import bpy import os import time def get_orig_render_settings(): rs = bpy.context.scene.render ims = rs.image_settings vs = bpy.context.scene.view_settings orig_settings = { 'file_format': ims.file_format, 'quality': ims.quality, 'color_mode': ims.color_mode, 'compression': ims.compression, 'exr_codec': ims.exr_codec, 'view_transform': vs.view_transform } return orig_settings def set_orig_render_settings(orig_settings): rs = bpy.context.scene.render ims = rs.image_settings vs = bpy.context.scene.view_settings ims.file_format = orig_settings['file_format'] ims.quality = orig_settings['quality'] ims.color_mode = orig_settings['color_mode'] ims.compression = orig_settings['compression'] ims.exr_codec = orig_settings['exr_codec'] vs.view_transform = orig_settings['view_transform'] def img_save_as(img, filepath='//', file_format='JPEG', quality=90, color_mode='RGB', compression=15, view_transform = 'Raw', exr_codec = 'DWAA'): '''Uses Blender 'save render' to save images - BLender isn't really able so save images with other methods correctly.''' ors = get_orig_render_settings() rs = bpy.context.scene.render vs = bpy.context.scene.view_settings ims = rs.image_settings ims.file_format = file_format ims.quality = quality ims.color_mode = color_mode ims.compression = compression ims.exr_codec = exr_codec vs.view_transform = view_transform img.save_render(filepath=bpy.path.abspath(filepath), scene=bpy.context.scene) set_orig_render_settings(ors) def set_colorspace(img, colorspace): '''sets image colorspace, but does so in a try statement, because some people might actually replace the default colorspace settings, and it literally can't be guessed what these people use, even if it will mostly be the filmic addon. ''' try: if colorspace == 'Non-Color': img.colorspace_settings.is_data = True else: img.colorspace_settings.name = colorspace except: print(f'Colorspace {colorspace} not found.') def generate_hdr_thumbnail(): import numpy scene = bpy.context.scene ui_props = scene.blenderkitUI hdr_image = ui_props.hdr_upload_image#bpy.data.images.get(ui_props.hdr_upload_image) base, ext = os.path.splitext(hdr_image.filepath) thumb_path = base + '.jpg' thumb_name = os.path.basename(thumb_path) max_thumbnail_size = 2048 size = hdr_image.size ratio = size[0] / size[1] imageWidth = size[0] imageHeight = size[1] thumbnailWidth = min(size[0], max_thumbnail_size) thumbnailHeight = min(size[1], int(max_thumbnail_size / ratio)) tempBuffer = numpy.empty(imageWidth * imageHeight * 4, dtype=numpy.float32) inew = bpy.data.images.new(thumb_name, imageWidth, imageHeight, alpha=False, float_buffer=False) hdr_image.pixels.foreach_get(tempBuffer) inew.filepath = thumb_path set_colorspace(inew, 'Linear') inew.pixels.foreach_set(tempBuffer) bpy.context.view_layer.update() if thumbnailWidth < imageWidth: inew.scale(thumbnailWidth, thumbnailHeight) img_save_as(inew, filepath=inew.filepath) def find_color_mode(image): if not isinstance(image, bpy.types.Image): raise(TypeError) else: depth_mapping = { 8: 'BW', 24: 'RGB', 32: 'RGBA',#can also be bw.. but image.channels doesn't work. 96: 'RGB', 128: 'RGBA', } return depth_mapping.get(image.depth,'RGB') def find_image_depth(image): if not isinstance(image, bpy.types.Image): raise(TypeError) else: depth_mapping = { 8: '8', 24: '8', 32: '8',#can also be bw.. but image.channels doesn't work. 96: '16', 128: '16', } return depth_mapping.get(image.depth,'8') def can_erase_alpha(na): alpha = na[3::4] alpha_sum = alpha.sum() if alpha_sum == alpha.size: print('image can have alpha erased') # print(alpha_sum, alpha.size) return alpha_sum == alpha.size def is_image_black(na): r = na[::4] g = na[1::4] b = na[2::4] rgbsum = r.sum() + g.sum() + b.sum() # print('rgb sum', rgbsum, r.sum(), g.sum(), b.sum()) if rgbsum == 0: print('image can have alpha channel dropped') return rgbsum == 0 def is_image_bw(na): r = na[::4] g = na[1::4] b = na[2::4] rg_equal = r == g gb_equal = g == b rgbequal = rg_equal.all() and gb_equal.all() if rgbequal: print('image is black and white, can have channels reduced') return rgbequal def numpytoimage(a, iname, width=0, height=0, channels=3): t = time.time() foundimage = False for image in bpy.data.images: if image.name[:len(iname)] == iname and image.size[0] == a.shape[0] and image.size[1] == a.shape[1]: i = image