# SPDX-License-Identifier: GPL-2.0-or-later # """Manipulations of Models. """ __author__ = "howard.trickey@gmail.com" from . import geom from . import triquad from . import offset import math def PolyAreasToModel(polyareas, bevel_amount, bevel_pitch, quadrangulate): """Convert a PolyAreas into a Model object. Assumes polyareas are in xy plane. Args: polyareas: geom.PolyAreas bevel_amount: float - if > 0, amount of bevel bevel_pitch: float - if > 0, angle in radians of bevel quadrangulate: bool - should n-gons be quadrangulated? Returns: geom.Model """ m = geom.Model() if not polyareas: return m polyareas.points.AddZCoord(0.0) m.points = polyareas.points for pa in polyareas.polyareas: PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate) return m def PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate): if bevel_amount > 0.0: BevelPolyAreaInModel(m, pa, bevel_amount, bevel_pitch, quadrangulate, False) elif quadrangulate: if len(pa.poly) == 0: return qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes, pa.points) m.faces.extend(qpa) m.face_data.extend([pa.data] * len(qpa)) else: m.faces.append(pa.poly) # TODO: just the first part of QuadrangulateFaceWithHoles, to join # holes to outer poly m.face_data.append(pa.data) def ExtrudePolyAreasInModel(mdl, polyareas, depth, cap_back): """Extrude the boundaries given by polyareas by -depth in z. Assumes polyareas are in xy plane. Arguments: mdl: geom.Model - where to do extrusion polyareas: geom.Polyareas depth: float cap_back: bool - if True, cap off the back Side Effects: For all edges in polys in polyareas, make quads in Model extending those edges by depth in the negative z direction. The application data will be the data of the face that the edge is part of. """ for pa in polyareas.polyareas: back_poly = _ExtrudePoly(mdl, pa.poly, depth, pa.data, True) back_holes = [] for p in pa.holes: back_holes.append(_ExtrudePoly(mdl, p, depth, pa.data, False)) if cap_back: qpa = triquad.QuadrangulateFaceWithHoles(back_poly, back_holes, polyareas.points) # need to reverse each poly to get normals pointing down for i, p in enumerate(qpa): t = list(p) t.reverse() qpa[i] = tuple(t) mdl.faces.extend(qpa) mdl.face_data.extend([pa.data] * len(qpa)) def _ExtrudePoly(mdl, poly, depth, data, isccw): """Extrude the poly by -depth in z Arguments: mdl: geom.Model - where to do extrusion poly: list of vertex indices depth: float data: application data isccw: True if counter-clockwise Side Effects For all edges in poly, make quads in Model extending those edges by depth in the negative z direction. The application data will be the data of the face that the edge is part of. Returns: list of int - vertices for extruded poly """ if len(poly) < 2: return extruded_poly = [] points = mdl.points if isccw: incr = 1 else: incr = -1 for i, v in enumerate(poly): vnext = poly[(i + incr) % len(poly)] (x0, y0, z0) = points.pos[v] (x1, y1, z1) = points.pos[vnext] vextrude = points.AddPoint((x0, y0, z0 - depth)) vnextextrude = points.AddPoint((x1, y1, z1 - depth)) if isccw: sideface = [v, vextrude, vnextextrude, vnext] else: sideface = [v, vnext, vnextextrude, vextrude] mdl.faces.append(sideface) mdl.face_data.append(data) extruded_poly.append(vextrude) return extruded_poly def BevelPolyAreaInModel(mdl, polyarea, bevel_amount, bevel_pitch, quadrangulate, as_percent): """Bevel the interior of polyarea in model. This does smart beveling: advancing edges are merged rather than doing an 'overlap'. Advancing edges that hit an opposite edge result in a split into two beveled areas. If the polyarea is not in the xy plane, do the work in a transformed model, and then transfer the changes back. Arguments: mdl: geom.Model - where to do bevel polyarea geom.PolyArea - area to bevel into bevel_amount: float - if > 0, amount of bevel bevel_pitch: float - if > 0, angle in radians of bevel quadrangulate: bool - should n-gons be quadrangulated? as_percent: bool - if True, interpret amount as percent of max Side Effects: Faces and points are added to model to model the bevel and the interior of the polyareas. """ pa_norm = polyarea.Normal() if pa_norm == (0.0, 0.0, 1.0): m = mdl pa_rot = polyarea else: (pa_rot, inv_rot, inv_map) = _RotatedPolyAreaToXY(polyarea, pa_norm) # don't have to add the original faces into model, just their points. m = geom.Model() m.points = pa_rot.points vspeed = math.tan(bevel_pitch) off = offset.Offset(pa_rot, 0.0, vspeed) if as_percent: bevel_amount = bevel_amount * off.MaxAmount() / 100.0 off.Build(bevel_amount) inner_pas = AddOffsetFacesToModel(m, off, polyarea.data) for pa in inner_pas.polyareas: if quadrangulate: if len(pa.poly) == 0: continue qpa = triquad.QuadrangulateFaceWithHoles(pa.poly, pa.holes, pa.points) m.faces.extend(qpa) m.face_data.extend([pa.data] * len(qpa)) else: m.faces.append(pa.poly) m.face_data.append(pa.data) if m != mdl: _AddTransformedPolysToModel(mdl, m.faces, m.points, m.face_data, inv_rot, inv_map) def AddOffsetFacesToModel(mdl, off, data=None): """Add the faces due to an offset into model. Returns the remaining interiors of the offset as a PolyAreas. Args: mdl: geom.Model - model to add offset faces into off: offset.Offset data: any - application data