# SPDX-License-Identifier: GPL-2.0-or-later import os import bpy from mathutils import Matrix, Vector, Color from bpy_extras import io_utils, node_shader_utils from bpy_extras.wm_utils.progress_report import ( ProgressReport, ProgressReportSubstep, ) def name_compat(name): if name is None: return 'None' else: return name.replace(' ', '_') def mesh_triangulate(me): import bmesh bm = bmesh.new() bm.from_mesh(me) bmesh.ops.triangulate(bm, faces=bm.faces) bm.to_mesh(me) bm.free() def write_mtl(scene, filepath, path_mode, copy_set, mtl_dict): source_dir = os.path.dirname(bpy.data.filepath) dest_dir = os.path.dirname(filepath) with open(filepath, "w", encoding="utf8", newline="\n") as f: fw = f.write fw('# Blender MTL File: %r\n' % (os.path.basename(bpy.data.filepath) or "None")) fw('# Material Count: %i\n' % len(mtl_dict)) mtl_dict_values = list(mtl_dict.values()) mtl_dict_values.sort(key=lambda m: m[0]) # Write material/image combinations we have used. # Using mtl_dict.values() directly gives un-predictable order. for mtl_mat_name, mat in mtl_dict_values: # Get the Blender data for the material and the image. # Having an image named None will make a bug, dont do it :) fw('\nnewmtl %s\n' % mtl_mat_name) # Define a new material: matname_imgname mat_wrap = node_shader_utils.PrincipledBSDFWrapper(mat) if mat else None if mat_wrap: use_mirror = mat_wrap.metallic != 0.0 use_transparency = mat_wrap.alpha != 1.0 # XXX Totally empirical conversion, trying to adapt it # (from 1.0 - 0.0 Principled BSDF range to 0.0 - 1000.0 OBJ specular exponent range): # (1.0 - bsdf_roughness)^2 * 1000 spec = (1.0 - mat_wrap.roughness) spec *= spec * 1000 fw('Ns %.6f\n' % spec) # Ambient if use_mirror: fw('Ka %.6f %.6f %.6f\n' % (mat_wrap.metallic, mat_wrap.metallic, mat_wrap.metallic)) else: fw('Ka %.6f %.6f %.6f\n' % (1.0, 1.0, 1.0)) fw('Kd %.6f %.6f %.6f\n' % mat_wrap.base_color[:3]) # Diffuse # XXX TODO Find a way to handle tint and diffuse color, in a consistent way with import... fw('Ks %.6f %.6f %.6f\n' % (mat_wrap.specular, mat_wrap.specular, mat_wrap.specular)) # Specular # Emission, not in original MTL standard but seems pretty common, see T45766. emission_strength = mat_wrap.emission_strength emission = [emission_strength * c for c in mat_wrap.emission_color[:3]] fw('Ke %.6f %.6f %.6f\n' % tuple(emission)) fw('Ni %.6f\n' % mat_wrap.ior) # Refraction index fw('d %.6f\n' % mat_wrap.alpha) # Alpha (obj uses 'd' for dissolve) # See http://en.wikipedia.org/wiki/Wavefront_.obj_file for whole list of values... # Note that mapping is rather fuzzy sometimes, trying to do our best here. if mat_wrap.specular == 0: fw('illum 1\n') # no specular. elif use_mirror: if use_transparency: fw('illum 6\n') # Reflection, Transparency, Ray trace else: fw('illum 3\n') # Reflection and Ray trace elif use_transparency: fw('illum 9\n') # 'Glass' transparency and no Ray trace reflection... fuzzy matching, but... else: fw('illum 2\n') # light normally #### And now, the image textures... image_map = { "map_Kd": "base_color_texture", "map_Ka": None, # ambient... "map_Ks": "specular_texture", "map_Ns": "roughness_texture", "map_d": "alpha_texture", "map_Tr": None, # transmission roughness? "map_Bump": "normalmap_texture", "disp": None, # displacement... "refl": "metallic_texture", "map_Ke": "emission_color_texture" if emission_strength != 0.0 else None, } for key, mat_wrap_key in sorted(image_map.items()): if mat_wrap_key is None: continue tex_wrap = getattr(mat_wrap, mat_wrap_key, None) if tex_wrap is None: continue image = tex_wrap.image if