0, unit="LENGTH") align_matrix = mathutils.Matrix() def execute(self, context): edit = self.edit radius = self.radius div = self.div angle1 = self.angle1 angle2 = self.angle2 startLength = self.startLength branch1Length = self.branch1Length branch2Length = self.branch2Length if (div % 2): # Odd vertice number not supported (yet). return {'CANCELLED'} verts = [] faces = [] # List of vert indices of each cross section loopMainStart = [] # Vert indices for # the beginning of the main pipe. loopJoint1 = [] # Vert index for joint that is used # to connect the joint & loopMainStart. loopJoint2 = [] # Vert index for joint that # is used to connect the joint & loopArm1. loopJoint3 = [] # Vert index for joint that is # used to connect the joint & loopArm2. loopArm1 = [] # Vert idxs for end of the 1. arm. loopArm2 = [] # Vert idxs for end of the 2. arm. # Create start circle for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = -startLength loopMainStart.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create deformed joint circle vertTemp1 = None vertTemp2 = None for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) if vertIdx == 0: vertTemp2 = len(verts) if vertIdx == div / 2: # @todo: This will possibly break if we # ever support odd divisions. vertTemp1 = len(verts) loopJoint1.append(len(verts)) if (vertIdx > div / 2): locZ = locX * tan(angle1 / 2.0) loopJoint2.append(len(verts)) else: locZ = locX * tan(-angle2 / 2.0) loopJoint3.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) # Create 2. deformed joint (half-)circle loopTemp = [] angleJoint = (angle2 - angle1) / 2.0 for vertIdx in range(div): if (vertIdx > div / 2): curVertAngle = vertIdx * (2.0 * pi / div) locX = (-sin(curVertAngle) * sin(angleJoint) / sin(angle2 - angleJoint)) locY = -cos(curVertAngle) locZ = (-(sin(curVertAngle) * cos(angleJoint) / sin(angle2 - angleJoint))) loopTemp.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) loopTemp2 = loopTemp[:] # Finalise 2. loop loopTemp.append(vertTemp1) loopTemp.reverse() loopTemp.append(vertTemp2) loopJoint2.reverse() loopJoint2.extend(loopTemp) loopJoint2.reverse() # Finalise 3. loop loopTemp2.reverse() loopJoint3.extend(loopTemp2) # Create end circle (1. branching pipe) baseEndLocX = -branch1Length * sin(angle1) baseEndLocZ = branch1Length * cos(angle1) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 - angle1) locX = locX * sin(pi / 2.0 - angle1) loopArm1.append(len(verts)) # Add translated circle. verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create end circle (2. branching pipe) baseEndLocX = branch2Length * sin(angle2) baseEndLocZ = branch2Length * cos(angle2) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 + angle2) locX = locX * sin(pi / 2.0 + angle2) loopArm2.append(len(verts)) # Add translated circle verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create faces faces.extend(createFaces(loopMainStart, loopJoint1, closed=True)) faces.extend(createFaces(loopJoint2, loopArm1, closed=True)) faces.extend(createFaces(loopJoint3, loopArm2, closed=True)) obj = create_mesh_object(context, verts, [], faces, "Wye Joint", edit, self.align_matrix) return {'FINISHED'} def invoke(self, context, event): self.align_matrix = align_matrix(context) self.execute(context) return {'FINISHED'} class AddCrossJoint(bpy.types.Operator): '''Add a Cross-Joint mesh''' # Create the vertices and polygons for a coss (+ or X) pipe joint. bl_idname = "mesh.primitive_cross_joint_add" bl_label = "Add Pipe Cross-Joint" bl_options = {'REGISTER', 'UNDO'} # edit - Whether to add or update. edit = BoolProperty(name="", description="", default=False, options={'HIDDEN'}) radius = FloatProperty(name="Radius", description="The radius of the pipe.", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions).", default=32, min=4, max=256) angle1 = FloatProperty(name="Angle 1", description="The angle of the 1. arm (from the main axis).", default=radians(90.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") angle2 = FloatProperty(name="Angle 2", description="The angle of the 2. arm (from the main axis).", default=radians(90.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") angle3 = FloatProperty(name="Angle 3 (center)", description="The angle of the center arm (from the main axis).", default=radians(0.