# SPDX-License-Identifier: GPL-2.0-or-later # Copyright 2010-2021 Adam Dominec ## Code structure # This file consists of several components, in this order: # * Unfolding and baking # * Export (SVG or PDF) # * User interface # During the unfold process, the mesh is mirrored into a 2D structure: UVFace, UVEdge, UVVertex. bl_info = { "name": "Export Paper Model", "author": "Addam Dominec", "version": (1, 2), "blender": (3, 0, 0), "location": "File > Export > Paper Model", "warning": "", "description": "Export printable net of the active mesh", "doc_url": "{BLENDER_MANUAL_URL}/addons/import_export/paper_model.html", "category": "Import-Export", } # Task: split into four files (SVG and PDF separately) # * does any portion of baking belong into the export module? # * sketch out the code for GCODE and two-sided export # TODO: # QuickSweepline is very much broken -- it throws GeometryError for all nets > ~15 faces # rotate islands to minimize area -- and change that only if necessary to fill the page size # check conflicts in island naming and either: # * append a number to the conflicting names or # * enumerate faces uniquely within all islands of the same name (requires a check that both label and abbr. equals) import bpy import bl_operators import bmesh import mathutils as M from re import compile as re_compile from itertools import chain, repeat, product, combinations from math import pi, ceil, asin, atan2 import os.path as os_path default_priority_effect = { 'CONVEX': 0.5, 'CONCAVE': 1, 'LENGTH': -0.05 } global_paper_sizes = [ ('USER', "User defined", "User defined paper size"), ('A4', "A4", "International standard paper size"), ('A3', "A3", "International standard paper size"), ('US_LETTER', "Letter", "North American paper size"), ('US_LEGAL', "Legal", "North American paper size") ] def first_letters(text): """Iterator over the first letter of each word""" for match in first_letters.pattern.finditer(text): yield text[match.start()] first_letters.pattern = re_compile(r"((? 0: return M.Matrix(( (n.x*n.z/(b*s), n.y*n.z/(b*s), -b/s), (-n.y/b, n.x/b, 0), (0, 0, 0) )) else: # no need for rotation return M.Matrix(( (1, 0, 0), (0, (-1 if n.z < 0 else 1), 0), (0, 0, 0) )) def cage_fit(points, aspect): """Find rotation for a minimum bounding box with a given aspect ratio returns a tuple: rotation angle, box height""" def guesses(polygon): """Yield all tentative extrema of the bounding box height wrt. polygon rotation""" for a, b in pairs(polygon): if a == b: continue direction = (b - a).normalized() sinx, cosx = -direction.y, direction.x rot = M.Matrix(((cosx, -sinx), (sinx, cosx))) rot_polygon = [rot @ p for p in polygon] left, right = [fn(rot_polygon, key=lambda p: p.to_tuple()) for fn in (min, max)] bottom, top = [fn(rot_polygon, key=lambda p: p.yx.to_tuple()) for fn in (min, max)] horz, vert = right - left, top - bottom # solve (rot * a).y == (rot * b).y yield max(aspect * horz.x, vert.y), sinx, cosx # solve (rot * a).x == (rot * b).x yield max(horz.x, aspect * vert.y), -cosx, sinx # solve aspect * (rot * (right - left)).x == (rot * (top - bottom)).y # using substitution t = tan(rot / 2) q = aspect * horz.x - vert.y r = vert.x + aspect * horz.y t = ((r**2 + q**2)**0.5 - r) / q if q != 0 else 0 t = -1 / t if abs(t) > 1 else t # pick the positive solution siny, cosy = 2 * t / (1 + t**2), (1 - t**2) / (1 + t**2) rot = M.Matrix(((cosy, -siny), (siny, cosy))) for p in rot_polygon: p[:] = rot @ p # note: this also modifies left, right, bottom, top if left.x < right.x and bottom.y < top.y and all(left.x <= p.x <= right.x and bottom.y <= p.y <= top.y for p in rot_polygon): yield max(aspect * (right - left).x, (top - bottom).y), sinx*cosy + cosx*siny, cosx*cosy - sinx*siny polygon = [points[i] for i in M.geometry.convex_hull_2d(points)] height, sinx, cosx = min(guesses(polygon)) return atan2(sinx, cosx), height def create_blank_image(image_name, dimensions, alpha=1): """Create a new image and assign white color to all its pixels""" image_name = image_name[:64] width, height = int(dimensions.x), int(dimensions.y) image = bpy.data.images.new(image_name, width, height, alpha=True) if image.users > 0: raise UnfoldError( "There is something wrong with the material of the model. " "Please report this on the BlenderArtists forum. Export failed.") image.pixels = [1, 1, 1, alpha] * (width * height) image.file_format = 'PNG' return image def store_rna_properties(*datablocks): return [{prop.identifier: getattr(data, prop.identifier) for prop in data.rna_type.properties if not prop.is_readonly} for data in datablocks] def apply_rna_properties(memory, *datablocks): for recall, data in zip(memory, datablocks): for key, value in recall.items(): setattr(data, key, value) class UnfoldError(ValueError): def mesh_select(self): if len(self.args) > 1: elems, bm = self.args[1:3] bpy.context.tool_settings.mesh_select_mode = [bool(elems[key]) for key in ("verts", "edges", "faces")] for elem in chain(bm.verts, bm.edges, bm.faces): elem.select = False for elem in chain(*elems.values()): elem.select_set(True) bmesh.update_edit_mesh(bpy.context.object.data, loop_triangles=False, destructive=False) class Unfolder: def __init__(self, ob): self.do_create_uvmap = False bm = bmesh.from_edit_mesh(ob.data) self.mesh = Mesh(bm, ob.matrix_world) self.mesh.check_correct() def __del__(self): if not self.do_create_uvmap: self.mesh.delete_uvmap() def prepare(self, cage_size=None, priority_effect=default_priority_effect, scale=1, limit_by_page=False): """Create the islands of the net""" self.mesh.generate_cuts(cage_size / scale if limit_by_page and cage_size else None, priority_effect) self.mesh.finalize_islands(cage_size or M.Vector((1, 1))) self.mesh.enumerate_islands() self.mesh.save_uv() def copy_island_names(self, island_list): """Copy island label and abbreviation from the best matching island in the list""" orig_islands = [{face.id for face in item.faces} for item in island_list] matching = list() for i, island in enumerate(self.mesh.islands): islfaces = {face.index for face in island.faces} matching.extend((len(islfaces.intersection(item)), i, j) for j, item in enumerate(orig_islands)) matching.sort(reverse=True) available_new = [True for island in self.mesh.islands] available_orig = [True for item in island_list] for face_count, i, j in matching: if available_new[i] and available_orig[j]: available_new[i] = available_orig[j] = False self.mesh.islands[i].label = island_list[j].label self.mesh.islands[i].abbreviation = island_list[j].abbreviation def save(self, properties): """Export the document""" # Note about scale: input is directly in blender length # Mesh.scale_islands multiplies everything by a user-defined ratio # exporters (SVG or PDF) multiply everything by 1000 (output in millimeters) Exporter = Svg if properties.file_format == 'SVG' else Pdf filepath = properties.filepath extension = properties.file_format.lower() filepath = bpy.path.ensure_ext(filepath, "." + extension) # page size in meters page_size = M.Vector((properties.output_size_x, properties.output_size_y)) # printable area size in meters printable_size = page_size - 2 * properties.output_margin * M.Vector((1, 1)) unit_scale = bpy.context.scene.unit_settings.scale_length ppm = properties.output_dpi * 100 / 2.54 # pixels per meter # after this call, all dimensions will be in meters self.mesh.scale_islands(unit_scale/properties.scale) if properties.do_create_stickers: self.mesh.generate_stickers(properties.sticker_width, properties.do_create_numbers) elif properties.do_create_numbers: self.mesh.generate_numbers_alone(properties.sticker_width) text_height = properties.sticker_width if (properties.do_create_numbers and len(self.mesh.islands) > 1) else 0 # title height must be somewhat larger that text size, glyphs go below the baseline self.mesh.finalize_islands(printable_size, title_height=text_height * 1.2) self.mesh.fit_islands(printable_size) if properties.output_type != 'NONE': # bake an image and save it as a PNG to disk or into memory image_packing = properties.image_packing if properties.file_format == 'SVG' else 'ISLAND_EMBED' use_separate_images = image_packing in ('ISLAND_LINK', 'ISLAND_EMBED') self.mesh.save_uv(cage_size=printable_size, separate_image=use_separate_images) sce = bpy.context.scene rd = sce.render bk = rd.bake recall = store_rna_properties(rd, bk, sce.cycles) rd.engine = 'CYCLES' for p in ('color', 'diffuse', 'direct', 'emit', 'glossy', 'indirect', 'transmission'): setattr(bk, f"use_pass_{p}", (properties.output_type != 'TEXTURE')) lookup = {'TEXTURE': 'DIFFUSE', 'AMBIENT_OCCLUSION': 'AO', 'RENDER': 'COMBINED', 'SELECTED_TO_ACTIVE': 'COMBINED'} sce.cycles.bake_type = lookup[properties.output_type] bk.use_selected_to_active = (properties.output_type == 'SELECTED_TO_ACTIVE') bk.margin, bk.cage_extrusion, bk.use_cage, bk.use_clear = 1, 10, False, False if properties.output_type == 'TEXTURE': bk.use_pass_direct, bk.use_pass_indirect, bk.use_pass_color = False, False, True sce.cycles.samples = 1 else: sce.cycles.samples = properties.bake_samples if sce.cycles.bake_type == 'COMBINED': bk.use_pass_direct, bk.use_pass_indirect = True, True bk.use_pass_diffuse, bk.use_pass_glossy, bk.use_pass_transmission, bk.use_pass_emit = True, False, False, True if image_packing == 'PAGE_LINK': self.mesh.save_image(printable_size * ppm, filepath) elif image_packing == 'ISLAND_LINK': image_dir = filepath[:filepath.rfind(".")] self.mesh.save_separate_images(ppm, image_dir) elif image_packing == 'ISLAND_EMBED': self.mesh.save_separate_images(ppm, filepath, embed=Exporter.encode_image) apply_rna_properties(recall, rd, bk, sce.cycles) exporter = Exporter(properties) exporter.write(self.mesh, filepath) class Mesh: """Wrapper for Bpy Mesh""" def __init__(self, bmesh, matrix): self.data = bmesh self.matrix = matrix.to_3x3() self.looptex = bmesh.loops.layers.uv.new("Unfolded") self.edges = {bmedge: Edge(bmedge) for bmedge in bmesh.edges} self.islands = list() self.pages = list() for edge in self.edges.values(): edge.choose_main_faces() if edge.main_faces: edge.calculate_angle() self.copy_freestyle_marks() def delete_uvmap(self): self.data.loops.layers.uv.remove(self.looptex) if self.looptex else None def copy_freestyle_marks(self): # NOTE: this is a workaround for NotImplementedError on bmesh.edges.layers.freestyle mesh = bpy.data.meshes.new("unfolder_temp") self.data.to_mesh(mesh) for bmedge, edge in self.edges.items(): edge.freestyle = mesh.edges[bmedge.index].use_freestyle_mark bpy.data.meshes.remove(mesh) def mark_cuts(self): for bmedge, edge in self.edges.items(): if edge.is_main_cut and not bmedge.is_boundary: bmedge.seam = True def check_correct(self, epsilon=1e-6): """Check for invalid geometry""" def is_twisted(face): if len(face.verts) <= 3: return False center = face.calc_center_median() plane_d = center.dot(face.normal) diameter = max((center - vertex.co).length for vertex in face.verts) threshold = 0.01 * diameter return any(abs(v.co.dot(face.normal) - plane_d) > threshold for v in face.verts) null_edges = {e for e in self.edges.keys() if e.calc_length() < epsilon and e.link_faces} null_faces = {f for f in self.data.faces if f.calc_area() < epsilon} twisted_faces = {f for f in self.data.faces if is_twisted(f)} inverted_scale = self.matrix.determinant() <= 0 if not (null_edges or null_faces or twisted_faces or inverted_scale): return True if inverted_scale: raise UnfoldError( "The object is flipped inside-out.