image is None: continue filepath = io_utils.path_reference(image.filepath, source_dir, dest_dir, path_mode, "", copy_set, image.library) options = [] if key == "map_Bump": if mat_wrap.normalmap_strength != 1.0: options.append('-bm %.6f' % mat_wrap.normalmap_strength) if tex_wrap.translation != Vector((0.0, 0.0, 0.0)): options.append('-o %.6f %.6f %.6f' % tex_wrap.translation[:]) if tex_wrap.scale != Vector((1.0, 1.0, 1.0)): options.append('-s %.6f %.6f %.6f' % tex_wrap.scale[:]) if options: fw('%s %s %s\n' % (key, " ".join(options), repr(filepath)[1:-1])) else: fw('%s %s\n' % (key, repr(filepath)[1:-1])) else: # Write a dummy material here? fw('Ns 500\n') fw('Ka 0.8 0.8 0.8\n') fw('Kd 0.8 0.8 0.8\n') fw('Ks 0.8 0.8 0.8\n') fw('d 1\n') # No alpha fw('illum 2\n') # light normally def test_nurbs_compat(ob): if ob.type != 'CURVE': return False for nu in ob.data.splines: if nu.point_count_v == 1 and nu.type != 'BEZIER': # not a surface and not bezier return True return False def write_nurb(fw, ob, ob_mat): tot_verts = 0 cu = ob.data # use negative indices for nu in cu.splines: if nu.type == 'POLY': DEG_ORDER_U = 1 else: DEG_ORDER_U = nu.order_u - 1 # odd but tested to be correct if nu.type == 'BEZIER': print("\tWarning, bezier curve:", ob.name, "only poly and nurbs curves supported") continue if nu.point_count_v > 1: print("\tWarning, surface:", ob.name, "only poly and nurbs curves supported") continue if len(nu.points) <= DEG_ORDER_U: print("\tWarning, order_u is lower then vert count, skipping:", ob.name) continue pt_num = 0 do_closed = nu.use_cyclic_u do_endpoints = (do_closed == 0) and nu.use_endpoint_u for pt in nu.points: fw('v %.6f %.6f %.6f\n' % (ob_mat @ pt.co.to_3d())[:]) pt_num += 1 tot_verts += pt_num fw('g %s\n' % (name_compat(ob.name))) # name_compat(ob.getData(1)) could use the data name too fw('cstype bspline\n') # not ideal, hard coded fw('deg %d\n' % DEG_ORDER_U) # not used for curves but most files have it still curve_ls = [-(i + 1) for i in range(pt_num)] # 'curv' keyword if do_closed: if DEG_ORDER_U == 1: pt_num += 1 curve_ls.append(-1) else: pt_num += DEG_ORDER_U curve_ls = curve_ls + curve_ls[0:DEG_ORDER_U] fw('curv 0.0 1.0 %s\n' % (" ".join([str(i) for i in curve_ls]))) # Blender has no U and V values for the curve # 'parm' keyword tot_parm = (DEG_ORDER_U + 1) + pt_num tot_parm_div = float(tot_parm - 1) parm_ls = [(i / tot_parm_div) for i in range(tot_parm)] if do_endpoints: # end points, force param for i in range(DEG_ORDER_U + 1): parm_ls[i] = 0.0 parm_ls[-(1 + i)] = 1.0 fw("parm u %s\n" % " ".join(["%.6f" % i for i in parm_ls])) fw('end\n') return tot_verts def write_file(filepath, objects, depsgraph, scene, EXPORT_TRI=False, EXPORT_EDGES=False, EXPORT_SMOOTH_GROUPS=False, EXPORT_SMOOTH_GROUPS_BITFLAGS=False, EXPORT_NORMALS=False, EXPORT_UV=True, EXPORT_MTL=True, EXPORT_APPLY_MODIFIERS=True, EXPORT_APPLY_MODIFIERS_RENDER=False, EXPORT_BLEN_OBS=True, EXPORT_GROUP_BY_OB=False, EXPORT_GROUP_BY_MAT=False, EXPORT_KEEP_VERT_ORDER=False, EXPORT_POLYGROUPS=False, EXPORT_CURVE_AS_NURBS=True, EXPORT_GLOBAL_MATRIX=None, EXPORT_PATH_MODE='AUTO', progress=ProgressReport(), ): """ Basic write function. The context and options must be already set This can be accessed externally eg. write( 'c:\\test\\foobar.obj', Blender.Object.GetSelected() ) # Using default options. """ if EXPORT_GLOBAL_MATRIX is None: EXPORT_GLOBAL_MATRIX = Matrix() def veckey3d(v): return round(v.x, 4), round(v.y, 4), round(v.z, 4) def veckey2d(v): return round(v[0], 4), round(v[1], 4) def findVertexGroupName(face, vWeightMap): """ Searches the vertexDict to see what groups is assigned to a given face. We use a frequency system in order to sort out the name because a given vertex can belong to two or more groups at the same time. To find the right name for the face we list all the possible vertex group names with their frequency and then sort by frequency in descend order. The top element is the one shared by the highest number of vertices is the face's group """ weightDict = {} for vert_index in face.vertices: vWeights = vWeightMap[vert_index] for vGroupName, weight in vWeights: weightDict[vGroupName] = weightDict.get(vGroupName, 0.0) + weight if weightDict: return max((weight, vGroupName) for vGroupName, weight in weightDict.items())[1] else: return '(null)' with ProgressReportSubstep(progress, 2, "OBJ Export path: %r" % filepath, "OBJ Export Finished") as subprogress1: with open(filepath, "w", encoding="utf8", newline="\n") as f: fw = f.write # Write Header fw('# Blender v%s OBJ File: %r\n' % (bpy.app.version_string, os.path.basename(bpy.data.filepath))) fw('# www.blender.org\n') # Tell the obj file what material file to use. if EXPORT_MTL: mtlfilepath = os.path.splitext(filepath)[0] + ".mtl" # filepath can contain non utf8 chars, use repr fw('mtllib %s\n' % repr(os.path.basename(mtlfilepath))[1:-1]) # Initialize totals, these are updated each object totverts = totuvco = totno = 1 face_vert_index = 1 # A Dict of Materials # (material.name, image.name):matname_imagename # matname_imagename has gaps removed. mtl_dict = {} # Used to reduce the usage of matname_texname materials, which can become annoying in case of # repeated exports/imports, yet keeping unique mat names per keys! # mtl_name: (material.name, image.name) mtl_rev_dict = {} copy_set = set() # Get all meshes subprogress1.enter_substeps(len(objects)) for i, ob_main in enumerate(objects): # ignore dupli children if ob_main.parent and ob_main.parent.instance_type in {'VERTS', 'FACES'}: subprogress1.step("Ignoring %s, dupli child..." % ob_main.name) continue obs = [(ob_main, ob_main.matrix_world)] if ob_main.is_instancer: obs += [(dup.instance_object.original, dup.matrix_world.copy()) for dup in depsgraph.object_instances if dup.parent and dup.parent.original == ob_main] # ~ print(ob_main.name, 'has', len(obs) - 1, 'dupli children') subprogress1.enter_substeps(len(obs)) for ob, ob_mat in obs: with ProgressReportSubstep(subprogress1, 6) as subprogress2: uv_unique_count = no_unique_count = 0 # Nurbs curve support if EXPORT_CURVE_AS_NURBS and test_nurbs_compat(ob): ob_mat = EXPORT_GLOBAL_MATRIX @ ob_mat totverts += write_nurb(fw, ob, ob_mat) continue # END NURBS ob_for_convert = ob.evaluated_get(depsgraph) if EXPORT_APPLY_MODIFIERS else ob.original try: me = ob_for_convert.to_mesh() except RuntimeError: me = None if me is None: continue # _must_ do this before applying transformation, else tessellation may differ if EXPORT_TRI: # _must_ do this first since it re-allocs arrays mesh_triangulate(me) me.transform(EXPORT_GLOBAL_MATRIX @ ob_mat) # If negative scaling, we have to invert the normals... if ob_mat.determinant() < 0.0: me.flip_normals() if EXPORT_UV: faceuv = len(me.uv_layers) > 0 if faceuv: uv_layer = me.uv_layers.active.data[:] else: faceuv = False me_verts = me.vertices[:] # Make our own list so it can be sorted to reduce context switching face_index_pairs = [(face, index) for index, face in enumerate(me.polygons)] if EXPORT_EDGES: edges = me.edges else: edges = [] if not (len(face_index_pairs) + len(edges) + len(me.vertices)): # Make sure