# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### bl_info = { "name": "Pipe Joints", "author": "Buerbaum Martin (Pontiac)", "version": (0, 10, 7), "blender": (2, 61, 0), "location": "View3D > Add > Mesh > Pipe Joints", "description": "Add different types of pipe joints", "warning": "", "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/" "Scripts/Add_Mesh/Add_Pipe_Joints", "category": "Add Mesh", } import bpy from math import * from bpy.props import * # Create a new mesh (object) from verts/edges/faces. # verts/edges/faces ... List of vertices/edges/faces for the # new mesh (as used in from_pydata). # name ... Name of the new mesh (& object). def create_mesh_object(context, verts, edges, faces, name): # Create new mesh mesh = bpy.data.meshes.new(name) # Make a mesh from a list of verts/edges/faces. mesh.from_pydata(verts, edges, faces) # Update mesh geometry after adding stuff. mesh.update() from bpy_extras import object_utils return object_utils.object_data_add(context, mesh, operator=None) # A very simple "bridge" tool. # Connects two equally long vertex rows with faces. # Returns a list of the new faces (list of lists) # # vertIdx1 ... First vertex list (list of vertex indices). # vertIdx2 ... Second vertex list (list of vertex indices). # closed ... Creates a loop (first & last are closed). # flipped ... Invert the normal of the face(s). # # Note: You can set vertIdx1 to a single vertex index to create # a fan/star of faces. # Note: If both vertex idx list are the same length they have # to have at least 2 vertices. def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False): faces = [] if not vertIdx1 or not vertIdx2: return None if len(vertIdx1) < 2 and len(vertIdx2) < 2: return None fan = False if (len(vertIdx1) != len(vertIdx2)): if (len(vertIdx1) == 1 and len(vertIdx2) > 1): fan = True else: return None total = len(vertIdx2) if closed: # Bridge the start with the end. if flipped: face = [ vertIdx1[0], vertIdx2[0], vertIdx2[total - 1]] if not fan: face.append(vertIdx1[total - 1]) faces.append(face) else: face = [vertIdx2[0], vertIdx1[0]] if not fan: face.append(vertIdx1[total - 1]) face.append(vertIdx2[total - 1]) faces.append(face) # Bridge the rest of the faces. for num in range(total - 1): if flipped: if fan: face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]] else: face = [vertIdx2[num], vertIdx1[num], vertIdx1[num + 1], vertIdx2[num + 1]] faces.append(face) else: if fan: face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]] else: face = [vertIdx1[num], vertIdx2[num], vertIdx2[num + 1], vertIdx1[num + 1]] faces.append(face) return faces class AddElbowJoint(bpy.types.Operator): # Create the vertices and polygons for a simple elbow (bent pipe). """Add an Elbow pipe mesh""" bl_idname = "mesh.primitive_elbow_joint_add" bl_label = "Add Pipe Elbow" bl_options = {'REGISTER', 'UNDO', 'PRESET'} radius = FloatProperty(name="Radius", description="The radius of the pipe", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions)", default=32, min=3, max=256) angle = FloatProperty(name="Angle", description="The angle of the branching pipe (i.e. the 'arm' - " \ "Measured from the center line of the main pipe", default=radians(45.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") startLength = FloatProperty(name="Length Start", description="Length of the beginning of the pipe", default=3.0, min=0.01, max=100.0, unit="LENGTH") endLength = FloatProperty(name="End Length", description="Length of the end of the pipe", default=3.0, min=0.01, max=100.0, unit="LENGTH") def execute(self, context): radius = self.radius div = self.div angle = self.angle startLength = self.startLength endLength = self.endLength verts = [] faces = [] loop1 = [] # The starting circle loop2 = [] # The elbow circle loop3 = [] # The end circle # Create start circle for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = -startLength loop1.