\n" "You can use Object -> Apply -> Scale to fix it. Export failed.") disease = [("Remove Doubles", null_edges or null_faces), ("Triangulate", twisted_faces)] cure = " and ".join(s for s, k in disease if k) raise UnfoldError( "The model contains:\n" + (" {} zero-length edge(s)\n".format(len(null_edges)) if null_edges else "") + (" {} zero-area face(s)\n".format(len(null_faces)) if null_faces else "") + (" {} twisted polygon(s)\n".format(len(twisted_faces)) if twisted_faces else "") + "The offenders are selected and you can use {} to fix them. Export failed.".format(cure), {"verts": set(), "edges": null_edges, "faces": null_faces | twisted_faces}, self.data) def generate_cuts(self, page_size, priority_effect): """Cut the mesh so that it can be unfolded to a flat net.""" normal_matrix = self.matrix.inverted().transposed() islands = {Island(self, face, self.matrix, normal_matrix) for face in self.data.faces} uvfaces = {face: uvface for island in islands for face, uvface in island.faces.items()} uvedges = {loop: uvedge for island in islands for loop, uvedge in island.edges.items()} for loop, uvedge in uvedges.items(): self.edges[loop.edge].uvedges.append(uvedge) # check for edges that are cut permanently edges = [edge for edge in self.edges.values() if not edge.force_cut and edge.main_faces] if edges: average_length = sum(edge.vector.length for edge in edges) / len(edges) for edge in edges: edge.generate_priority(priority_effect, average_length) edges.sort(reverse=False, key=lambda edge: edge.priority) for edge in edges: if not edge.vector: continue edge_a, edge_b = (uvedges[l] for l in edge.main_faces) old_island = join(edge_a, edge_b, size_limit=page_size) if old_island: islands.remove(old_island) self.islands = sorted(islands, reverse=True, key=lambda island: len(island.faces)) for edge in self.edges.values(): # some edges did not know until now whether their angle is convex or concave if edge.main_faces and (uvfaces[edge.main_faces[0].face].flipped or uvfaces[edge.main_faces[1].face].flipped): edge.calculate_angle() # ensure that the order of faces corresponds to the order of uvedges if edge.main_faces: reordered = [None, None] for uvedge in edge.uvedges: try: index = edge.main_faces.index(uvedge.loop) reordered[index] = uvedge except ValueError: reordered.append(uvedge) edge.uvedges = reordered for island in self.islands: # if the normals are ambiguous, flip them so that there are more convex edges than concave ones if any(uvface.flipped for uvface in island.faces.values()): island_edges = {self.edges[uvedge.edge] for uvedge in island.edges} balance = sum((+1 if edge.angle > 0 else -1) for edge in island_edges if not edge.is_cut(uvedge.uvface.face)) if balance < 0: island.is_inside_out = True # construct a linked list from each island's boundary # uvedge.neighbor_right is clockwise = forward = via uvedge.vb if not uvface.flipped neighbor_lookup, conflicts = dict(), dict() for uvedge in island.boundary: uvvertex = uvedge.va if uvedge.uvface.flipped else uvedge.vb if uvvertex not in neighbor_lookup: neighbor_lookup[uvvertex] = uvedge else: if uvvertex not in conflicts: conflicts[uvvertex] = [neighbor_lookup[uvvertex], uvedge] else: conflicts[uvvertex].append(uvedge) for uvedge in island.boundary: uvvertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va if uvvertex not in conflicts: # using the 'get' method so as to handle single-connected vertices properly uvedge.neighbor_right = neighbor_lookup.get(uvvertex, uvedge) uvedge.neighbor_right.neighbor_left = uvedge else: conflicts[uvvertex].append(uvedge) # resolve merged vertices with more boundaries crossing def direction_to_float(vector): return (1 - vector.x/vector.length) if vector.y > 0 else (vector.x/vector.length - 1) for uvvertex, uvedges in conflicts.items(): def is_inwards(uvedge): return uvedge.uvface.flipped == (uvedge.va is uvvertex) def uvedge_sortkey(uvedge): if is_inwards(uvedge): return direction_to_float(uvedge.va.co - uvedge.vb.co) else: return direction_to_float(uvedge.vb.co - uvedge.va.co) uvedges.sort(key=uvedge_sortkey) for right, left in ( zip(uvedges[:-1:2], uvedges[1::2]) if is_inwards(uvedges[0]) else zip([uvedges[-1]] + uvedges[1::2], uvedges[:-1:2])): left.neighbor_right = right right.neighbor_left = left return True def generate_stickers(self, default_width, do_create_numbers=True): """Add sticker faces where they are needed.""" def uvedge_priority(uvedge): """Returns whether it is a good idea to stick something on this edge's face""" # TODO: it should take into account overlaps with faces and with other stickers face = uvedge.uvface.face return face.calc_area() / face.calc_perimeter() def add_sticker(uvedge, index, target_uvedge): uvedge.sticker = Sticker(uvedge, default_width, index, target_uvedge) uvedge.uvface.island.add_marker(uvedge.sticker) def is_index_obvious(uvedge, target): if uvedge in (target.neighbor_left, target.neighbor_right): return True if uvedge.neighbor_left.loop.edge is target.neighbor_right.loop.edge and uvedge.neighbor_right.loop.edge is target.neighbor_left.loop.edge: return True return False for edge in self.edges.values(): index = None if edge.is_main_cut and len(edge.uvedges) >= 2 and edge.vector.length_squared > 0: target, source = edge.uvedges[:2] if uvedge_priority(target) < uvedge_priority(source): target, source = source, target target_island = target.uvface.island if do_create_numbers: for uvedge in [source] + edge.uvedges[2:]: if not is_index_obvious(uvedge, target): # it will not be clear to see that these uvedges should be sticked together # So, create an arrow and put the index on all stickers target_island.sticker_numbering += 1 index = str(target_island.sticker_numbering) if is_upsidedown_wrong(index): index += "." target_island.add_marker(Arrow(target, default_width, index)) break add_sticker(source, index, target) elif len(edge.uvedges) > 2: target = edge.uvedges[0] if len(edge.uvedges) > 2: for source in edge.uvedges[2:]: add_sticker(source, index, target) def generate_numbers_alone(self, size): global_numbering = 0 for edge in self.edges.values(): if edge.is_main_cut and len(edge.uvedges) >= 2: global_numbering += 1 index = str(global_numbering) if is_upsidedown_wrong(index): index += "." for uvedge in edge.uvedges: uvedge.uvface.island.add_marker(NumberAlone(uvedge, index, size)) def enumerate_islands(self): for num, island in enumerate(self.islands, 1): island.number = num island.generate_label() def scale_islands(self, scale): for island in self.islands: vertices = set(island.vertices.values()) for point in chain((vertex.co for vertex in vertices), island.fake_vertices): point *= scale def finalize_islands(self, cage_size, title_height=0): for island in self.islands: if title_height: island.title = "[{}] {}".format(island.abbreviation, island.label) points = [vertex.co for vertex in set(island.vertices.values())] + island.fake_vertices angle, _ = cage_fit(points, (cage_size.y - title_height) / cage_size.x) rot = M.Matrix.Rotation(angle, 2) for point in points: point.rotate(rot) for marker in island.markers: marker.rot = rot @ marker.rot bottom_left = M.Vector((min(v.x for v in points), min(v.y for v in points) - title_height)) # DEBUG # top_right = M.Vector((max(v.x for v in points), max(v.y for v in points) - title_height)) # print(f"fitted aspect: {(top_right.y - bottom_left.y) / (top_right.x - bottom_left.x)}") for point in points: point -= bottom_left island.bounding_box = M.Vector((max(v.x for v in points), max(v.y for v in points))) def largest_island_ratio(self, cage_size): return max(i / p for island in self.islands for (i, p) in zip(island.bounding_box, cage_size)) def fit_islands(self, cage_size): """Move islands so that they fit onto pages, based on their bounding boxes""" def try_emplace(island, page_islands, stops_x, stops_y, occupied_cache): """Tries to put island to each pair from stops_x, stops_y and checks if it overlaps with any islands present on the page. Returns True and positions the given island on success.""" bbox_x, bbox_y = island.bounding_box.xy for x in stops_x: if x + bbox_x > cage_size.x: continue for y in stops_y: if y + bbox_y > cage_size.y or (x, y) in occupied_cache: continue for i, obstacle in enumerate(page_islands): # if this obstacle overlaps with the island, try another stop if (x + bbox_x > obstacle.pos.x and obstacle.pos.x + obstacle.bounding_box.x > x and y + bbox_y > obstacle.pos.y and obstacle.pos.y + obstacle.bounding_box.y > y): if x >= obstacle.pos.x and y >= obstacle.pos.y: occupied_cache.add((x, y)) # just a stupid heuristic to make subsequent searches faster if i > 0: page_islands[1:i+1] = page_islands[:i] page_islands[0] = obstacle break else: # if no obstacle called break, this position is okay island.pos.xy = x, y page_islands.append(island) stops_x.append(x + bbox_x) stops_y.append(y + bbox_y) return True return False def drop_portion(stops, border, divisor): stops.sort() # distance from left neighbor to the right one, excluding the first stop distances = [right - left for left, right in zip(stops, chain(stops[2:], [border]))] quantile = sorted(distances)[len(distances) // divisor] return [stop for stop, distance in zip(stops, chain([quantile], distances)) if distance >= quantile] if any(island.bounding_box.x > cage_size.x or island.bounding_box.y > cage_size.y for island in self.islands): raise UnfoldError( "An island is too big to fit onto page of the given size. " "Either downscale the model or find and split that island manually.\n" "Export failed, sorry.") # sort islands by their diagonal... just a guess remaining_islands = sorted(self.islands, reverse=True, key=lambda island: island.bounding_box.length_squared) page_num = 1 # TODO delete me while remaining_islands: # create a new page and try to fit as many islands onto it as possible page = Page(page_num) page_num += 1 occupied_cache = set() stops_x, stops_y = [0], [0] for island in remaining_islands: try_emplace(island, page.islands, stops_x, stops_y, occupied_cache) # if overwhelmed with stops, drop a quarter of them if len(stops_x)**2 > 4 * len(self.islands) + 100: stops_x = drop_portion(stops_x, cage_size.x, 4) stops_y = drop_portion(stops_y, cage_size.y, 4) remaining_islands = [island for island in remaining_islands if island not in page.islands] self.pages.append(page) def save_uv(self, cage_size=M.Vector((1, 1)), separate_image=False): if separate_image: for island in self.islands: island.save_uv_separate(self.looptex) else: for island in self.islands: island.save_uv(self.looptex, cage_size) def save_image(self, page_size_pixels: M.Vector, filename): for page in self.pages: image = create_blank_image("Page {}".format(page.name), page_size_pixels, alpha=1) image.filepath_raw = page.image_path = "{}_{}.png".format(filename, page.name) faces = [face for island in page.islands for face in island.faces] self.bake(faces, image) image.save() image.user_clear() bpy.data.images.remove(image) def save_separate_images(self, scale, filepath, embed=None): for i, island in enumerate(self.islands): image_name = "Island {}".format(i) image = create_blank_image(image_name, island.bounding_box * scale, alpha=0) self.bake(island.faces.keys(), image) if embed: island.embedded_image = embed(image) else: from os import makedirs image_dir = filepath makedirs(image_dir, exist_ok=True) image_path = os_path.join(image_dir, "island{}.png".format(i)) image.filepath_raw = image_path image.save() island.image_path = image_path image.user_clear() bpy.data.images.remove(image) def bake(self, faces, image): if not self.looptex: raise UnfoldError("The mesh has no UV Map slots left. Either delete a UV Map or export the net without