foundimage = True if not foundimage: if channels == 4: bpy.ops.image.new(name=iname, width=width, height=height, color=(0, 0, 0, 1), alpha=True, generated_type='BLANK', float=True) if channels == 3: bpy.ops.image.new(name=iname, width=width, height=height, color=(0, 0, 0), alpha=False, generated_type='BLANK', float=True) i = None for image in bpy.data.images: # print(image.name[:len(iname)],iname, image.size[0],a.shape[0],image.size[1],a.shape[1]) if image.name[:len(iname)] == iname and image.size[0] == width and image.size[1] == height: i = image if i is None: i = bpy.data.images.new(iname, width, height, alpha=False, float_buffer=False, stereo3d=False, is_data=False, tiled=False) # dropping this re-shaping code - just doing flat array for speed and simplicity # d = a.shape[0] * a.shape[1] # a = a.swapaxes(0, 1) # a = a.reshape(d) # a = a.repeat(channels) # a[3::4] = 1 i.pixels.foreach_set(a) # this gives big speedup! print('\ntime ' + str(time.time() - t)) return i def imagetonumpy_flat(i): t = time.time() import numpy width = i.size[0] height = i.size[1] # print(i.channels) size = width * height * i.channels na = numpy.empty(size, numpy.float32) i.pixels.foreach_get(na) # dropping this re-shaping code - just doing flat array for speed and simplicity # na = na[::4] # na = na.reshape(height, width, i.channels) # na = na.swapaxnes(0, 1) # print('\ntime of image to numpy ' + str(time.time() - t)) return na def imagetonumpy(i): t = time.time() import numpy as np width = i.size[0] height = i.size[1] # print(i.channels) size = width * height * i.channels na = np.empty(size, np.float32) i.pixels.foreach_get(na) # dropping this re-shaping code - just doing flat array for speed and simplicity # na = na[::4] na = na.reshape(height, width, i.channels) na = na.swapaxes(0, 1) # print('\ntime of image to numpy ' + str(time.time() - t)) return na def downscale(i): minsize = 128 sx, sy = i.size[:] sx = round(sx / 2) sy = round(sy / 2) if sx > minsize and sy > minsize: i.scale(sx, sy) def get_rgb_mean(i): '''checks if normal map values are ok.''' import numpy na = imagetonumpy_flat(i) r = na[::4] g = na[1::4] b = na[2::4] rmean = r.mean() gmean = g.mean() bmean = b.mean() rmedian = numpy.median(r) gmedian = numpy.median(g) bmedian = numpy.median(b) # return(rmedian,gmedian, bmedian) return (rmean, gmean, bmean) def check_nmap_mean_ok(i): '''checks if normal map values are in standard range.''' rmean,gmean,bmean = get_rgb_mean(i) #we could/should also check blue, but some ogl substance exports have 0-1, while 90% nmaps have 0.5 - 1. nmap_ok = 0.45< rmean < 0.55 and .45 < gmean < .55 return nmap_ok def check_nmap_ogl_vs_dx(i, mask = None, generated_test_images = False): ''' checks if normal map is directX or OpenGL. Returns - String value - DirectX and OpenGL ''' import numpy width = i.size[0] height = i.size[1] rmean, gmean, bmean = get_rgb_mean(i) na = imagetonumpy(i) if mask: mask = imagetonumpy(mask) red_x_comparison = numpy.zeros((width, height), numpy.float32) green_y_comparison = numpy.zeros((width, height), numpy.float32) if generated_test_images: red_x_comparison_img = numpy.empty((width, height, 4), numpy.float32) #images for debugging purposes green_y_comparison_img = numpy.empty((width, height, 4), numpy.float32)#images for debugging purposes ogl = numpy.zeros((width, height), numpy.float32) dx = numpy.zeros((width, height), numpy.float32) if generated_test_images: ogl_img = numpy.empty((width, height, 4), numpy.float32) # images for debugging purposes dx_img = numpy.empty((width, height, 4), numpy.float32) # images for debugging purposes for y in range(0, height): for x in range(0, width): #try to mask with UV mask image if mask is None or mask[x,y,3]>0: last_height_x = ogl[max(x - 1, 0), min(y, height - 1)] last_height_y = ogl[max(x,0), min(y - 1,height-1)] diff_x = ((na[x, y, 0] - rmean) / ((na[x, y, 2] - 0.5))) diff_y = ((na[x, y, 1] - gmean) / ((na[x, y, 2] - 0.5))) calc_height = (last_height_x + last_height_y) \ - diff_x - diff_y calc_height = calc_height /2 ogl[x, y] = calc_height if generated_test_images: rgb = calc_height *.1 +.5 ogl_img[x,y] = [rgb,rgb,rgb,1] # green channel last_height_x = dx[max(x - 1, 0), min(y, height - 1)] last_height_y = dx[max(x, 0), min(y - 1, height - 1)] diff_x = ((na[x, y, 0] - rmean) / ((na[x, y, 