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create deformed joint circle for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = locX * tan(angle / 2.0) loop2.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) # Create end circle baseEndLocX = -endLength * sin(angle) baseEndLocZ = endLength * cos(angle) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 - angle) locX = locX * sin(pi / 2.0 - angle) loop3.append(len(verts)) # Translate and add circle vertices to the list. verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create faces faces.extend(createFaces(loop1, loop2, closed=True)) faces.extend(createFaces(loop2, loop3, closed=True)) base = create_mesh_object(context, verts, [], faces, "Elbow Joint") return {'FINISHED'} class AddTeeJoint(bpy.types.Operator): # Create the vertices and polygons for a simple tee (T) joint. # The base arm of the T can be positioned in an angle if needed though. """Add a Tee-Joint mesh""" bl_idname = "mesh.primitive_tee_joint_add" bl_label = "Add Pipe Tee-Joint" bl_options = {'REGISTER', 'UNDO', 'PRESET'} radius = FloatProperty(name="Radius", description="The radius of the pipe", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions)", default=32, min=4, max=256) angle = FloatProperty(name="Angle", description="The angle of the branching pipe (i.e. the 'arm' - " \ "Measured from the center line of the main pipe", default=radians(90.0), min=radians(0.1), max=radians(179.9), unit="ROTATION") startLength = FloatProperty(name="Length Start", description="Length of the beginning of the" \ " main pipe (the straight one)", default=3.0, min=0.01, max=100.0, unit="LENGTH") endLength = FloatProperty(name="End Length", description="Length of the end of the" \ " main pipe (the straight one)", default=3.0, min=0.01, max=100.0, unit="LENGTH") branchLength = FloatProperty(name="Arm Length", description="Length of the arm pipe (the bent one)", default=3.0, min=0.01, max=100.0, unit="LENGTH") def execute(self, context): radius = self.radius div = self.div angle = self.angle startLength = self.startLength endLength = self.endLength branchLength = self.branchLength if (div % 2): # Odd vertice number not supported (yet). return {'CANCELLED'} verts = [] faces = [] # List of vert indices of each cross section loopMainStart = [] # Vert indices for the # beginning of the main pipe. loopJoint1 = [] # Vert indices for joint that is used # to connect the joint & loopMainStart. loopJoint2 = [] # Vert indices for joint that is used # to connect the joint & loopArm. loopJoint3 = [] # Vert index for joint that is used # to connect the joint & loopMainEnd. loopArm = [] # Vert indices for the end of the arm. loopMainEnd = [] # Vert indices for the # end of the main pipe. # Create start circle (main pipe) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = -startLength loopMainStart.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create deformed joint circle vertTemp1 = None vertTemp2 = None for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) if vertIdx == 0: vertTemp1 = len(verts) if vertIdx == div / 2: # @todo: This will possibly break if we # ever support odd divisions. vertTemp2 = len(verts) loopJoint1.append(len(verts)) if (vertIdx < div / 2): # Straight side of main pipe. locZ = 0 loopJoint3.append(len(verts)) else: # Branching side locZ = locX * tan(angle / 2.0) loopJoint2.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) # Create 2. deformed joint (half-)circle loopTemp = [] for vertIdx in range(div): if (vertIdx > div / 2): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = -cos(curVertAngle) locZ = -(radius * locX * tan((pi - angle) / 2.0)) loopTemp.