textures.") ob = bpy.context.active_object me = ob.data # in Cycles, the image for baking is defined by the active Image Node temp_nodes = dict() for mat in me.materials: mat.use_nodes = True img = mat.node_tree.nodes.new('ShaderNodeTexImage') img.image = image temp_nodes[mat] = img mat.node_tree.nodes.active = img # move all excess faces to negative numbers (that is the only way to disable them) ignored_uvs = [loop[self.looptex].uv for f in self.data.faces if f not in faces for loop in f.loops] for uv in ignored_uvs: uv *= -1 bake_type = bpy.context.scene.cycles.bake_type sta = bpy.context.scene.render.bake.use_selected_to_active try: ob.update_from_editmode() me.uv_layers.active = me.uv_layers[self.looptex.name] bpy.ops.object.bake(type=bake_type, margin=1, use_selected_to_active=sta, cage_extrusion=100, use_clear=False) except RuntimeError as e: raise UnfoldError(*e.args) finally: for mat, node in temp_nodes.items(): mat.node_tree.nodes.remove(node) for uv in ignored_uvs: uv *= -1 class Edge: """Wrapper for BPy Edge""" __slots__ = ( 'data', 'va', 'vb', 'main_faces', 'uvedges', 'vector', 'angle', 'is_main_cut', 'force_cut', 'priority', 'freestyle') def __init__(self, edge): self.data = edge self.va, self.vb = edge.verts self.vector = self.vb.co - self.va.co # if self.main_faces is set, then self.uvedges[:2] must correspond to self.main_faces, in their order # this constraint is assured at the time of finishing mesh.generate_cuts self.uvedges = list() self.force_cut = edge.seam # such edges will always be cut self.main_faces = None # two faces that may be connected in the island # is_main_cut defines whether the two main faces are connected # all the others will be assumed to be cut self.is_main_cut = True self.priority = None self.angle = None self.freestyle = False def choose_main_faces(self): """Choose two main faces that might get connected in an island""" def score(pair): return abs(pair[0].face.normal.dot(pair[1].face.normal)) loops = self.data.link_loops if len(loops) == 2: self.main_faces = list(loops) elif len(loops) > 2: # find (with brute force) the pair of indices whose loops have the most similar normals self.main_faces = max(combinations(loops, 2), key=score) if self.main_faces and self.main_faces[1].vert == self.va: self.main_faces = self.main_faces[::-1] def calculate_angle(self): """Calculate the angle between the main faces""" loop_a, loop_b = self.main_faces normal_a, normal_b = (l.face.normal for l in self.main_faces) if not normal_a or not normal_b: self.angle = -3 # just a very sharp angle else: s = normal_a.cross(normal_b).dot(self.vector.normalized()) s = max(min(s, 1.0), -1.0) # deal with rounding errors self.angle = asin(s) if loop_a.link_loop_next.vert != loop_b.vert or loop_b.link_loop_next.vert != loop_a.vert: self.angle = abs(self.angle) def generate_priority(self, priority_effect, average_length): """Calculate the priority value for cutting""" angle = self.angle if angle > 0: self.priority = priority_effect['CONVEX'] * angle / pi else: self.priority = priority_effect['CONCAVE'] * (-angle) / pi self.priority += (self.vector.length / average_length) * priority_effect['LENGTH'] def is_cut(self, face): """Return False if this edge will the given face to another one in the resulting net (useful for edges with more than two faces connected)""" # Return whether there is a cut between the two main faces if self.main_faces and face in {loop.face for loop in self.main_faces}: return self.is_main_cut # All other faces (third and more) are automatically treated as cut else: return True def other_uvedge(self, this): """Get an uvedge of this edge that is not the given one causes an IndexError if case of less than two adjacent edges""" return self.uvedges[1] if this is self.uvedges[0] else self.uvedges[0] class Island: """Part of the net to be exported""" __slots__ = ( 'mesh', 'faces', 'edges', 'vertices', 'fake_vertices', 'boundary', 'markers', 'pos', 'bounding_box', 'image_path', 'embedded_image', 'number', 'label', 'abbreviation', 'title', 'has_safe_geometry', 'is_inside_out', 'sticker_numbering') def __init__(self, mesh, face, matrix, normal_matrix): """Create an Island from a single Face""" self.mesh = mesh self.faces = dict() # face -> uvface self.edges = dict() # loop -> uvedge self.vertices = dict() # loop -> uvvertex self.fake_vertices = list() self.markers = list() self.label = None self.abbreviation = None self.title = None self.pos = M.Vector((0, 0)) self.image_path = None self.embedded_image = None self.is_inside_out = False # swaps concave <-> convex edges self.has_safe_geometry = True self.sticker_numbering = 0 uvface = UVFace(face, self, matrix, normal_matrix) self.vertices.update(uvface.vertices) self.edges.update(uvface.edges) self.faces[face] = uvface # UVEdges on the boundary self.boundary = list(self.edges.values()) def add_marker(self, marker): self.fake_vertices.extend(marker.bounds) self.markers.append(marker) def generate_label(self, label=None, abbreviation=None): """Assign a name to this island automatically""" abbr = abbreviation or self.abbreviation or str(self.number) # TODO: dots should be added in the last instant when outputting any text if is_upsidedown_wrong(abbr): abbr += "." self.label = label or self.label or "Island {}".format(self.number) self.abbreviation = abbr def save_uv(self, tex, cage_size): """Save UV Coordinates of all UVFaces to a given UV texture tex: UV Texture layer to use (BMLayerItem) page_size: size of the page in pixels (vector)""" scale_x, scale_y = 1 / cage_size.x, 1 / cage_size.y for loop, uvvertex in self.vertices.items(): uv = uvvertex.co + self.pos loop[tex].uv = uv.x * scale_x, uv.y * scale_y def save_uv_separate(self, tex): """Save UV Coordinates of all UVFaces to a given UV texture, spanning from 0 to 1 tex: UV Texture layer to use (BMLayerItem) page_size: size of the page in pixels (vector)""" scale_x, scale_y = 1 / self.bounding_box.x, 1 / self.bounding_box.y for loop, uvvertex in self.vertices.items(): loop[tex].uv = uvvertex.co.x * scale_x, uvvertex.co.y * scale_y def join(uvedge_a, uvedge_b, size_limit=None, epsilon=1e-6): """ Try to join other island on given edge Returns False if they would overlap """ class Intersection(Exception): pass class GeometryError(Exception): pass def is_below(self, other, correct_geometry=True): if self is other: return False if self.top < other.bottom: return True if other.top < self.bottom: return False if self.max.tup <= other.min.tup: return True if other.max.tup <= self.min.tup: return False self_vector = self.max.co - self.min.co min_to_min = other.min.co - self.min.co cross_b1 = self_vector.cross(min_to_min) cross_b2 = self_vector.cross(other.max.co - self.min.co) if cross_b2 < cross_b1: cross_b1, cross_b2 = cross_b2, cross_b1 if cross_b2 > 0 and (cross_b1 > 0 or (cross_b1 == 0 and not self.is_uvface_upwards())): return True if cross_b1 < 0 and (cross_b2 < 0 or (cross_b2 == 0 and self.is_uvface_upwards())): return False other_vector = other.max.co - other.min.co cross_a1 = other_vector.cross(-min_to_min) cross_a2 = other_vector.cross(self.max.co - other.min.co) if cross_a2 < cross_a1: cross_a1, cross_a2 = cross_a2, cross_a1 if cross_a2 > 0 and (cross_a1 > 0 or (cross_a1 == 0 and not other.is_uvface_upwards())): return False if cross_a1 < 0 and (cross_a2 < 0 or (cross_a2 == 0 and other.is_uvface_upwards())): return True if cross_a1 == cross_b1 == cross_a2 == cross_b2 == 0: if correct_geometry: raise GeometryError elif self.is_uvface_upwards() == other.is_uvface_upwards(): raise Intersection return False if self.min.tup == other.min.tup or self.max.tup == other.max.tup: return cross_a2 > cross_b2 raise Intersection class QuickSweepline: """Efficient sweepline based on binary search, checking neighbors only""" def __init__(self): self.children = list() def add(self, item, cmp=is_below): low, high = 0, len(self.children) while low < high: mid = (low + high) // 2 if cmp(self.children[mid], item): low = mid + 1 else: high = mid self.children.insert(low, item) def remove(self, item, cmp=is_below): index = self.children.index(item) self.children.pop(index) if index > 0 and index < len(self.children): # check for intersection if cmp(self.children[index], self.children[index-1]): raise GeometryError class BruteSweepline: """Safe sweepline which checks all its members pairwise""" def __init__(self): self.children = set() def add(self, item, cmp=is_below): for child in self.children: if child.min is not item.min and child.max is not item.max: cmp(item, child, False) self.children.add(item) def remove(self, item): self.children.remove(item) def sweep(sweepline, segments): """Sweep across the segments and raise an exception if necessary""" # careful, 'segments' may be a use-once iterator events_add = sorted(segments, reverse=True, key=lambda uvedge: uvedge.min.tup) events_remove = sorted(events_add, reverse=True, key=lambda uvedge: uvedge.max.tup) while events_remove: while events_add and events_add[-1].min.tup <= events_remove[-1].max.tup: sweepline.add(events_add.pop()) sweepline.remove(events_remove.pop()) def root_find(value, tree): """Find the root of a given value in a forest-like dictionary also updates the dictionary using path compression""" parent, relink = tree.get(value), list() while parent is not None: relink.append(value) value, parent = parent, tree.get(parent) tree.update(dict.fromkeys(relink, value)) return value def slope_from(position): def slope(uvedge): vec = (uvedge.vb.co - uvedge.va.co) if uvedge.va.tup == position else (uvedge.va.co - uvedge.vb.co) return (vec.y / vec.length + 1) if ((vec.x, vec.y) > (0, 0)) else (-1 - vec.y / vec.length) return slope island_a, island_b = (e.uvface.island for e in (uvedge_a, uvedge_b)) if island_a is island_b: return False elif len(island_b.faces) > len(island_a.faces): uvedge_a, uvedge_b = uvedge_b, uvedge_a island_a, island_b = island_b, island_a # check if vertices and normals are aligned correctly verts_flipped = uvedge_b.loop.vert is uvedge_a.loop.vert flipped = verts_flipped ^ uvedge_a.uvface.flipped ^ uvedge_b.uvface.flipped # determine rotation # NOTE: if the edges differ in length, the matrix will involve uniform scaling. # Such situation may occur in the case of twisted n-gons first_b, second_b = (uvedge_b.va, uvedge_b.vb) if not verts_flipped else (uvedge_b.vb, uvedge_b.va) if not flipped: rot = fitting_matrix(first_b.co - second_b.co, uvedge_a.vb.co - uvedge_a.va.co) else: flip = M.Matrix(((-1, 0), (0, 1))) rot = fitting_matrix(flip @ (first_b.co - second_b.co), uvedge_a.vb.co - uvedge_a.va.co) @ flip trans = uvedge_a.vb.co - rot @ first_b.co # preview of island_b's vertices after the join operation phantoms = {uvvertex: UVVertex(rot @ uvvertex.co + trans) for uvvertex in island_b.vertices.values()} # check the size of the resulting island if size_limit: points = [vert.co for vert in chain(island_a.vertices.values(), phantoms.values())] left, right, bottom, top = (fn(co[i] for co in points) for i in (0, 1) for fn in (min, max)) bbox_width = right - left bbox_height = top - bottom if min(bbox_width, bbox_height)**2 > size_limit.x**2 + size_limit.y**2: return False if (bbox_width > size_limit.x or bbox_height > size_limit.y) and (bbox_height > size_limit.x or bbox_width > size_limit.y): _, height = cage_fit(points, size_limit.y / size_limit.x) if height > size_limit.y: return False distance_limit = uvedge_a.loop.edge.calc_length() * epsilon # try and merge UVVertices closer than sqrt(distance_limit) merged_uvedges = set() merged_uvedge_pairs = list() # merge