there is something to write # clean up ob_for_convert.to_mesh_clear() continue # dont bother with this mesh. if EXPORT_NORMALS and face_index_pairs: me.calc_normals_split() # No need to call me.free_normals_split later, as this mesh is deleted anyway! loops = me.loops if (EXPORT_SMOOTH_GROUPS or EXPORT_SMOOTH_GROUPS_BITFLAGS) and face_index_pairs: smooth_groups, smooth_groups_tot = me.calc_smooth_groups(use_bitflags=EXPORT_SMOOTH_GROUPS_BITFLAGS) if smooth_groups_tot <= 1: smooth_groups, smooth_groups_tot = (), 0 else: smooth_groups, smooth_groups_tot = (), 0 materials = me.materials[:] material_names = [m.name if m else None for m in materials] # avoid bad index errors if not materials: materials = [None] material_names = [name_compat(None)] # Sort by Material, then images # so we dont over context switch in the obj file. if EXPORT_KEEP_VERT_ORDER: pass else: if len(materials) > 1: if smooth_groups: sort_func = lambda a: (a[0].material_index, smooth_groups[a[1]] if a[0].use_smooth else False) else: sort_func = lambda a: (a[0].material_index, a[0].use_smooth) else: # no materials if smooth_groups: sort_func = lambda a: smooth_groups[a[1] if a[0].use_smooth else False] else: sort_func = lambda a: a[0].use_smooth face_index_pairs.sort(key=sort_func) del sort_func # Set the default mat to no material and no image. contextMat = 0, 0 # Can never be this, so we will label a new material the first chance we get. contextSmooth = None # Will either be true or false, set bad to force initialization switch. if EXPORT_BLEN_OBS or EXPORT_GROUP_BY_OB: name1 = ob.name name2 = ob.data.name if name1 == name2: obnamestring = name_compat(name1) else: obnamestring = '%s_%s' % (name_compat(name1), name_compat(name2)) if EXPORT_BLEN_OBS: fw('o %s\n' % obnamestring) # Write Object name else: # if EXPORT_GROUP_BY_OB: fw('g %s\n' % obnamestring) subprogress2.step() # Vert for v in me_verts: fw('v %.6f %.6f %.6f\n' % v.co[:]) subprogress2.step() # UV if faceuv: # in case removing some of these dont get defined. uv = f_index = uv_index = uv_key = uv_val = uv_ls = None uv_face_mapping = [None] * len(face_index_pairs) uv_dict = {} uv_get = uv_dict.get for f, f_index in face_index_pairs: uv_ls = uv_face_mapping[f_index] = [] for uv_index, l_index in enumerate(f.loop_indices): uv = uv_layer[l_index].uv # include the vertex index in the key so we don't share UV's between vertices, # allowed by the OBJ spec but can cause issues for other importers, see: T47010. # this works too, shared UV's for all verts #~ uv_key = veckey2d(uv) uv_key = loops[l_index].vertex_index, veckey2d(uv) uv_val = uv_get(uv_key) if uv_val is None: uv_val = uv_dict[uv_key] = uv_unique_count fw('vt %.6f %.6f\n' % uv[:]) uv_unique_count += 1 uv_ls.append(uv_val) del uv_dict, uv, f_index, uv_index, uv_ls, uv_get, uv_key, uv_val # Only need uv_unique_count and uv_face_mapping subprogress2.step() # NORMAL, Smooth/Non smoothed. if EXPORT_NORMALS: no_key = no_val = None normals_to_idx = {} no_get = normals_to_idx.get loops_to_normals = [0] * len(loops) for f, f_index in face_index_pairs: for l_idx in f.loop_indices: no_key = veckey3d(loops[l_idx].normal) no_val = no_get(no_key) if no_val is None: no_val = normals_to_idx[no_key] = no_unique_count fw('vn %.4f %.4f %.4f\n' % no_key) no_unique_count += 1 loops_to_normals[l_idx] = no_val del normals_to_idx, no_get, no_key, no_val else: loops_to_normals = [] subprogress2.step() # XXX if EXPORT_POLYGROUPS: # Retrieve the list of vertex groups vertGroupNames = ob.vertex_groups.keys() if vertGroupNames: currentVGroup = '' # Create a dictionary keyed by face id and listing, for each vertex, the vertex groups it belongs to vgroupsMap = [[] for _i in range(len(me_verts))] for v_idx, v_ls in enumerate(vgroupsMap): v_ls[:] = [(vertGroupNames[g.group], g.weight) for g in me_verts[v_idx].groups] for f, f_index in face_index_pairs: f_smooth = f.use_smooth if f_smooth and smooth_groups: f_smooth = smooth_groups[f_index] f_mat = min(f.material_index, len(materials) - 1) # MAKE KEY key = material_names[f_mat], None # No image, use None instead. # Write the vertex group if EXPORT_POLYGROUPS: if vertGroupNames: # find what vertext group the face belongs to vgroup_of_face = findVertexGroupName(f, vgroupsMap) if vgroup_of_face != currentVGroup: currentVGroup = vgroup_of_face fw('g %s\n' % vgroup_of_face) # CHECK FOR CONTEXT SWITCH if key == contextMat: pass # Context already switched, dont do anything else: if key[0] is None and key[1] is None: # Write a null material, since we know the context has changed. if EXPORT_GROUP_BY_MAT: # can be mat_image or (null) fw("g %s_%s\n" % (name_compat(ob.name), name_compat(ob.data.name))) if EXPORT_MTL: fw("usemtl (null)\n") # mat, image else: mat_data = mtl_dict.get(key) if not mat_data: # First add to global dict so we can export to mtl # Then write mtl # Make a new names from the mat and image name, # converting any spaces to underscores with name_compat. # If none image dont bother adding it to the name # Try to avoid as much as possible adding texname (or other things) # to the mtl name (see [#32102])... mtl_name = "%s" % name_compat(key[0]) if mtl_rev_dict.get(mtl_name, None) not in {key, None}: if key[1] is None: tmp_ext = "_NONE" else: tmp_ext = "_%s" % name_compat(key[1]) i = 0 while mtl_rev_dict.get(mtl_name + tmp_ext, None) not in {key, None}: i += 1 tmp_ext = "_%3d" % i mtl_name += tmp_ext mat_data = mtl_dict[key] = mtl_name, materials[f_mat] mtl_rev_dict[mtl_name] = key if EXPORT_GROUP_BY_MAT: # can be mat_image or (null) fw("g %s_%s_%s\n" % (name_compat(ob.name), name_compat(ob.data.name), mat_data[0])) if EXPORT_MTL: fw("usemtl %s\n" % mat_data[0]) # can be mat_image or (null) contextMat = key if f_smooth != contextSmooth: if f_smooth: # on now off if smooth_groups: f_smooth = smooth_groups[f_index] fw('s %d\n' % f_smooth) else: fw('s 1\n') else: # was off now on fw('s off\n') contextSmooth = f_smooth f_v = [(vi, me_verts[v_idx], l_idx) for vi, (v_idx, l_idx) in enumerate(zip(f.vertices, f.loop_indices))] fw('f') if faceuv: if EXPORT_NORMALS: for vi, v, li in f_v: fw(" %d/%d/%d" % (totverts + v.index, totuvco + uv_face_mapping[f_index][vi], totno + loops_to_normals[li], )) # vert, uv, normal else: # No Normals for vi, v, li in f_v: fw(" %d/%d" % (totverts + v.index, totuvco + uv_face_mapping[f_index][vi], )) # vert, uv face_vert_index += len(f_v) else: # No UV's if EXPORT_NORMALS: for vi, v, li in f_v: fw(" %d//%d" % (totverts + v.index, totno + loops_to_normals[li])) else: # No Normals for vi, v, li in f_v: fw(" %d" % (totverts + v.index)) fw('\n') subprogress2.step() # Write edges. if EXPORT_EDGES: for ed in edges: if ed.is_loose: fw('l %d %d\n' % (totverts + ed.vertices[0], totverts + ed.vertices[1])) # Make the indices global rather then per mesh totverts += len(me_verts) totuvco += uv_unique_count totno += no_unique_count # clean up ob_for_convert.to_mesh_clear() subprogress1.leave_substeps("Finished writing geometry of '%s'." % ob_main.name) subprogress1.leave_substeps() subprogress1.step("Finished exporting geometry, now exporting materials") # Now we have all