2] - 0.5))) diff_y = ((na[x, y, 1] - gmean) / ((na[x, y, 2] - 0.5))) calc_height = (last_height_x + last_height_y) \ - diff_x + diff_y calc_height = calc_height / 2 dx[x, y] = calc_height if generated_test_images: rgb = calc_height * .1 + .5 dx_img[x, y] = [rgb, rgb, rgb, 1] ogl_std = ogl.std() dx_std = dx.std() # print(mean_ogl, mean_dx) # print(max_ogl, max_dx) print(ogl_std, dx_std) print(i.name) # if abs(mean_ogl) > abs(mean_dx): if abs(ogl_std) > abs(dx_std): print('this is probably a DirectX texture') else: print('this is probably an OpenGL texture') if generated_test_images: # red_x_comparison_img = red_x_comparison_img.swapaxes(0,1) # red_x_comparison_img = red_x_comparison_img.flatten() # # green_y_comparison_img = green_y_comparison_img.swapaxes(0,1) # green_y_comparison_img = green_y_comparison_img.flatten() # # numpytoimage(red_x_comparison_img, 'red_' + i.name, width=width, height=height, channels=1) # numpytoimage(green_y_comparison_img, 'green_' + i.name, width=width, height=height, channels=1) ogl_img = ogl_img.swapaxes(0, 1) ogl_img = ogl_img.flatten() dx_img = dx_img.swapaxes(0, 1) dx_img = dx_img.flatten() numpytoimage(ogl_img, 'OpenGL', width=width, height=height, channels=1) numpytoimage(dx_img, 'DirectX', width=width, height=height, channels=1) if abs(ogl_std) > abs(dx_std): return 'DirectX' return 'OpenGL' def make_possible_reductions_on_image(teximage, input_filepath, do_reductions=False, do_downscale=False): '''checks the image and saves it to drive with possibly reduced channels. Also can remove the image from the asset if the image is pure black - it finds it's usages and replaces the inputs where the image is used with zero/black color. currently implemented file type conversions: PNG->JPG ''' colorspace = teximage.colorspace_settings.name teximage.colorspace_settings.name = 'Non-Color' #teximage.colorspace_settings.name = 'sRGB' color correction mambo jambo. JPEG_QUALITY = 90 # is_image_black(na) # is_image_bw(na) rs = bpy.context.scene.render ims = rs.image_settings orig_file_format = ims.file_format orig_quality = ims.quality orig_color_mode = ims.color_mode orig_compression = ims.compression orig_depth = ims.color_depth # if is_image_black(na): # # just erase the image from the asset here, no need to store black images. # pass; # fp = teximage.filepath # setup image depth, 8 or 16 bit. # this should normally divide depth with number of channels, but blender always states that number of channels is 4, even if there are only 3 print(teximage.name) print(teximage.depth) print(teximage.channels) bpy.context.scene.display_settings.display_device = 'None' image_depth = find_image_depth(teximage) ims.color_mode = find_color_mode(teximage) #image_depth = str(max(min(int(teximage.depth / 3), 16), 8)) print('resulting depth set to:', image_depth) fp = input_filepath if do_reductions: na = imagetonumpy_flat(teximage) if can_erase_alpha(na): print(teximage.file_format) if teximage.file_format == 'PNG': print('changing type of image to JPG') base, ext = os.path.splitext(fp) teximage['original_extension'] = ext fp = fp.replace('.png', '.jpg') fp = fp.replace('.PNG', '.jpg') teximage.name = teximage.name.replace('.png', '.jpg') teximage.name = teximage.name.replace('.PNG', '.jpg') teximage.file_format = 'JPEG' ims.quality = JPEG_QUALITY ims.color_mode = 'RGB' if is_image_bw(na): ims.color_mode = 'BW' ims.file_format = teximage.file_format ims.color_depth = image_depth # all pngs with max compression if ims.file_format == 'PNG': ims.compression = 100 # all jpgs brought to reasonable quality if ims.file_format == 'JPG': ims.quality = JPEG_QUALITY if do_downscale: downscale(teximage) # it's actually very important not to try to change the image filepath and packed file filepath before saving, # blender tries to re-pack the image after writing to image.packed_image.filepath and reverts any changes. teximage.save_render(filepath=bpy.path.abspath(fp), scene=bpy.context.scene) if len(teximage.packed_files) > 0: teximage.unpack(method='REMOVE') teximage.filepath = fp teximage.filepath_raw = fp teximage.reload() teximage.colorspace_settings.name = colorspace ims.file_format = orig_file_format ims.quality = orig_quality ims.color_mode = orig_color_mode ims.compression = orig_compression ims.color_depth = orig_depth