all uvvertices that are close enough using a union-find structure # uvvertices will be merged only in cases island_b->island_a and island_a->island_a # all resulting groups are merged together to a uvvertex of island_a is_merged_mine = False shared_vertices = {loop.vert for loop in chain(island_a.vertices, island_b.vertices)} for vertex in shared_vertices: uvs_a = {island_a.vertices.get(loop) for loop in vertex.link_loops} - {None} uvs_b = {island_b.vertices.get(loop) for loop in vertex.link_loops} - {None} for a, b in product(uvs_a, uvs_b): if (a.co - phantoms[b].co).length_squared < distance_limit: phantoms[b] = root_find(a, phantoms) for a1, a2 in combinations(uvs_a, 2): if (a1.co - a2.co).length_squared < distance_limit: a1, a2 = (root_find(a, phantoms) for a in (a1, a2)) if a1 is not a2: phantoms[a2] = a1 is_merged_mine = True for source, target in phantoms.items(): target = root_find(target, phantoms) phantoms[source] = target for uvedge in (chain(island_a.boundary, island_b.boundary) if is_merged_mine else island_b.boundary): for loop in uvedge.loop.link_loops: partner = island_b.edges.get(loop) or island_a.edges.get(loop) if partner is not None and partner is not uvedge: paired_a, paired_b = phantoms.get(partner.vb, partner.vb), phantoms.get(partner.va, partner.va) if (partner.uvface.flipped ^ flipped) != uvedge.uvface.flipped: paired_a, paired_b = paired_b, paired_a if phantoms.get(uvedge.va, uvedge.va) is paired_a and phantoms.get(uvedge.vb, uvedge.vb) is paired_b: # if these two edges will get merged, add them both to the set merged_uvedges.update((uvedge, partner)) merged_uvedge_pairs.append((uvedge, partner)) break if uvedge_b not in merged_uvedges: raise UnfoldError("Export failed. Please report this error, including the model if you can.") boundary_other = [ PhantomUVEdge(phantoms[uvedge.va], phantoms[uvedge.vb], flipped ^ uvedge.uvface.flipped) for uvedge in island_b.boundary if uvedge not in merged_uvedges] # TODO: if is_merged_mine, it might make sense to create a similar list from island_a.boundary as well incidence = {vertex.tup for vertex in phantoms.values()}.intersection(vertex.tup for vertex in island_a.vertices.values()) incidence = {position: list() for position in incidence} # from now on, 'incidence' is a dict for uvedge in chain(boundary_other, island_a.boundary): if uvedge.va.co == uvedge.vb.co: continue for vertex in (uvedge.va, uvedge.vb): site = incidence.get(vertex.tup) if site is not None: site.append(uvedge) for position, segments in incidence.items(): if len(segments) <= 2: continue segments.sort(key=slope_from(position)) for right, left in pairs(segments): is_left_ccw = left.is_uvface_upwards() ^ (left.max.tup == position) is_right_ccw = right.is_uvface_upwards() ^ (right.max.tup == position) if is_right_ccw and not is_left_ccw and type(right) is not type(left) and right not in merged_uvedges and left not in merged_uvedges: return False if (not is_right_ccw and right not in merged_uvedges) ^ (is_left_ccw and left not in merged_uvedges): return False # check for self-intersections try: try: sweepline = QuickSweepline() if island_a.has_safe_geometry and island_b.has_safe_geometry else BruteSweepline() sweep(sweepline, (uvedge for uvedge in chain(boundary_other, island_a.boundary))) island_a.has_safe_geometry &= island_b.has_safe_geometry except GeometryError: sweep(BruteSweepline(), (uvedge for uvedge in chain(boundary_other, island_a.boundary))) island_a.has_safe_geometry = False except Intersection: return False # mark all edges that connect the islands as not cut for uvedge in merged_uvedges: island_a.mesh.edges[uvedge.loop.edge].is_main_cut = False # include all transformed vertices as mine island_a.vertices.update({loop: phantoms[uvvertex] for loop, uvvertex in island_b.vertices.items()}) # re-link uvedges and uvfaces to their transformed locations for uvedge in island_b.edges.values(): uvedge.va = phantoms[uvedge.va] uvedge.vb = phantoms[uvedge.vb] uvedge.update() if is_merged_mine: for uvedge in island_a.edges.values(): uvedge.va = phantoms.get(uvedge.va, uvedge.va) uvedge.vb = phantoms.get(uvedge.vb, uvedge.vb) island_a.edges.update(island_b.edges) for uvface in island_b.faces.values(): uvface.island = island_a uvface.vertices = {loop: phantoms[uvvertex] for loop, uvvertex in uvface.vertices.items()} uvface.flipped ^= flipped if is_merged_mine: # there may be own uvvertices that need to be replaced by phantoms for uvface in island_a.faces.values(): if any(uvvertex in phantoms for uvvertex in uvface.vertices): uvface.vertices = {loop: phantoms.get(uvvertex, uvvertex) for loop, uvvertex in uvface.vertices.items()} island_a.faces.update(island_b.faces) island_a.boundary = [ uvedge for uvedge in chain(island_a.boundary, island_b.boundary) if uvedge not in merged_uvedges] for uvedge, partner in merged_uvedge_pairs: # make sure that main faces are the ones actually merged (this changes nothing in most cases) edge = island_a.mesh.edges[uvedge.loop.edge] edge.main_faces = uvedge.loop, partner.loop # everything seems to be OK return island_b class Page: """Container for several Islands""" __slots__ = ('islands', 'name', 'image_path') def __init__(self, num=1): self.islands = list() self.name = "page{}".format(num) # note: this is only used in svg files naming self.image_path = None class UVVertex: """Vertex in 2D""" __slots__ = ('co', 'tup') def __init__(self, vector): self.co = vector.xy self.tup = tuple(self.co) class UVEdge: """Edge in 2D""" # Every UVEdge is attached to only one UVFace # UVEdges are doubled as needed because they both have to point clockwise around their faces __slots__ = ( 'va', 'vb', 'uvface', 'loop', 'min', 'max', 'bottom', 'top', 'neighbor_left', 'neighbor_right', 'sticker') def __init__(self, vertex1: UVVertex, vertex2: UVVertex, uvface, loop): self.va = vertex1 self.vb = vertex2 self.update() self.uvface = uvface self.sticker = None self.loop = loop def update(self): """Update data if UVVertices have moved""" self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va) y1, y2 = self.va.co.y, self.vb.co.y self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1) def is_uvface_upwards(self): return (self.va.tup < self.vb.tup) ^ self.uvface.flipped def __repr__(self): return "({0.va} - {0.vb})".format(self) class PhantomUVEdge: """Temporary 2D Segment for calculations""" __slots__ = ('va', 'vb', 'min', 'max', 'bottom', 'top') def __init__(self, vertex1: UVVertex, vertex2: UVVertex, flip): self.va, self.vb = (vertex2, vertex1) if flip else (vertex1, vertex2) self.min, self.max = (self.va, self.vb) if (self.va.tup < self.vb.tup) else (self.vb, self.va) y1, y2 = self.va.co.y, self.vb.co.y self.bottom, self.top = (y1, y2) if y1 < y2 else (y2, y1) def is_uvface_upwards(self): return self.va.tup < self.vb.tup def __repr__(self): return "[{0.va} - {0.vb}]".format(self) class UVFace: """Face in 2D""" __slots__ = ('vertices', 'edges', 'face', 'island', 'flipped') def __init__(self, face: bmesh.types.BMFace, island: Island, matrix=1, normal_matrix=1): self.face = face self.island = island self.flipped = False # a flipped UVFace has edges clockwise flatten = z_up_matrix(normal_matrix @ face.normal) @ matrix self.vertices = {loop: UVVertex(flatten @ loop.vert.co) for loop in face.loops} self.edges = {loop: UVEdge(self.vertices[loop], self.vertices[loop.link_loop_next], self, loop) for loop in face.loops} class Arrow: """Mark in the document: an arrow denoting the number of the edge it points to""" __slots__ = ('bounds', 'center', 'rot', 'text', 'size') def __init__(self, uvedge, size, index): self.text = str(index) edge = (uvedge.vb.co - uvedge.va.co) if not uvedge.uvface.flipped else (uvedge.va.co - uvedge.vb.co) self.center = (uvedge.va.co + uvedge.vb.co) / 2 self.size = size tangent = edge.normalized() cos, sin = tangent self.rot = M.Matrix(((cos, -sin), (sin, cos))) normal = M.Vector((sin, -cos)) self.bounds = [self.center, self.center + (1.2 * normal + tangent) * size, self.center + (1.2 * normal - tangent) * size] class Sticker: """Mark in the document: sticker tab""" __slots__ = ('bounds', 'center', 'points', 'rot', 'text', 'width') def __init__(self, uvedge, default_width, index, other: UVEdge): """Sticker is directly attached to the given UVEdge""" first_vertex, second_vertex = (uvedge.va, uvedge.vb) if not uvedge.uvface.flipped else (uvedge.vb, uvedge.va) edge = first_vertex.co - second_vertex.co sticker_width = min(default_width, edge.length / 2) other_first, other_second = (other.va, other.vb) if not other.uvface.flipped else (other.vb, other.va) other_edge = other_second.co - other_first.co # angle a is at vertex uvedge.va, b is at uvedge.vb cos_a = cos_b = 0.5 sin_a = sin_b = 0.75**0.5 # len_a is length of the side adjacent to vertex a, len_b likewise len_a = len_b = sticker_width / sin_a # fix overlaps with the most often neighbour - its sticking target if first_vertex == other_second: cos_a = max(cos_a, edge.dot(other_edge) / (edge.length_squared)) # angles between pi/3 and 0 elif second_vertex == other_first: cos_b = max(cos_b, edge.dot(other_edge) / (edge.length_squared)) # angles between pi/3 and 0 # Fix tabs for sticking targets with small angles try: other_face_neighbor_left = other.neighbor_left other_face_neighbor_right = other.neighbor_right other_edge_neighbor_a = other_face_neighbor_left.vb.co - other.vb.co other_edge_neighbor_b = other_face_neighbor_right.va.co - other.va.co # Adjacent angles in the face cos_a = max(cos_a, -other_edge.dot(other_edge_neighbor_a) / (other_edge.length*other_edge_neighbor_a.length)) cos_b = max(cos_b, other_edge.dot(other_edge_neighbor_b) / (other_edge.length*other_edge_neighbor_b.length)) except AttributeError: # neighbor data may be missing for edges with 3+ faces pass except ZeroDivisionError: pass # Calculate the lengths of the glue tab edges using the possibly smaller angles sin_a = abs(1 - cos_a**2)**0.5 len_b = min(len_a, (edge.length * sin_a) / (sin_a * cos_b + sin_b * cos_a)) len_a = 0 if sin_a == 0 else min(sticker_width / sin_a, (edge.length - len_b*cos_b) / cos_a) sin_b = abs(1 - cos_b**2)**0.5 len_a = min(len_a, (edge.length * sin_b) / (sin_a * cos_b + sin_b * cos_a)) len_b = 0 if sin_b == 0 else min(sticker_width / sin_b, (edge.length - len_a * cos_a) / cos_b) v3 = second_vertex.co + M.Matrix(((cos_b, -sin_b), (sin_b, cos_b))) @ edge * len_b / edge.length v4 = first_vertex.co + M.Matrix(((-cos_a, -sin_a), (sin_a, -cos_a))) @ edge * len_a / edge.length if v3 != v4: self.points = [second_vertex.co, v3, v4, first_vertex.co] else: self.points = [second_vertex.co, v3, first_vertex.co] sin, cos = edge.y / edge.length, edge.x / edge.length self.rot = M.Matrix(((cos, -sin), (sin, cos))) self.width = sticker_width * 0.9 if index and uvedge.uvface.island is not other.uvface.island: self.text = "{}:{}".format(other.uvface.island.abbreviation, index) else: self.text = index self.center = (uvedge.va.co + uvedge.vb.co) / 2 + self.rot @ M.Vector((0, self.width * 0.2)) self.bounds = [v3, v4, self.center] if v3 != v4 else [v3, self.center] class NumberAlone: """Mark in the document: numbering inside the island denoting edges to be sticked""" __slots__ = ('bounds', 'center', 'rot', 'text', 'size') def __init__(self, uvedge, index, default_size=0.005): """Sticker is directly attached to the given UVEdge""" edge = (uvedge.va.co - uvedge.vb.co) if not uvedge.uvface.flipped else (uvedge.vb.co - uvedge.va.co) self.size = default_size sin, cos = edge.y / edge.length, edge.x / edge.length self.rot = M.Matrix(((cos, -sin), (sin, cos))) self.text = index self.center = (uvedge.va.co + uvedge.vb.co) / 2 - self.rot @ M.Vector((0, self.size * 1.2)) self.bounds = [self.center] def init_exporter(self, properties): self.page_size = M.Vector((properties.output_size_x, properties.output_size_y)) self.style = properties.style margin = properties.output_margin self.margin = M.Vector((margin, margin)) self.pure_net = (properties.output_type == 'NONE') self.do_create_stickers = properties.do_create_stickers self.text_size = properties.sticker_width self.angle_epsilon = properties.angle_epsilon class Svg: """Simple SVG exporter""" def __init__(self, properties): init_exporter(self, properties) @classmethod def encode_image(cls, bpy_image): import tempfile import base64 with tempfile.TemporaryDirectory() as directory: filename = directory + "/i.png" bpy_image.filepath_raw = filename bpy_image.save() return base64.encodebytes(open(filename, "rb").read()).decode('ascii') def format_vertex(self, vector): """Return a string with both coordinates of the given vertex.""" return "{:.6f} {:.6f}".format((vector.x + self.margin.x) * 1000, (self.page_size.y - vector.y - self.margin.y) * 1000) def write(self, mesh, filename): """Write data to a file given by its name.""" line_through = " L ".join # used for formatting of SVG path data rows = "\n".join dl = ["{:.2f}".format(length * self.style.line_width * 1000) for length in (2, 5, 10)] format_style = { 'SOLID': "none", 'DOT': "{0},{1}".format(*dl), 'DASH': "{1},{2}".format(*dl), 'LONGDASH': "{2},{1}".format(*dl), 'DASHDOT': "{2},{1},{0},{1}".format(*dl)} def format_color(vec): return "#{:02x}{:02x}{:02x}".format(round(vec[0] * 255), round(vec[1] * 255), round(vec[2] * 255)) def format_matrix(matrix): return " ".join("{:.6f}".format(cell) for column in matrix for cell in column) def path_convert(string, relto=os_path.dirname(filename)): assert(os_path) # check the module was imported string = os_path.relpath(string, relto) if os_path.sep != '/': string = string.replace(os_path.sep, '/') return string styleargs = { name: format_color(getattr(self.style, name)) for name in ( "outer_color", "outbg_color", "convex_color", "concave_color", "freestyle_color", "inbg_color", "sticker_color", "text_color")} styleargs.update({ name: format_style[getattr(self.style, name)] for name in ("outer_style", "convex_style", "concave_style", "freestyle_style")}) styleargs.update({ name: getattr(self.style, attr)[3] for name, attr in ( ("outer_alpha", "outer_color"), ("outbg_alpha", "outbg_color"), ("convex_alpha", "convex_color"), ("concave_alpha", "concave_color"), ("freestyle_alpha", "freestyle_color"), ("inbg_alpha", "inbg_color"), ("sticker_alpha", "sticker_color"), ("text_alpha", "text_color"))}) styleargs.update({ name: getattr(self.style, name) * self.style.line_width * 1000 for name in ("outer_width", "convex_width", "concave_width", "freestyle_width", "outbg_width", "inbg_width")}) for num, page in enumerate(mesh.pages): page_filename = "{}_{}.svg".format(filename[:filename.rfind(".svg")], page.name) if len(mesh.pages) > 1 else filename with open(page_filename, 'w') as f: print(self.svg_base.format(width=self.page_size.x*1000, height=self.page_size.y*1000), file=f) print(self.css_base.format(**styleargs), file=f) if page.image_path: print( self.image_linked_tag.format( pos="{0:.6f} {0:.6f}".format(self.margin.x*1000), width=(self.page_size.x - 2 * self.margin.x)*1000, height=(self.page_size.y - 2 * self.margin.y)*1000, path=path_convert(page.image_path)), file=f) if len(page.islands) > 1: print("", file=f) for island in page.islands: print("", file=f) if island.image_path: print( self.image_linked_tag.format( pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))), width=island.bounding_box.x*1000, height=island.bounding_box.y*1000, path=path_convert(island.image_path)), file=f) elif island.embedded_image: print( self.image_embedded_tag.format( pos=self.format_vertex(island.pos + M.Vector((0, island.bounding_box.y))), width=island.bounding_box.x*1000, height=island.bounding_box.y*1000, path=island.image_path), island.embedded_image, "'/>", file=f, sep="") if island.title: print( self.text_tag.format( size=1000 * self.text_size, x=1000 * (island.bounding_box.x*0.5 + island.pos.x + self.margin.x), y=1000 * (self.page_size.y - island.pos.y - self.margin.y - 0.2 * self.text_size), label=island.title), file=f) data_markers, data_stickerfill = list(), list() for marker in island.markers: if isinstance(marker, Sticker): data_stickerfill.append("M {} Z".format( line_through(self.format_vertex(co + island.pos) for co in marker.points))) if marker.text: data_markers.append(self.text_transformed_tag.format( label=marker.text, pos=self.format_vertex(marker.center + island.pos), mat=format_matrix(marker.rot), size=marker.width * 1000)) elif isinstance(marker, Arrow): size = marker.size * 1000 position = marker.center + marker.size * marker.rot @ M.Vector((0, -0.9)) data_markers.append(self.arrow_marker_tag.format( index=marker.text, arrow_pos=self.format_vertex(marker.center + island.pos), scale=size, pos=self.format_vertex(position + island.pos - marker.size*M.Vector((0, 0.4))), mat=format_matrix(size * marker.rot))) elif isinstance(marker, NumberAlone): data_markers.append(self.text_transformed_tag.format( label=marker.text, pos=self.format_vertex(marker.center + island.pos), mat=format_matrix(marker.rot), size=marker.size * 1000)) if data_stickerfill and self.style.sticker_color[3] > 0: print("", file=f) data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(4)) outer_edges = set(island.boundary) while outer_edges: data_loop = list() uvedge = outer_edges.pop() while 1: if uvedge.sticker: data_loop.extend(self.format_vertex(co + island.pos) for co in uvedge.sticker.points[1:]) else: vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va data_loop.append(self.format_vertex(vertex.co + island.pos)) uvedge = uvedge.neighbor_right try: outer_edges.remove(uvedge) except KeyError: break data_outer.append("M {} Z".format(line_through(data_loop))) visited_edges = set() for loop, uvedge in island.edges.items(): edge = mesh.edges[loop.edge] if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker: continue data_uvedge = "M {}".format( line_through(self.format_vertex(v.co + island.pos) for v in (uvedge.va, uvedge.vb))) if edge.freestyle: data_freestyle.append(data_uvedge) # each uvedge is in two opposite-oriented variants; we want to add each only once vertex_pair = frozenset((uvedge.va, uvedge.vb)) if vertex_pair not in visited_edges: visited_edges.add(vertex_pair) if edge.angle > self.angle_epsilon: data_convex.append(data_uvedge) elif edge.angle < -self.angle_epsilon: data_concave.append(data_uvedge) if island.is_inside_out: data_convex, data_concave = data_concave, data_convex if data_freestyle: print("", file=f) if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg: print("", file=f) if data_convex: print("", file=f) if data_concave: print("", file=f) if data_outer: if not self.pure_net and self.style.use_outbg: print("", file=f) print("", file=f) if data_markers: print(rows(data_markers), file=f) print("", file=f) if len(page.islands) > 1: print("", file=f) print("", file=f) image_linked_tag = "" image_embedded_tag = "{label}" text_transformed_tag = "{label}" arrow_marker_tag = "" \ "{index}" svg_base = """ """ css_base = """""" class Pdf: """Simple PDF exporter""" mm_to_pt = 72 / 25.4 character_width_packed = { 191: "'", 222: 'ijl\x82\x91\x92', 278: '|¦\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !,./:;I[\\]ft\xa0·ÌÍÎÏìíîï', 333: '()-`r\x84\x88\x8b\x93\x94\x98\x9b¡¨\xad¯²³´¸¹{}', 350: '\x7f\x81\x8d\x8f\x90\x95\x9d', 365: '"ºª*°', 469: '^', 500: 'Jcksvxyz\x9a\x9eçýÿ', 584: '¶+<=>~¬±×÷', 611: 'FTZ\x8e¿ßø', 667: '&ABEKPSVXY\x8a\x9fÀÁÂÃÄÅÈÉÊËÝÞ', 722: 'CDHNRUwÇÐÑÙÚÛÜ', 737: '©®', 778: 'GOQÒÓÔÕÖØ', 833: 'Mm¼½¾', 889: '%æ', 944: 'W\x9c', 1000: '\x85\x89\x8c\x97\x99Æ', 1015: '@', } character_width = {c: value for (value, chars) in character_width_packed.items() for c in chars} def __init__(self, properties): init_exporter(self, properties) self.styles = dict() def text_width(self, text, scale=None): return (scale or self.text_size) * sum(self.character_width.get(c, 556) for c in text) / 1000 def styling(self, name, do_stroke=True): s, m, l = (length * self.style.line_width * 1000 for length in (1, 4, 9)) format_style = {'SOLID': [], 'DOT': [s, m], 'DASH': [m, l], 'LONGDASH': [l, m], 'DASHDOT': [l, m, s, m]} style, color, width = (getattr(self.style, f"{name}_{arg}", None) for arg in ("style", "color", "width")) style = style or 'SOLID' result = ["q"] if do_stroke: result += [ "[ " + " ".join("{:.3f}".format(num) for num in format_style[style]) + " ] 0 d", "{0:.3f} {1:.3f} {2:.3f} RG".format(*color), "{:.3f} w".format(self.style.line_width * 1000 * width), ] else: result.append("{0:.3f} {1:.3f} {2:.3f} rg".format(*color)) if color[3] < 1: style_name = "R{:03}".format(round(1000 * color[3])) result.append("/{} gs".format(style_name)) if style_name not in self.styles: self.styles[style_name] = {"CA": color[3], "ca": color[3]} return result @classmethod def encode_image(cls, bpy_image): data = bytes(int(255 * px) for (i, px) in enumerate(bpy_image.pixels) if i % 4 != 3) image = { "Type": "XObject", "Subtype": "Image", "Width": bpy_image.size[0], "Height": bpy_image.size[1], "ColorSpace": "DeviceRGB", "BitsPerComponent": 8, "Interpolate": True, "Filter": ["ASCII85Decode", "FlateDecode"], "stream": data} return image def write(self, mesh, filename): def format_dict(obj, refs=tuple()): content = "".join("/{} {}\n".format(key, format_value(value, refs)) for (key, value) in obj.items()) return f"<< {content} >>" def line_through(seq): fmt = "{0.x:.6f} {0.y:.6f} {1} ".format return "".join(fmt(1000*co, cmd) for (co, cmd) in zip(seq, chain("m", repeat("l")))) def format_value(value, refs=tuple()): if value in refs: return "{} 0 R".format(refs.index(value) + 1) elif type(value) is dict: return format_dict(value, refs) elif type(value) in (list, tuple): return "[ " + " ".join(format_value(item, refs) for item in value) + " ]" elif type(value) is int: return str(value) elif type(value) is float: return "{:.6f}".format(value) elif type(value) is bool: return "true" if value else "false" else: return "/{}".format(value) # this script can output only PDF names, no strings def write_object(index, obj, refs, f, stream=None): byte_count = f.write("{} 0 obj\n".format(index).encode()) if type(obj) is not dict: stream, obj = obj, dict() elif "stream" in obj: stream = obj.pop("stream") if stream: obj["Filter"] = "FlateDecode" stream = encode(stream) obj["Length"] = len(stream) byte_count += f.write(format_dict(obj, refs).encode()) if stream: byte_count += f.write(b"\nstream\n") byte_count += f.write(stream) byte_count += f.write(b"\nendstream") return byte_count + f.write(b"\nendobj\n") def encode(data): from zlib import compress if hasattr(data, "encode"): data = data.encode() return compress(data) page_size_pt = 1000 * self.mm_to_pt * self.page_size reset_style = ["Q"] # graphic command for later use root = {"Type": "Pages", "MediaBox": [0, 0, page_size_pt.x, page_size_pt.y], "Kids": list()} catalog = {"Type": "Catalog", "Pages": root} font = { "Type": "Font", "Subtype": "Type1", "Name": "F1", "BaseFont": "Helvetica", "Encoding": "MacRomanEncoding"} objects = [root, catalog, font] for page in mesh.pages: commands = ["{0:.6f} 0 0 {0:.6f} 0 0 cm".format(self.mm_to_pt)] resources = {"Font": {"F1": font}, "ExtGState": self.styles, "ProcSet": ["PDF"]} if any(island.embedded_image for island