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") startLength = FloatProperty(name="Length Start", description="Length of the beginning of the " \ "main pipe (the straight one).", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch1Length = FloatProperty(name="Length Arm 1", description="Length of the 1. arm.", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch2Length = FloatProperty(name="Length Arm 2", description="Length of the 2. arm.", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch3Length = FloatProperty(name="Length Arm 3 (center)", description="Length of the center arm.", default=3.0, min=0.01, max=100.0, unit="LENGTH") align_matrix = mathutils.Matrix() def execute(self, context): edit = self.edit radius = self.radius div = self.div angle1 = self.angle1 angle2 = self.angle2 angle3 = self.angle3 startLength = self.startLength branch1Length = self.branch1Length branch2Length = self.branch2Length branch3Length = self.branch3Length if (div % 2): # Odd vertice number not supported (yet). return {'CANCELLED'} verts = [] faces = [] # List of vert indices of each cross section loopMainStart = [] # Vert indices for the # beginning of the main pipe. loopJoint1 = [] # Vert index for joint that is used # to connect the joint & loopMainStart. loopJoint2 = [] # Vert index for joint that is used # to connect the joint & loopArm1. loopJoint3 = [] # Vert index for joint that is used # to connect the joint & loopArm2. loopJoint4 = [] # Vert index for joint that is used # to connect the joint & loopArm3. loopArm1 = [] # Vert idxs for the end of the 1. arm. loopArm2 = [] # Vert idxs for the end of the 2. arm. loopArm3 = [] # Vert idxs for the center arm end. # Create start circle for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = -startLength loopMainStart.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create 1. deformed joint circle vertTemp1 = None vertTemp2 = None for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) if vertIdx == 0: vertTemp2 = len(verts) if vertIdx == div / 2: # @todo: This will possibly break if we # ever support odd divisions. vertTemp1 = len(verts) loopJoint1.append(len(verts)) if (vertIdx > div / 2): locZ = locX * tan(angle1 / 2.0) loopJoint2.append(len(verts)) else: locZ = locX * tan(-angle2 / 2.0) loopJoint3.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) loopTemp2 = loopJoint2[:] # Create 2. deformed joint circle loopTempA = [] loopTempB = [] angleJoint1 = (angle1 - angle3) / 2.0 angleJoint2 = (angle2 + angle3) / 2.0 for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Skip pole vertices # @todo: This will possibly break if # we ever support odd divisions. if not (vertIdx == 0) and not (vertIdx == div / 2): if (vertIdx > div / 2): angleJoint = angleJoint1 angle = angle1 Z = -1.0 loopTempA.append(len(verts)) else: angleJoint = angleJoint2 angle = angle2 Z = 1.0 loopTempB.append(len(verts)) locX = (sin(curVertAngle) * sin(angleJoint) / sin(angle - angleJoint)) locY = -cos(curVertAngle) locZ = (Z * (sin(curVertAngle) * cos(angleJoint) / sin(angle - angleJoint))) verts.append([locX * radius, locY * radius, locZ * radius]) loopTempA2 = loopTempA[:] loopTempB2 = loopTempB[:] loopTempB3 = loopTempB[:] # Finalise 2. loop loopTempA.append(vertTemp1) loopTempA.reverse() loopTempA.append(vertTemp2) loopJoint2.reverse() loopJoint2.extend(loopTempA) loopJoint2.reverse() # Finalise 3. loop loopJoint3.extend(loopTempB3) # Finalise 4. loop loopTempA2.append(vertTemp1) loopTempA2.reverse() loopTempB2.append(vertTemp2) loopJoint4.extend(reversed(loopTempB2)) loopJoint4.extend(loopTempA2) # Create end circle (1. branching pipe) baseEndLocX = -branch1Length * sin(angle1) baseEndLocZ = branch1Length * cos(angle1) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 - angle1) locX = locX * sin(pi / 2.0 - angle1) loopArm1.append(len(verts)) # Add translated circle. verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create end circle (2. branching pipe) baseEndLocX = branch2Length * sin(angle2) baseEndLocZ = branch2Length * cos(angle2) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 + angle2) locX = locX * sin(pi / 2.0 + angle2) loopArm2.append(len(verts)) # Add translated circle verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create end circle (center pipe) baseEndLocX = branch3Length * sin(angle3) baseEndLocZ = branch3Length * cos(angle3) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 + angle3) locX = locX * sin(pi / 2.0 + angle3) loopArm3.append(len(verts)) # Add translated circle verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create faces faces.extend(createFaces(loopMainStart, loopJoint1, closed=True)) faces.extend(createFaces(loopJoint2, loopArm1, closed=True)) faces.extend(createFaces(loopJoint3, loopArm2, closed=True)) faces.extend(createFaces(loopJoint4, loopArm3, closed=True)) obj = create_mesh_object(context, verts, [], faces, "Cross