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) loopTemp2 = loopTemp[:] # Finalise 2. loop loopTemp.reverse() loopTemp.append(vertTemp1) loopJoint2.reverse() loopJoint2.extend(loopTemp) loopJoint2.reverse() # Finalise 3. loop loopTemp2.append(vertTemp2) loopTemp2.reverse() loopJoint3.extend(loopTemp2) # Create end circle (branching pipe) baseEndLocX = -branchLength * sin(angle) baseEndLocZ = branchLength * cos(angle) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 - angle) locX = locX * sin(pi / 2.0 - angle) loopArm.append(len(verts)) # Add translated circle. verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create end circle (main pipe) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = endLength loopMainEnd.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create faces faces.extend(createFaces(loopMainStart, loopJoint1, closed=True)) faces.extend(createFaces(loopJoint2, loopArm, closed=True)) faces.extend(createFaces(loopJoint3, loopMainEnd, closed=True)) base = create_mesh_object(context, verts, [], faces, "Tee Joint") return {'FINISHED'} class AddWyeJoint(bpy.types.Operator): """Add a Wye-Joint mesh""" bl_idname = "mesh.primitive_wye_joint_add" bl_label = "Add Pipe Wye-Joint" bl_options = {'REGISTER', 'UNDO', 'PRESET'} radius = FloatProperty(name="Radius", description="The radius of the pipe", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions)", default=32, min=4, max=256) angle1 = FloatProperty(name="Angle 1", description="The angle of the 1. branching pipe " \ "(measured from the center line of the main pipe)", default=radians(45.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") angle2 = FloatProperty(name="Angle 2", description="The angle of the 2. branching pipe " \ "(measured from the center line of the main pipe) ", default=radians(45.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") startLength = FloatProperty(name="Length Start", description="Length of the beginning of the" \ " main pipe (the straight one)", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch1Length = FloatProperty(name="Length Arm 1", description="Length of the 1. arm", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch2Length = FloatProperty(name="Length Arm 2", description="Length of the 2. arm", default=3.0, min=0.01, max=100.0, unit="LENGTH") def execute(self, context): radius = self.radius div = self.div angle1 = self.angle1 angle2 = self.angle2 startLength = self.startLength branch1Length = self.branch1Length branch2Length = self.branch2Length if (div % 2): # Odd vertice number not supported (yet). return {'CANCELLED'} verts = [] faces = [] # List of vert indices of each cross section loopMainStart = [] # Vert indices for # the beginning of the main pipe. loopJoint1 = [] # Vert index for joint that is used # to connect the joint & loopMainStart. loopJoint2 = [] # Vert index for joint that # is used to connect the joint & loopArm1. loopJoint3 = [] # Vert index for joint that is # used to connect the joint & loopArm2. loopArm1 = [] # Vert idxs for end of the 1. arm. loopArm2 = [] # Vert idxs for end of the 2. arm. # Create start circle for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = -startLength loopMainStart.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create deformed joint circle vertTemp1 = None vertTemp2 = None for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) if vertIdx == 0: vertTemp2 = len(verts) if vertIdx == div / 2: # @todo: This will possibly break if we # ever support odd divisions. vertTemp1 = len(verts) loopJoint1.append(len(verts)) if (vertIdx > div / 2): locZ = locX * tan(angle1 / 2.0) loopJoint2.append(len(verts)) else: locZ = locX * tan(-angle2 / 2.0) loopJoint3.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) # Create 2. deformed joint (half-)circle loopTemp = [] angleJoint = (angle2 - angle1) / 2.0 for vertIdx in range(div): if (vertIdx > div / 2): curVertAngle = vertIdx * (2.0 * pi / div) locX = (-sin(curVertAngle) * sin(angleJoint) / sin(angle2 - angleJoint)) locY = -cos(curVertAngle) locZ = (-(sin(curVertAngle) * cos(angleJoint) / sin(angle2 - angleJoint))) loopTemp.