in page.islands): resources["XObject"] = dict() resources["ProcSet"].append("ImageC") for island in page.islands: commands.append("q 1 0 0 1 {0.x:.6f} {0.y:.6f} cm".format(1000*(self.margin + island.pos))) if island.embedded_image: identifier = "I{}".format(len(resources["XObject"]) + 1) commands.append(self.command_image.format(1000 * island.bounding_box, identifier)) objects.append(island.embedded_image) resources["XObject"][identifier] = island.embedded_image if island.title: commands += self.styling("text", do_stroke=False) commands.append(self.command_label.format( size=1000*self.text_size, x=500 * (island.bounding_box.x - self.text_width(island.title)), y=1000 * 0.2 * self.text_size, label=island.title)) commands += reset_style data_markers, data_stickerfill = list(), list() for marker in island.markers: if isinstance(marker, Sticker): data_stickerfill.append(line_through(marker.points) + "f") if marker.text: data_markers.append(self.command_sticker.format( label=marker.text, pos=1000*marker.center, mat=marker.rot, align=-500 * self.text_width(marker.text, marker.width), size=1000*marker.width)) elif isinstance(marker, Arrow): size = 1000 * marker.size position = 1000 * (marker.center + marker.size * marker.rot @ M.Vector((0, -0.9))) data_markers.append(self.command_arrow.format( index=marker.text, arrow_pos=1000 * marker.center, pos=position - 1000 * M.Vector((0.5 * self.text_width(marker.text), 0.4 * self.text_size)), mat=size * marker.rot, size=size)) elif isinstance(marker, NumberAlone): data_markers.append(self.command_number.format( label=marker.text, pos=1000*marker.center, mat=marker.rot, size=1000*marker.size)) data_outer, data_convex, data_concave, data_freestyle = (list() for i in range(4)) outer_edges = set(island.boundary) while outer_edges: data_loop = list() uvedge = outer_edges.pop() while 1: if uvedge.sticker: data_loop.extend(uvedge.sticker.points[1:]) else: vertex = uvedge.vb if uvedge.uvface.flipped else uvedge.va data_loop.append(vertex.co) uvedge = uvedge.neighbor_right try: outer_edges.remove(uvedge) except KeyError: break data_outer.append(line_through(data_loop) + "s") for loop, uvedge in island.edges.items(): edge = mesh.edges[loop.edge] if edge.is_cut(uvedge.uvface.face) and not uvedge.sticker: continue data_uvedge = line_through((uvedge.va.co, uvedge.vb.co)) + "S" if edge.freestyle: data_freestyle.append(data_uvedge) # each uvedge exists in two opposite-oriented variants; we want to add each only once if uvedge.sticker or uvedge.uvface.flipped != (id(uvedge.va) > id(uvedge.vb)): if edge.angle > self.angle_epsilon: data_convex.append(data_uvedge) elif edge.angle < -self.angle_epsilon: data_concave.append(data_uvedge) if island.is_inside_out: data_convex, data_concave = data_concave, data_convex if data_stickerfill and self.style.sticker_color[3] > 0: commands += chain(self.styling("sticker", do_stroke=False), data_stickerfill, reset_style) if data_freestyle: commands += chain(self.styling("freestyle"), data_freestyle, reset_style) if (data_convex or data_concave) and not self.pure_net and self.style.use_inbg: commands += chain(self.styling("inbg"), data_convex, data_concave, reset_style) if data_convex: commands += chain(self.styling("convex"), data_convex, reset_style) if data_concave: commands += chain(self.styling("concave"), data_concave, reset_style) if data_outer: if not self.pure_net and self.style.use_outbg: commands += chain(self.styling("outbg"), data_outer, reset_style) commands += chain(self.styling("outer"), data_outer, reset_style) if data_markers: commands += chain(self.styling("text", do_stroke=False), data_markers, reset_style) commands += reset_style # return from island to page coordinates content = "\n".join(commands) page = {"Type": "Page", "Parent": root, "Contents": content, "Resources": resources} root["Kids"].append(page) objects += page, content objects.extend(self.styles.values()) root["Count"] = len(root["Kids"]) with open(filename, "wb+") as f: xref_table = list() position = 0 position += f.write(b"%PDF-1.4\n") position += f.write(b"%\xde\xad\xbe\xef\n") for index, obj in enumerate(objects, 1): xref_table.append(position) position += write_object(index, obj, objects, f) xref_pos = position f.write("xref\n0 {}\n".format(len(xref_table) + 1).encode()) f.write("{:010} {:05} f\r\n".format(0, 65535).encode()) for position in xref_table: f.write("{:010} {:05} n\r\n".format(position, 0).encode()) f.write(b"trailer\n") f.write(format_dict({"Size": len(xref_table) + 1, "Root": catalog}, objects).encode()) f.write("\nstartxref\n{}\n%%EOF\n".format(xref_pos).encode()) command_label = "q /F1 {size:.6f} Tf BT {x:.6f} {y:.6f} Td ({label}) Tj ET Q" command_image = "q {0.x:.6f} 0 0 {0.y:.6f} 0 0 cm 1 0 0 -1 0 1 cm /{1} Do Q" command_sticker = "q /F1 {size:.6f} Tf {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT {align:.6f} 0 Td ({label}) Tj ET Q" command_arrow = "q /F1 {size:.6f} Tf BT {pos.x:.6f} {pos.y:.6f} Td ({index}) Tj ET {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {arrow_pos.x:.6f} {arrow_pos.y:.6f} cm 0 0 m 1 -1 l 0 -0.25 l -1 -1 l f Q" command_number = "q /F1 {size:.6f} Tf {mat[0][0]:.6f} {mat[1][0]:.6f} {mat[0][1]:.6f} {mat[1][1]:.6f} {pos.x:.6f} {pos.y:.6f} cm BT ({label}) Tj ET Q" class Unfold(bpy.types.Operator): """Blender Operator: unfold the selected object.""" bl_idname = "mesh.unfold" bl_label = "Unfold" bl_description = "Mark seams so that the mesh can be exported as a paper model" bl_options = {'REGISTER', 'UNDO'} edit: bpy.props.BoolProperty(default=False, options={'HIDDEN'}) priority_effect_convex: bpy.props.FloatProperty( name="Priority Convex", description="Priority effect for edges in convex angles", default=default_priority_effect['CONVEX'], soft_min=-1, soft_max=10, subtype='FACTOR') priority_effect_concave: bpy.props.FloatProperty( name="Priority Concave", description="Priority effect for edges in concave angles", default=default_priority_effect['CONCAVE'], soft_min=-1, soft_max=10, subtype='FACTOR') priority_effect_length: bpy.props.FloatProperty( name="Priority Length", description="Priority effect of edge length", default=default_priority_effect['LENGTH'], soft_min=-10, soft_max=1, subtype='FACTOR') do_create_uvmap: bpy.props.BoolProperty( name="Create UVMap", description="Create a new UV Map showing the islands and page layout", default=False) object = None @classmethod def poll(cls, context): return context.active_object and context.active_object.type == "MESH" def draw(self, context): layout = self.layout col = layout.column() col.active = not self.object or len(self.object.data.uv_layers) < 8 col.prop(self.properties, "do_create_uvmap") layout.label(text="Edge Cutting Factors:") col = layout.column(align=True) col.label(text="Face Angle:") col.prop(self.properties, "priority_effect_convex", text="Convex") col.prop(self.properties, "priority_effect_concave", text="Concave") layout.prop(self.properties, "priority_effect_length", text="Edge Length") def execute(self, context): sce = bpy.context.scene settings = sce.paper_model recall_mode = context.object.mode bpy.ops.object.mode_set(mode='EDIT') self.object = context.object cage_size = M.Vector((settings.output_size_x, settings.output_size_y)) priority_effect = { 'CONVEX': self.priority_effect_convex, 'CONCAVE': self.priority_effect_concave, 'LENGTH': self.priority_effect_length} try: unfolder = Unfolder(self.object) unfolder.do_create_uvmap = self.do_create_uvmap scale = sce.unit_settings.scale_length / settings.scale unfolder.prepare(cage_size, priority_effect, scale, settings.limit_by_page) unfolder.mesh.mark_cuts() except UnfoldError as error: self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0]) error.mesh_select() bpy.ops.object.mode_set(mode=recall_mode) return {'CANCELLED'} mesh = self.object.data mesh.update() if mesh.paper_island_list: unfolder.copy_island_names(mesh.paper_island_list) island_list = mesh.paper_island_list attributes = {item.label: (item.abbreviation, item.auto_label, item.auto_abbrev) for item in island_list} island_list.clear() # remove previously defined islands for island in unfolder.mesh.islands: # add islands to UI list and set default descriptions list_item = island_list.add() # add faces' IDs to the island for face in island.faces: lface = list_item.faces.add() lface.id = face.index list_item["label"] = island.label list_item["abbreviation"], list_item["auto_label"], list_item["auto_abbrev"] = attributes.get( island.label, (island.abbreviation, True, True)) island_item_changed(list_item, context) mesh.paper_island_index = -1 del unfolder bpy.ops.object.mode_set(mode=recall_mode) return {'FINISHED'} class ClearAllSeams(bpy.types.Operator): """Blender Operator: clear all seams of the active Mesh and all its unfold data""" bl_idname = "mesh.clear_all_seams" bl_label = "Clear All Seams" bl_description = "Clear all the seams and unfolded islands of the active object" @classmethod def poll(cls, context): return context.active_object and context.active_object.type == 'MESH' def execute(self, context): ob = context.active_object mesh = ob.data for edge in mesh.edges: edge.use_seam = False mesh.paper_island_list.clear() return {'FINISHED'} def page_size_preset_changed(self, context): """Update the actual document size to correct values""" if hasattr(self, "limit_by_page") and not self.limit_by_page: return if self.page_size_preset == 'A4': self.output_size_x = 0.210 self.output_size_y = 0.297 elif self.page_size_preset == 'A3': self.output_size_x = 0.297 self.output_size_y = 0.420 elif self.page_size_preset == 'US_LETTER': self.output_size_x = 0.216 self.output_size_y = 0.279 elif self.page_size_preset == 'US_LEGAL': self.output_size_x = 0.216 self.output_size_y = 0.356 class PaperModelStyle(bpy.types.PropertyGroup): line_styles = [ ('SOLID', "Solid (----)", "Solid line"), ('DOT', "Dots (. . .)", "Dotted line"), ('DASH', "Short Dashes (- - -)", "Solid line"), ('LONGDASH', "Long Dashes (-- --)", "Solid line"), ('DASHDOT', "Dash-dotted (-- .)", "Solid line") ] outer_color: bpy.props.FloatVectorProperty( name="Outer Lines", description="Color of net outline", default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4) outer_style: bpy.props.EnumProperty( name="Outer Lines Drawing Style", description="Drawing style of net outline", default='SOLID', items=line_styles) line_width: bpy.props.FloatProperty( name="Base Lines Thickness", description="Base thickness of net lines, each actual value is a multiple of this length", default=1e-4, min=0, soft_max=5e-3, precision=5, step=1e-2, subtype="UNSIGNED", unit="LENGTH") outer_width: bpy.props.FloatProperty( name="Outer Lines Thickness", description="Relative thickness of net outline", default=3, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR') use_outbg: bpy.props.BoolProperty( name="Highlight Outer Lines", description="Add another line below every line to improve contrast", default=True) outbg_color: bpy.props.FloatVectorProperty( name="Outer Highlight", description="Color of the highlight for outer lines", default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4) outbg_width: bpy.props.FloatProperty( name="Outer Highlight Thickness", description="Relative thickness of the highlighting lines", default=5, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR') convex_color: bpy.props.FloatVectorProperty( name="Inner Convex Lines", description="Color of lines to be folded to a convex angle", default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4) convex_style: bpy.props.EnumProperty( name="Convex Lines