Joint", edit, self.align_matrix) return {'FINISHED'} def invoke(self, context, event): self.align_matrix = align_matrix(context) self.execute(context) return {'FINISHED'} class AddNJoint(bpy.types.Operator): '''Add a N-Joint mesh''' # Create the vertices and polygons for a regular n-joint. bl_idname = "mesh.primitive_n_joint_add" bl_label = "Add Pipe N-Joint" bl_options = {'REGISTER', 'UNDO'} # edit - Whether to add or update. edit = BoolProperty(name="", description="", default=False, options={'HIDDEN'}) radius = FloatProperty(name="Radius", description="The radius of the pipe.", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions).", default=32, min=4, max=256) number = IntProperty(name="Arms/Joints", description="Number of joints/arms", default=5, min=2, max=99999) length = FloatProperty(name="Length", description="Length of each joint/arm", default=3.0, min=0.01, max=100.0, unit="LENGTH") align_matrix = mathutils.Matrix() def execute(self, context): edit = self.edit radius = self.radius div = self.div number = self.number length = self.length if (div % 2): # Odd vertice number not supported (yet). return {'CANCELLED'} if (number < 2): return {'CANCELLED'} verts = [] faces = [] loopsEndCircles = [] loopsJointsTemp = [] loopsJoints = [] vertTemp1 = None vertTemp2 = None angleDiv = (2.0 * pi / number) # Create vertices for the end circles. for num in range(number): circle = [] # Create start circle angle = num * angleDiv baseEndLocX = length * sin(angle) baseEndLocZ = length * cos(angle) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 + angle) locX = locX * sin(pi / 2.0 + angle) circle.append(len(verts)) # Add translated circle verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) loopsEndCircles.append(circle) # Create vertices for the joint circles. loopJoint = [] for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) skipVert = False # Store pole vertices if vertIdx == 0: if (num == 0): vertTemp2 = len(verts) else: skipVert = True elif vertIdx == div / 2: # @todo: This will possibly break if we # ever support odd divisions. if (num == 0): vertTemp1 = len(verts) else: skipVert = True if not skipVert: if (vertIdx > div / 2): locZ = -locX * tan((pi - angleDiv) / 2.0) loopJoint.append(len(verts)) # Rotate the vert cosAng = cos(-angle) sinAng = sin(-angle) LocXnew = locX * cosAng - locZ * sinAng LocZnew = locZ * cosAng + locX * sinAng locZ = LocZnew locX = LocXnew verts.append([ locX * radius, locY * radius, locZ * radius]) else: # These two vertices will only be # added the very first time. if vertIdx == 0 or vertIdx == div / 2: verts.append([locX * radius, locY * radius, locZ]) loopsJointsTemp.append(loopJoint) # Create complete loops (loopsJoints) out of the # double number of half loops in loopsJointsTemp. for halfLoopIdx in range(len(loopsJointsTemp)): if (halfLoopIdx == len(loopsJointsTemp) - 1): idx1 = halfLoopIdx idx2 = 0 else: idx1 = halfLoopIdx idx2 = halfLoopIdx + 1 loopJoint = [] loopJoint.append(vertTemp2) loopJoint.extend(reversed(loopsJointsTemp[idx2])) loopJoint.append(vertTemp1) loopJoint.extend(loopsJointsTemp[idx1]) loopsJoints.append(loopJoint) # Create faces from the two # loop arrays (loopsJoints -> loopsEndCircles). for loopIdx in range(len(loopsEndCircles)): faces.extend( createFaces(loopsJoints[loopIdx], loopsEndCircles[loopIdx], closed=True)) obj = create_mesh_object(context, verts, [], faces, "N Joint", edit, self.align_matrix) return {'FINISHED'} def invoke(self, context, event): self.align_matrix = align_matrix(context) self.execute(context) return {'FINISHED'} class INFO_MT_mesh_pipe_joints_add(bpy.types.Menu): # Define the "Pipe Joints" menu bl_idname = "INFO_MT_mesh_pipe_joints_add" bl_label = "Pipe Joints" def draw(self, context): layout = self.layout layout.operator_context = 'INVOKE_REGION_WIN' layout.operator("mesh.primitive_elbow_joint_add", text="Pipe Elbow") layout.operator("mesh.primitive_tee_joint_add", text="Pipe T-Joint") layout.operator("mesh.primitive_wye_joint_add", text="Pipe Y-Joint") layout.operator("mesh.primitive_cross_joint_add", text="Pipe Cross-Joint") layout.operator("mesh.primitive_n_joint_add", text="Pipe N-Joint") ################################ import space_info # Define "Pipe Joints" menu def menu_func(self, context): self.layout.menu("INFO_MT_mesh_pipe_joints_add", icon="PLUGIN") def register(): # Add "Pipe Joints" menu to the "Add Mesh" menu space_info.INFO_MT_mesh_add.append(menu_func) def unregister(): # Remove "Pipe Joints" menu from the "Add Mesh" menu. space_info.INFO_MT_mesh_add.remove(menu_func) if __name__ == "__main__": register()