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) loopTemp2 = loopTemp[:] # Finalise 2. loop loopTemp.append(vertTemp1) loopTemp.reverse() loopTemp.append(vertTemp2) loopJoint2.reverse() loopJoint2.extend(loopTemp) loopJoint2.reverse() # Finalise 3. loop loopTemp2.reverse() loopJoint3.extend(loopTemp2) # Create end circle (1. branching pipe) baseEndLocX = -branch1Length * sin(angle1) baseEndLocZ = branch1Length * cos(angle1) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 - angle1) locX = locX * sin(pi / 2.0 - angle1) loopArm1.append(len(verts)) # Add translated circle. verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create end circle (2. branching pipe) baseEndLocX = branch2Length * sin(angle2) baseEndLocZ = branch2Length * cos(angle2) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 + angle2) locX = locX * sin(pi / 2.0 + angle2) loopArm2.append(len(verts)) # Add translated circle verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create faces faces.extend(createFaces(loopMainStart, loopJoint1, closed=True)) faces.extend(createFaces(loopJoint2, loopArm1, closed=True)) faces.extend(createFaces(loopJoint3, loopArm2, closed=True)) base = create_mesh_object(context, verts, [], faces, "Wye Joint") return {'FINISHED'} class AddCrossJoint(bpy.types.Operator): """Add a Cross-Joint mesh""" # Create the vertices and polygons for a coss (+ or X) pipe joint. bl_idname = "mesh.primitive_cross_joint_add" bl_label = "Add Pipe Cross-Joint" bl_options = {'REGISTER', 'UNDO', 'PRESET'} radius = FloatProperty(name="Radius", description="The radius of the pipe", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions)", default=32, min=4, max=256) angle1 = FloatProperty(name="Angle 1", description="The angle of the 1. arm (from the main axis)", default=radians(90.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") angle2 = FloatProperty(name="Angle 2", description="The angle of the 2. arm (from the main axis)", default=radians(90.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") angle3 = FloatProperty(name="Angle 3 (center)", description="The angle of the center arm (from the main axis)", default=radians(0.0), min=radians(-179.9), max=radians(179.9), unit="ROTATION") startLength = FloatProperty(name="Length Start", description="Length of the beginning of the " \ "main pipe (the straight one)", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch1Length = FloatProperty(name="Length Arm 1", description="Length of the 1. arm", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch2Length = FloatProperty(name="Length Arm 2", description="Length of the 2. arm", default=3.0, min=0.01, max=100.0, unit="LENGTH") branch3Length = FloatProperty(name="Length Arm 3 (center)", description="Length of the center arm", default=3.0, min=0.01, max=100.0, unit="LENGTH") def execute(self, context): radius = self.radius div = self.div angle1 = self.angle1 angle2 = self.angle2 angle3 = self.angle3 startLength = self.startLength branch1Length = self.branch1Length branch2Length = self.branch2Length branch3Length = self.branch3Length if (div % 2): # Odd vertice number not supported (yet). return {'CANCELLED'} verts = [] faces = [] # List of vert indices of each cross section loopMainStart = [] # Vert indices for the # beginning of the main pipe. loopJoint1 = [] # Vert index for joint that is used # to connect the joint & loopMainStart. loopJoint2 = [] # Vert index for joint that is used # to connect the joint & loopArm1. loopJoint3 = [] # Vert index for joint that is used # to connect the joint & loopArm2. loopJoint4 = [] # Vert index for joint that is used # to connect the joint & loopArm3. loopArm1 = [] # Vert idxs for the end of the 1. arm. loopArm2 = [] # Vert idxs for the end of the 2. arm. loopArm3 = [] # Vert idxs for the center arm end. # Create