Drawing Style", description="Drawing style of lines to be folded to a convex angle", default='DASH', items=line_styles) convex_width: bpy.props.FloatProperty( name="Convex Lines Thickness", description="Relative thickness of concave lines", default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR') concave_color: bpy.props.FloatVectorProperty( name="Inner Concave Lines", description="Color of lines to be folded to a concave angle", default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4) concave_style: bpy.props.EnumProperty( name="Concave Lines Drawing Style", description="Drawing style of lines to be folded to a concave angle", default='DASHDOT', items=line_styles) concave_width: bpy.props.FloatProperty( name="Concave Lines Thickness", description="Relative thickness of concave lines", default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR') freestyle_color: bpy.props.FloatVectorProperty( name="Freestyle Edges", description="Color of lines marked as Freestyle Edge", default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4) freestyle_style: bpy.props.EnumProperty( name="Freestyle Edges Drawing Style", description="Drawing style of Freestyle Edges", default='SOLID', items=line_styles) freestyle_width: bpy.props.FloatProperty( name="Freestyle Edges Thickness", description="Relative thickness of Freestyle edges", default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR') use_inbg: bpy.props.BoolProperty( name="Highlight Inner Lines", description="Add another line below every line to improve contrast", default=True) inbg_color: bpy.props.FloatVectorProperty( name="Inner Highlight", description="Color of the highlight for inner lines", default=(1.0, 1.0, 1.0, 1.0), min=0, max=1, subtype='COLOR', size=4) inbg_width: bpy.props.FloatProperty( name="Inner Highlight Thickness", description="Relative thickness of the highlighting lines", default=2, min=0, soft_max=10, precision=1, step=10, subtype='FACTOR') sticker_color: bpy.props.FloatVectorProperty( name="Tabs Fill", description="Fill color of sticking tabs", default=(0.9, 0.9, 0.9, 1.0), min=0, max=1, subtype='COLOR', size=4) text_color: bpy.props.FloatVectorProperty( name="Text Color", description="Color of all text used in the document", default=(0.0, 0.0, 0.0, 1.0), min=0, max=1, subtype='COLOR', size=4) bpy.utils.register_class(PaperModelStyle) class ExportPaperModel(bpy.types.Operator): """Blender Operator: save the selected object's net and optionally bake its texture""" bl_idname = "export_mesh.paper_model" bl_label = "Export Paper Model" bl_description = "Export the selected object's net and optionally bake its texture" bl_options = {'PRESET'} filepath: bpy.props.StringProperty( name="File Path", description="Target file to save the SVG", options={'SKIP_SAVE'}) filename: bpy.props.StringProperty( name="File Name", description="Name of the file", options={'SKIP_SAVE'}) directory: bpy.props.StringProperty( name="Directory", description="Directory of the file", options={'SKIP_SAVE'}) page_size_preset: bpy.props.EnumProperty( name="Page Size", description="Size of the exported document", default='A4', update=page_size_preset_changed, items=global_paper_sizes) output_size_x: bpy.props.FloatProperty( name="Page Width", description="Width of the exported document", default=0.210, soft_min=0.105, soft_max=0.841, subtype="UNSIGNED", unit="LENGTH") output_size_y: bpy.props.FloatProperty( name="Page Height", description="Height of the exported document", default=0.297, soft_min=0.148, soft_max=1.189, subtype="UNSIGNED", unit="LENGTH") output_margin: bpy.props.FloatProperty( name="Page Margin", description="Distance from page borders to the printable area", default=0.005, min=0, soft_max=0.1, step=0.1, subtype="UNSIGNED", unit="LENGTH") output_type: bpy.props.EnumProperty( name="Textures", description="Source of a texture for the model", default='NONE', items=[ ('NONE', "No Texture", "Export the net only"), ('TEXTURE', "From Materials", "Render the diffuse color and all painted textures"), ('AMBIENT_OCCLUSION', "Ambient Occlusion", "Render the Ambient Occlusion pass"), ('RENDER', "Full Render", "Render the material in actual scene illumination"), ('SELECTED_TO_ACTIVE', "Selected to Active", "Render all selected surrounding objects as a texture") ]) do_create_stickers: bpy.props.BoolProperty( name="Create Tabs", description="Create gluing tabs around the net (useful for paper)", default=True) do_create_numbers: bpy.props.BoolProperty( name="Create Numbers", description="Enumerate edges to make it clear which edges should be sticked together", default=True) sticker_width: bpy.props.FloatProperty( name="Tabs and Text Size", description="Width of gluing tabs and their numbers", default=0.005, soft_min=0, soft_max=0.05, step=0.1, subtype="UNSIGNED", unit="LENGTH") angle_epsilon: bpy.props.FloatProperty( name="Hidden Edge Angle", description="Folds with angle below this limit will not be drawn", default=pi/360, min=0, soft_max=pi/4, step=0.01, subtype="ANGLE", unit="ROTATION") output_dpi: bpy.props.FloatProperty( name="Resolution (DPI)", description="Resolution of images in pixels per inch", default=90, min=1, soft_min=30, soft_max=600, subtype="UNSIGNED") bake_samples: bpy.props.IntProperty( name="Samples", description="Number of samples to render for each pixel", default=64, min=1, subtype="UNSIGNED") file_format: bpy.props.EnumProperty( name="Document Format", description="File format of the exported net", default='PDF', items=[ ('PDF', "PDF", "Adobe Portable Document Format 1.4"), ('SVG', "SVG", "W3C Scalable Vector Graphics"), ]) image_packing: bpy.props.EnumProperty( name="Image Packing Method", description="Method of attaching baked image(s) to the SVG", default='ISLAND_EMBED', items=[ ('PAGE_LINK', "Single Linked", "Bake one image per page of output and save it separately"), ('ISLAND_LINK', "Linked", "Bake images separately for each island and save them in a directory"), ('ISLAND_EMBED', "Embedded", "Bake images separately for each island and embed them into the SVG") ]) scale: bpy.props.FloatProperty( name="Scale", description="Divisor of all dimensions when exporting", default=1, soft_min=1.0, soft_max=100.0, subtype='FACTOR', precision=1) do_create_uvmap: bpy.props.BoolProperty( name="Create UVMap", description="Create a new UV Map showing the islands and page layout", default=False, options={'SKIP_SAVE'}) ui_expanded_document: bpy.props.BoolProperty( name="Show Document Settings Expanded", description="Shows the box 'Document Settings' expanded in user interface", default=True, options={'SKIP_SAVE'}) ui_expanded_style: bpy.props.BoolProperty( name="Show Style Settings Expanded", description="Shows the box 'Colors and Style' expanded in user interface", default=False, options={'SKIP_SAVE'}) style: bpy.props.PointerProperty(type=PaperModelStyle) unfolder = None @classmethod def poll(cls, context): return context.active_object and context.active_object.type == 'MESH' def prepare(self, context): sce = context.scene self.recall_mode = context.object.mode bpy.ops.object.mode_set(mode='EDIT') self.object = context.active_object self.unfolder = Unfolder(self.object) cage_size = M.Vector((sce.paper_model.output_size_x, sce.paper_model.output_size_y)) unfolder_scale = sce.unit_settings.scale_length/self.scale self.unfolder.prepare(cage_size, scale=unfolder_scale, limit_by_page=sce.paper_model.limit_by_page) if sce.paper_model.use_auto_scale: self.scale = ceil(self.get_scale_ratio(sce)) def recall(self): if self.unfolder: del self.unfolder bpy.ops.object.mode_set(mode=self.recall_mode) def invoke(self, context, event): self.scale = context.scene.paper_model.scale try: self.prepare(context) except UnfoldError as error: self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0]) error.mesh_select() self.recall() return {'CANCELLED'} wm = context.window_manager wm.fileselect_add(self) return {'RUNNING_MODAL'} def execute(self, context): if not self.unfolder: self.prepare(context) self.unfolder.do_create_uvmap = self.do_create_uvmap try: if self.object.data.paper_island_list: self.unfolder.copy_island_names(self.object.data.paper_island_list) self.unfolder.save(self.properties) self.report({'INFO'}, "Saved a {}-page document".format(len(self.unfolder.mesh.pages))) return {'FINISHED'} except UnfoldError as error: self.report(type={'ERROR_INVALID_INPUT'}, message=error.args[0]) return {'CANCELLED'} finally: self.recall() def get_scale_ratio(self, sce): margin = self.output_margin + self.sticker_width if min(self.output_size_x, self.output_size_y) <= 2 * margin: return False output_inner_size = M.Vector((self.output_size_x - 2*margin, self.output_size_y - 2*margin)) ratio = self.unfolder.mesh.largest_island_ratio(output_inner_size) return ratio * sce.unit_settings.scale_length / self.scale def draw(self, context): layout = self.layout layout.prop(self.properties, "do_create_uvmap") layout.prop(self.properties, "scale", text="Scale: 1/") scale_ratio = self.get_scale_ratio(context.scene) if scale_ratio > 1: layout.label( text="An island is roughly {:.1f}x bigger than page".format(scale_ratio), icon="ERROR") elif scale_ratio > 0: layout.label(text="Largest island is roughly 1/{:.1f} of page".format(1 / scale_ratio)) if context.scene.unit_settings.scale_length != 1: layout.label( text="Unit scale {:.1f} makes page size etc. not display correctly".format( context.scene.unit_settings.scale_length), icon="ERROR") box = layout.box() row = box.row(align=True) row.prop( self.properties, "ui_expanded_document", text="", icon=('TRIA_DOWN' if self.ui_expanded_document else 'TRIA_RIGHT'), emboss=False) row.label(text="Document Settings") if self.ui_expanded_document: box.prop(self.properties, "file_format", text="Format") box.prop(self.properties, "page_size_preset") col = box.column(align=True) col.active = self.page_size_preset == 'USER' col.prop(self.properties, "output_size_x") col.prop(self.properties, "output_size_y") box.prop(self.properties, "output_margin") col = box.column() col.prop(self.properties, "do_create_stickers") col.prop(self.properties, "do_create_numbers") col = box.column() col.active = self.do_create_stickers or self.do_create_numbers col.prop(self.properties, "sticker_width") box.prop(self.properties, "angle_epsilon") box.prop(self.properties, "output_type") col = box.column() col.active = (self.output_type != 'NONE') if len(self.object.data.uv_layers) >= 8: col.label(text="No UV slots left, No Texture is the only option.", icon='ERROR') elif context.scene.render.engine != 'CYCLES' and self.output_type != 'NONE': col.label(text="Cycles will be used for texture baking.", icon='ERROR') row = col.row() row.active = self.output_type in ('AMBIENT_OCCLUSION', 'RENDER', 'SELECTED_TO_ACTIVE') row.prop(self.properties, "bake_samples") col.prop(self.properties, "output_dpi") row = col.row() row.active = self.file_format == 'SVG' row.prop(self.properties, "image_packing", text="Images") box = layout.box() row = box.row(align=True) row.prop( self.properties, "ui_expanded_style", text="", icon=('TRIA_DOWN' if self.ui_expanded_style else 'TRIA_RIGHT'), emboss=False) row.label(text="Colors and Style") if self.ui_expanded_style: box.prop(self.style, "line_width", text="Default line width") col = box.column() col.prop(self.style, "outer_color") col.prop(self.style, "outer_width", text="Relative width") col.prop(self.style, "outer_style", text="Style") col = box.column() col.active = self.output_type != 'NONE' col.prop(self.style, "use_outbg", text="Outer Lines Highlight:") sub = col.column() sub.active = self.output_type != 'NONE' and self.style.use_outbg sub.prop(self.style, "outbg_color", text="") sub.prop(self.style, "outbg_width", text="Relative width") col = box.column() col.prop(self.style, "convex_color") col.prop(self.style, "convex_width", text="Relative width") col.prop(self.style, "convex_style", text="Style") col = box.column() col.prop(self.style, "concave_color") col.prop(self.style, "concave_width", text="Relative width") col.prop(self.style, "concave_style", text="Style") col = box.column() col.prop(self.style, "freestyle_color") col.prop(self.style, "freestyle_width", text="Relative width") col.prop(self.style, "freestyle_style", text="Style") col = box.column() col.active = self.output_type != 'NONE' col.prop(self.style, "use_inbg", text="Inner Lines Highlight:") sub = col.column() sub.active = self.output_type != 'NONE' and self.style.use_inbg sub.prop(self.style, "inbg_color", text="") sub.prop(self.style, "inbg_width", text="Relative width") col = box.column() col.active = self.do_create_stickers col.prop(self.style, "sticker_color") box.prop(self.style, "text_color") def menu_func_export(self, context): self.layout.operator("export_mesh.paper_model", text="Paper Model (.pdf/.svg)") def menu_func_unfold(self, context): self.layout.operator("mesh.unfold", text="Unfold") class SelectIsland(bpy.types.Operator): """Blender Operator: select all faces of the active island""" bl_idname = "mesh.select_paper_island" bl_label = "Select Island" bl_description = "Select an island of the paper model net" operation: bpy.props.EnumProperty( name="Operation", description="Operation with the current selection", default='ADD', items=[ ('ADD', "Add", "Add to current selection"), ('REMOVE', "Remove", "Remove from selection"), ('REPLACE', "Replace", "Select only the ") ]) @classmethod def poll(cls, context): return context.active_object and context.active_object.type == 'MESH' and context.mode == 'EDIT_MESH' def execute(self, context): ob = context.active_object me = ob.data bm = bmesh.from_edit_mesh(me) island = me.paper_island_list[me.paper_island_index] faces = {face.id for face in island.faces} edges = set() verts = set() if self.operation == 'REPLACE': for face in bm.faces: selected = face.index in faces face.select = selected if selected: edges.update(face.edges) verts.update(face.verts) for edge in bm.edges: edge.select = edge in edges for vert in bm.verts: vert.select = vert in verts else: selected = (self.operation == 'ADD') for index in faces: face = bm.faces[index] face.select = selected edges.update(face.edges) verts.update(face.verts) for edge in edges: edge.select = any(face.select for face in edge.link_faces) for vert in verts: vert.select = any(edge.select for edge in vert.link_edges) bmesh.update_edit_mesh(me, loop_triangles=False, destructive=False) return {'FINISHED'} class VIEW3D_PT_paper_model_tools(bpy.types.Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_category = 'Paper' bl_label = "Unfold" def draw(self, context): layout = self.layout sce = context.scene obj = context.active_object mesh = obj.data if obj and obj.type == 'MESH' else None layout.operator("mesh.unfold") if context.mode == 'EDIT_MESH': row = layout.row(align=True) row.operator("mesh.mark_seam", text="Mark Seam").clear = False row.operator("mesh.mark_seam", text="Clear Seam").clear = True else: layout.operator("mesh.clear_all_seams") class VIEW3D_PT_paper_model_settings(bpy.types.Panel): bl_space_type = 'VIEW_3D' bl_region_type = 'UI' bl_category = 'Paper' bl_label = "Export" def draw(self, context): layout = self.layout sce = context.scene obj = context.active_object mesh = obj.data if obj and obj.type == 'MESH' else None layout.operator("export_mesh.paper_model") props = sce.paper_model layout.prop(props, "use_auto_scale") sub = layout.row() sub.active = not props.use_auto_scale sub.prop(props, "scale", text="Model Scale: 1/") layout.prop(props, "limit_by_page") col = layout.column() col.active = props.limit_by_page col.prop(props, "page_size_preset") sub = col.column(align=True) sub.active = props.page_size_preset == 'USER' sub.prop(props, "output_size_x") sub.prop(props, "output_size_y") class DATA_PT_paper_model_islands(bpy.types.Panel): bl_space_type = 'PROPERTIES' bl_region_type = 'WINDOW' bl_context = "data" bl_label = "Paper Model Islands" COMPAT_ENGINES = {'BLENDER_RENDER', 'BLENDER_EEVEE', 'BLENDER_WORKBENCH'} def draw(self, context): layout = self.layout sce = context.scene obj = context.active_object mesh = obj.data if obj and obj.type == 'MESH' else None layout.operator("mesh.unfold", icon='FILE_REFRESH') if mesh and mesh.paper_island_list: layout.label( text="1 island:" if len(mesh.paper_island_list) == 1 else "{} islands:".format(len(mesh.paper_island_list))) layout.template_list( 'UI_UL_list', 'paper_model_island_list', mesh, 'paper_island_list', mesh, 'paper_island_index', rows=1, maxrows=5) sub = layout.split(align=True) sub.operator("mesh.select_paper_island", text="Select").operation = 'ADD' sub.operator("mesh.select_paper_island", text="Deselect").operation = 'REMOVE' sub.prop(sce.paper_model, "sync_island", icon='UV_SYNC_SELECT', toggle=True) if mesh.paper_island_index >= 0: list_item = mesh.paper_island_list[mesh.paper_island_index] sub = layout.column(align=True) sub.prop(list_item, "auto_label") sub.prop(list_item, "label") sub.prop(list_item, "auto_abbrev") row = sub.row() row.active = not list_item.auto_abbrev row.prop(list_item, "abbreviation") else: layout.box().label(text="Not unfolded") def label_changed(self, context): """The label of an island was changed""" # accessing properties via [..] to avoid a recursive call after the update self["auto_label"] = not self.label or self.label.isspace() island_item_changed(self, context) def island_item_changed(self, context): """The labelling of an island was changed""" def increment(abbrev, collisions): letters = "ABCDEFGHIJKLMNPQRSTUVWXYZ123456789" while abbrev in collisions: abbrev = abbrev.rstrip(letters[-1]) abbrev = abbrev[:2] + letters[letters.find(abbrev[-1]) + 1 if len(abbrev) == 3 else 0] return abbrev # accessing properties via [..] to avoid a recursive call after the update island_list = context.active_object.data.paper_island_list if self.auto_label: self["label"] = "" # avoid self-conflict number = 1 while any(item.label == "Island {}".format(number) for item in island_list): number += 1 self["label"] = "Island {}".format(number) if self.auto_abbrev: self["abbreviation"] = "" # avoid self-conflict abbrev = "".join(first_letters(self.label))[:3].upper() self["abbreviation"] = increment(abbrev, {item.abbreviation for item in island_list}) elif len(self.abbreviation) > 3: self["abbreviation"] = self.abbreviation[:3] self.name = "[{}] {} ({} {})".format( self.abbreviation, self.label, len(self.faces), "faces" if len(self.faces) > 1 else "face") def island_index_changed(self, context): """The active island was changed""" if context.scene.paper_model.sync_island and SelectIsland.poll(context): bpy.ops.mesh.select_paper_island(operation='REPLACE') class FaceList(bpy.types.PropertyGroup): id: bpy.props.IntProperty(name="Face ID") class IslandList(bpy.types.PropertyGroup): faces: bpy.props.CollectionProperty( name="Faces", description="Faces belonging to this island", type=FaceList) label: bpy.props.StringProperty( name="Label", description="Label on this island", default="", update=label_changed) abbreviation: bpy.props.StringProperty( name="Abbreviation", description="Three-letter label to use when there is not enough space", default="", update=island_item_changed) auto_label: bpy.props.BoolProperty( name="Auto Label", description="Generate the label automatically", default=True, update=island_item_changed) auto_abbrev: bpy.props.BoolProperty( name="Auto Abbreviation", description="Generate the abbreviation automatically", default=True, update=island_item_changed) class PaperModelSettings(bpy.types.PropertyGroup): sync_island: bpy.props.BoolProperty( name="Sync", description="Keep faces of the active island selected", default=False, update=island_index_changed) limit_by_page: bpy.props.BoolProperty( name="Limit Island Size", description="Do not create islands larger than given dimensions", default=False, update=page_size_preset_changed) page_size_preset: bpy.props.EnumProperty( name="Page Size", description="Maximal size of an island", default='A4', update=page_size_preset_changed, items=global_paper_sizes) output_size_x: bpy.props.FloatProperty( name="Width", description="Maximal width of an island", default=0.2, soft_min=0.105, soft_max=0.841, subtype="UNSIGNED", unit="LENGTH") output_size_y: bpy.props.FloatProperty( name="Height", description="Maximal height of an island", default=0.29, soft_min=0.148, soft_max=1.189, subtype="UNSIGNED", unit="LENGTH") use_auto_scale: bpy.props.BoolProperty( name="Automatic Scale", description="Scale the net automatically to fit on paper", default=True) scale: bpy.props.FloatProperty( name="Scale", description="Divisor of all dimensions when exporting", default=1, soft_min=1.0, soft_max=100.0, subtype='FACTOR', precision=1, update=lambda settings, _: settings.__setattr__('use_auto_scale', False)) def factory_update_addon_category(cls, prop): def func(self, context): if hasattr(bpy.types, cls.__name__): bpy.utils.unregister_class(cls) cls.bl_category = self[prop] bpy.utils.register_class(cls) return func class PaperAddonPreferences(bpy.types.AddonPreferences): bl_idname = __name__ unfold_category: bpy.props.StringProperty( name="Unfold Panel Category", description="Category in 3D View Toolbox where the Unfold panel is displayed", default="Paper", update=factory_update_addon_category(VIEW3D_PT_paper_model_tools, 'unfold_category')) export_category: bpy.props.StringProperty( name="Export Panel Category", description="Category in 3D View Toolbox where the Export panel is displayed", default="Paper", update=factory_update_addon_category(VIEW3D_PT_paper_model_settings, 'export_category')) def draw(self, context): sub = self.layout.column(align=True) sub.use_property_split = True sub.label(text="3D View Panel Category:") sub.prop(self, "unfold_category", text="Unfold Panel:") sub.prop(self, "export_category", text="Export Panel:") module_classes = ( Unfold, ExportPaperModel, ClearAllSeams, SelectIsland, FaceList, IslandList, PaperModelSettings, DATA_PT_paper_model_islands, VIEW3D_PT_paper_model_tools, VIEW3D_PT_paper_model_settings, PaperAddonPreferences, ) def register(): for cls in module_classes: bpy.utils.register_class(cls) bpy.types.Scene.paper_model = bpy.props.PointerProperty( name="Paper Model", description="Settings of the Export Paper Model script", type=PaperModelSettings, options={'SKIP_SAVE'}) bpy.types.Mesh.paper_island_list = bpy.props.CollectionProperty( name="Island List", type=IslandList) bpy.types.Mesh.paper_island_index = bpy.props.IntProperty( name="Island List Index", default=-1, min=-1, max=100, options={'SKIP_SAVE'}, update=island_index_changed) bpy.types.TOPBAR_MT_file_export.append(menu_func_export) bpy.types.VIEW3D_MT_edit_mesh.prepend(menu_func_unfold) # Force an update on the panel category properties prefs = bpy.context.preferences.addons[__name__].preferences prefs.unfold_category = prefs.unfold_category prefs.export_category = prefs.export_category def unregister(): bpy.types.TOPBAR_MT_file_export.remove(menu_func_export) bpy.types.VIEW3D_MT_edit_mesh.remove(menu_func_unfold) for cls in reversed(module_classes): bpy.utils.unregister_class(cls) if __name__ == "__main__": register()