our materials, save them if EXPORT_MTL: write_mtl(scene, mtlfilepath, EXPORT_PATH_MODE, copy_set, mtl_dict) # copy all collected files. io_utils.path_reference_copy(copy_set) def _write(context, filepath, EXPORT_TRI, # ok EXPORT_EDGES, EXPORT_SMOOTH_GROUPS, EXPORT_SMOOTH_GROUPS_BITFLAGS, EXPORT_NORMALS, # ok EXPORT_UV, # ok EXPORT_MTL, EXPORT_APPLY_MODIFIERS, # ok EXPORT_APPLY_MODIFIERS_RENDER, # ok EXPORT_BLEN_OBS, EXPORT_GROUP_BY_OB, EXPORT_GROUP_BY_MAT, EXPORT_KEEP_VERT_ORDER, EXPORT_POLYGROUPS, EXPORT_CURVE_AS_NURBS, EXPORT_SEL_ONLY, # ok EXPORT_ANIMATION, EXPORT_GLOBAL_MATRIX, EXPORT_PATH_MODE, # Not used ): with ProgressReport(context.window_manager) as progress: base_name, ext = os.path.splitext(filepath) context_name = [base_name, '', '', ext] # Base name, scene name, frame number, extension depsgraph = context.evaluated_depsgraph_get() scene = context.scene # Exit edit mode before exporting, so current object states are exported properly. if bpy.ops.object.mode_set.poll(): bpy.ops.object.mode_set(mode='OBJECT') orig_frame = scene.frame_current # Export an animation? if EXPORT_ANIMATION: scene_frames = range(scene.frame_start, scene.frame_end + 1) # Up to and including the end frame. else: scene_frames = [orig_frame] # Dont export an animation. # Loop through all frames in the scene and export. progress.enter_substeps(len(scene_frames)) for frame in scene_frames: if EXPORT_ANIMATION: # Add frame to the filepath. context_name[2] = '_%.6d' % frame scene.frame_set(frame, subframe=0.0) if EXPORT_SEL_ONLY: objects = context.selected_objects else: objects = scene.objects full_path = ''.join(context_name) # erm... bit of a problem here, this can overwrite files when exporting frames. not too bad. # EXPORT THE FILE. progress.enter_substeps(1) write_file(full_path, objects, depsgraph, scene, EXPORT_TRI, EXPORT_EDGES, EXPORT_SMOOTH_GROUPS, EXPORT_SMOOTH_GROUPS_BITFLAGS, EXPORT_NORMALS, EXPORT_UV, EXPORT_MTL, EXPORT_APPLY_MODIFIERS, EXPORT_APPLY_MODIFIERS_RENDER, EXPORT_BLEN_OBS, EXPORT_GROUP_BY_OB, EXPORT_GROUP_BY_MAT, EXPORT_KEEP_VERT_ORDER, EXPORT_POLYGROUPS, EXPORT_CURVE_AS_NURBS, EXPORT_GLOBAL_MATRIX, EXPORT_PATH_MODE, progress, ) progress.leave_substeps() scene.frame_set(orig_frame, subframe=0.0) progress.leave_substeps() """ Currently the exporter lacks these features: * multiple scene export (only active scene is written) * particles """ def save(context, filepath, *, use_triangles=False, use_edges=True, use_normals=False, use_smooth_groups=False, use_smooth_groups_bitflags=False, use_uvs=True, use_materials=True, use_mesh_modifiers=True, use_mesh_modifiers_render=False, use_blen_objects=True, group_by_object=False, group_by_material=False, keep_vertex_order=False, use_vertex_groups=False, use_nurbs=True, use_selection=True, use_animation=False, global_matrix=None, path_mode='AUTO' ): _write(context, filepath, EXPORT_TRI=use_triangles, EXPORT_EDGES=use_edges, EXPORT_SMOOTH_GROUPS=use_smooth_groups, EXPORT_SMOOTH_GROUPS_BITFLAGS=use_smooth_groups_bitflags, EXPORT_NORMALS=use_normals, EXPORT_UV=use_uvs, EXPORT_MTL=use_materials, EXPORT_APPLY_MODIFIERS=use_mesh_modifiers, EXPORT_APPLY_MODIFIERS_RENDER=use_mesh_modifiers_render, EXPORT_BLEN_OBS=use_blen_objects, EXPORT_GROUP_BY_OB=group_by_object, EXPORT_GROUP_BY_MAT=group_by_material, EXPORT_KEEP_VERT_ORDER=keep_vertex_order, EXPORT_POLYGROUPS=use_vertex_groups, EXPORT_CURVE_AS_NURBS=use_nurbs, EXPORT_SEL_ONLY=use_selection, EXPORT_ANIMATION=use_animation, EXPORT_GLOBAL_MATRIX=global_matrix, EXPORT_PATH_MODE=path_mode, ) return {'FINISHED'}