start circle for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) locZ = -startLength loopMainStart.append(len(verts)) verts.append([locX * radius, locY * radius, locZ]) # Create 1. deformed joint circle vertTemp1 = None vertTemp2 = None for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) if vertIdx == 0: vertTemp2 = len(verts) if vertIdx == div / 2: # @todo: This will possibly break if we # ever support odd divisions. vertTemp1 = len(verts) loopJoint1.append(len(verts)) if (vertIdx > div / 2): locZ = locX * tan(angle1 / 2.0) loopJoint2.append(len(verts)) else: locZ = locX * tan(-angle2 / 2.0) loopJoint3.append(len(verts)) verts.append([locX * radius, locY * radius, locZ * radius]) # loopTemp2 = loopJoint2[:] # UNUSED # Create 2. deformed joint circle loopTempA = [] loopTempB = [] angleJoint1 = (angle1 - angle3) / 2.0 angleJoint2 = (angle2 + angle3) / 2.0 for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Skip pole vertices # @todo: This will possibly break if # we ever support odd divisions. if not (vertIdx == 0) and not (vertIdx == div / 2): if (vertIdx > div / 2): angleJoint = angleJoint1 angle = angle1 Z = -1.0 loopTempA.append(len(verts)) else: angleJoint = angleJoint2 angle = angle2 Z = 1.0 loopTempB.append(len(verts)) locX = (sin(curVertAngle) * sin(angleJoint) / sin(angle - angleJoint)) locY = -cos(curVertAngle) locZ = (Z * (sin(curVertAngle) * cos(angleJoint) / sin(angle - angleJoint))) verts.append([locX * radius, locY * radius, locZ * radius]) loopTempA2 = loopTempA[:] loopTempB2 = loopTempB[:] loopTempB3 = loopTempB[:] # Finalise 2. loop loopTempA.append(vertTemp1) loopTempA.reverse() loopTempA.append(vertTemp2) loopJoint2.reverse() loopJoint2.extend(loopTempA) loopJoint2.reverse() # Finalise 3. loop loopJoint3.extend(loopTempB3) # Finalise 4. loop loopTempA2.append(vertTemp1) loopTempA2.reverse() loopTempB2.append(vertTemp2) loopJoint4.extend(reversed(loopTempB2)) loopJoint4.extend(loopTempA2) # Create end circle (1. branching pipe) baseEndLocX = -branch1Length * sin(angle1) baseEndLocZ = branch1Length * cos(angle1) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 - angle1) locX = locX * sin(pi / 2.0 - angle1) loopArm1.append(len(verts)) # Add translated circle. verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create end circle (2. branching pipe) baseEndLocX = branch2Length * sin(angle2) baseEndLocZ = branch2Length * cos(angle2) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 + angle2) locX = locX * sin(pi / 2.0 + angle2) loopArm2.append(len(verts)) # Add translated circle verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create end circle (center pipe) baseEndLocX = branch3Length * sin(angle3) baseEndLocZ = branch3Length * cos(angle3) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 + angle3) locX = locX * sin(pi / 2.0 + angle3) loopArm3.append(len(verts)) # Add translated circle verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) # Create faces faces.extend(createFaces(loopMainStart, loopJoint1, closed=True)) faces.extend(createFaces(loopJoint2, loopArm1, closed=True)) faces.extend(createFaces(loopJoint3, loopArm2, closed=True)) faces.extend(createFaces(loopJoint4, loopArm3, closed=True)) base = create_mesh_object(context, verts, [], faces, "Cross Joint") return {'FINISHED'} class AddNJoint(bpy.types.Operator): """Add a N-Joint mesh""" # Create the vertices and polygons for a regular n-joint. bl_idname = "mesh.primitive_n_joint_add" bl_label = "Add Pipe N-Joint" bl_options = {'REGISTER', 'UNDO', 'PRESET'} radius = FloatProperty(name="Radius", description="The radius of the pipe", default=1.0, min=0.01, max=100.0, unit="LENGTH") div = IntProperty(name="Divisions", description="Number of vertices (divisions)", default=32, min=4, max=256) number = IntProperty(name="Arms/Joints", description="Number of joints/arms", default=5, min=2, max=99999) length = FloatProperty(name="Length", description="Length of each joint/arm", default=3.0, min=0.01, max=100.0, unit="LENGTH") def execute(self, context): radius = self.radius div = self.div number = self.number length = self.length if (div % 2): # Odd vertice number not supported (yet). return {'CANCELLED'} if (number < 2): return {'CANCELLED'} verts = [] faces = [] loopsEndCircles = [] loopsJointsTemp = [] loopsJoints = [] vertTemp1 = None vertTemp2 = None angleDiv = (2.0 * pi / number) # Create vertices for the end circles. for num in range(number): circle = [] # Create start circle angle = num * angleDiv baseEndLocX = length * sin(angle) baseEndLocZ = length * cos(angle) for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) # Create circle locX = sin(curVertAngle) * radius locY = cos(curVertAngle) * radius locZ = 0.0 # Rotate circle locZ = locX * cos(pi / 2.0 + angle) locX = locX * sin(pi / 2.0 + angle) circle.append(len(verts)) # Add translated circle verts.append([baseEndLocX + locX, locY, baseEndLocZ + locZ]) loopsEndCircles.append(circle) # Create vertices for the joint circles. loopJoint = [] for vertIdx in range(div): curVertAngle = vertIdx * (2.0 * pi / div) locX = sin(curVertAngle) locY = cos(curVertAngle) skipVert = False # Store pole vertices if vertIdx == 0: if (num == 0): vertTemp2 = len(verts) else: skipVert = True elif vertIdx == div / 2: # @todo: This will possibly break if we # ever support odd divisions. if (num == 0): vertTemp1 = len(verts) else: skipVert = True if not skipVert: if (vertIdx > div / 2): locZ = -locX * tan((pi - angleDiv) / 2.0) loopJoint.append(len(verts)) # Rotate the vert cosAng = cos(-angle) sinAng = sin(-angle) LocXnew = locX * cosAng - locZ * sinAng LocZnew = locZ * cosAng + locX * sinAng locZ = LocZnew locX = LocXnew verts.append([ locX * radius, locY * radius, locZ * radius]) else: # These two vertices will only be # added the very first time. if vertIdx == 0 or vertIdx == div / 2: verts.append([locX * radius, locY * radius, locZ]) loopsJointsTemp.append(loopJoint) # Create complete loops (loopsJoints) out of the # double number of half loops in loopsJointsTemp. for halfLoopIdx in range(len(loopsJointsTemp)): if (halfLoopIdx == len(loopsJointsTemp) - 1): idx1 = halfLoopIdx idx2 = 0 else: idx1 = halfLoopIdx idx2 = halfLoopIdx + 1 loopJoint = [] loopJoint.append(vertTemp2) loopJoint.extend(reversed(loopsJointsTemp[idx2])) loopJoint.append(vertTemp1) loopJoint.extend(loopsJointsTemp[idx1]) loopsJoints.append(loopJoint) # Create faces from the two # loop arrays (loopsJoints -> loopsEndCircles). for loopIdx in range(len(loopsEndCircles)): faces.extend( createFaces(loopsJoints[loopIdx], loopsEndCircles[loopIdx], closed=True)) base = create_mesh_object(context, verts, [], faces, "N Joint") return {'FINISHED'} class INFO_MT_mesh_pipe_joints_add(bpy.types.Menu): # Define the "Pipe Joints" menu bl_idname = "INFO_MT_mesh_pipe_joints_add" bl_label = "Pipe Joints" def draw(self, context): layout = self.layout layout.operator_context = 'INVOKE_REGION_WIN' layout.operator("mesh.primitive_elbow_joint_add", text="Pipe Elbow") layout.operator("mesh.primitive_tee_joint_add", text="Pipe T-Joint") layout.operator("mesh.primitive_wye_joint_add", text="Pipe Y-Joint") layout.operator("mesh.primitive_cross_joint_add", text="Pipe Cross-Joint") layout.operator("mesh.primitive_n_joint_add", text="Pipe N-Joint") ################################ # Define "Pipe Joints" menu def menu_func(self, context): self.layout.menu("INFO_MT_mesh_pipe_joints_add", icon="PLUGIN") def register(): bpy.utils.register_module(__name__) # Add "Pipe Joints" menu to the "Add Mesh" menu bpy.types.INFO_MT_mesh_add.append(menu_func) def unregister(): bpy.utils.unregister_module(__name__) # Remove "Pipe Joints" menu from the "Add Mesh" menu. bpy.types.INFO_MT_mesh_add.remove(menu_func) if __name__ == "__main__": register()