to be copied to the faces Returns: geom.PolyAreas """ mdl.points = off.polyarea.points assert(len(mdl.points.pos) == 0 or len(mdl.points.pos[0]) == 3) o = off ostack = [] while o: if o.endtime != 0.0: for face in o.facespokes: n = len(face) for i, spoke in enumerate(face): nextspoke = face[(i + 1) % n] v0 = spoke.origin v1 = nextspoke.origin v2 = nextspoke.dest v3 = spoke.dest if v2 == v3: mface = [v0, v1, v2] else: mface = [v0, v1, v2, v3] mdl.faces.append(mface) mdl.face_data.append(data) ostack.extend(o.inneroffsets) if ostack: o = ostack.pop() else: o = None return off.InnerPolyAreas() def BevelSelectionInModel(mdl, bevel_amount, bevel_pitch, quadrangulate, as_region, as_percent): """Bevel all the faces in the model, perhaps as one region. If as_region is False, each face is beveled individually, otherwise regions of contiguous faces are merged into PolyAreas and beveled as a whole. TODO: something if extracted PolyAreas are not approximately planar. Args: mdl: geom.Model bevel_amount: float - amount to inset bevel_pitch: float - angle of bevel side quadrangulate: bool - should insides be quadrangulated? as_region: bool - should faces be merged into regions? as_percent: bool - should amount be interpreted as a percent of the maximum amount (if True) or an absolute amount? Side effect: Beveling faces will be added to the model """ pas = [] if as_region: pas = RegionToPolyAreas(mdl.faces, mdl.points, mdl.face_data) else: for f, face in enumerate(mdl.faces): pas.append(geom.PolyArea(mdl.points, face, [], mdl.face_data[f])) for pa in pas: BevelPolyAreaInModel(mdl, pa, bevel_amount, bevel_pitch, quadrangulate, as_percent) def RegionToPolyAreas(faces, points, data): """Find polygonal outlines induced by union of faces. Finds the polygons formed by boundary edges (those not sharing an edge with another face in region_faces), and turns those into PolyAreas. In the general case, there will be holes inside. We want to associate data with the region PolyAreas. Just choose a representative element of data[] when more than one face is combined into a PolyArea. Args: faces: list of list of int - each sublist is a face (indices into points) points: geom.Points - gives coordinates for vertices data: list of any - parallel to faces, app data to put in PolyAreas Returns: list of geom.PolyArea """ ans = [] (edges, vtoe) = _GetEdgeData(faces) (face_adj, is_interior_edge) = _GetFaceGraph(faces, edges, vtoe, points) (components, ftoc) = _FindFaceGraphComponents(faces, face_adj) for c in range(len(components)): boundary_edges = set() betodata = dict() vstobe = dict() for e, ((vs, ve), f) in enumerate(edges): if ftoc[f] != c or is_interior_edge[e]: continue boundary_edges.add(e) # vstobe[v] is set of edges leaving v # (could be more than one if boundary touches itself at a vertex) if vs in vstobe: vstobe[vs].append(e) else: vstobe[vs] = [e] betodata[(vs, ve)] = data[f] polys = [] poly_data = [] while boundary_edges: e = boundary_edges.pop() ((vstart, ve), face_i) = edges[e] poly = [vstart, ve] datum = betodata[(vstart, ve)] while ve != vstart: if ve not in vstobe: print("whoops, couldn't close boundary") break nextes = vstobe[ve] if len(nextes) == 1: nexte = nextes[0] else: # find a next edge with face index face_i # TODO: this is not guaranteed to work, # as continuation edge may have been for a different # face that is now combined with face_i by erasing # interior edges. Find a better algorithm here. nexte = -1 for ne_cand in nextes: if edges[ne_cand][1] == face_i: nexte = ne_cand break if nexte == -1: # case mentioned in TODO may have happened; # just choose any nexte - may mess things up nexte = nextes[0] ((_, ve), face_i) = edges[nexte] if nexte not in boundary_edges: print("whoops, nexte not a boundary edge", nexte) break boundary_edges.remove(nexte) if ve != vstart: poly.append(ve) polys.append(poly) poly_data.append(datum) if len(polys) == 0: # can happen if an entire closed polytope is given # at least until we do an edge check return [] elif len(polys) == 1: ans.append(geom.PolyArea(points, polys[0], [], poly_data[0])) else: outerf = _FindOuterPoly(polys, points, faces) pa = geom.PolyArea(points, polys[outerf], [], poly_data[outerf]) pa.holes = [polys[i] for i in range(len(polys)) if i != outerf] ans.append(pa) return ans def _GetEdgeData(faces): """Find edges from faces, and some lookup dictionaries. Args: faces: list of list of int - each a closed CCW polygon of vertex indices Returns: (list of ((int, int), int), dict{ int->list of int}) - list elements are ((startv, endv), face index) dict maps vertices to edge indices """ edges = [] vtoe = dict() for findex, f in enumerate(faces): nf = len(f) for i, v in enumerate(f): endv = f[(i + 1) % nf] edges.append(((v, endv), findex)) eindex = len(edges) - 1 if v in vtoe: vtoe[v].append(eindex) else: vtoe[v] = [eindex] return (edges, vtoe) def _GetFaceGraph(faces, edges, vtoe, points): """Find the face adjacency graph. Faces are adjacent if they share an edge, and the shared edge goes in the reverse direction, and if the angle between them isn't too large. Args: faces: list of list of int edges: list of ((int, int), int) - see _GetEdgeData vtoe: dict{ int->list of int } - see _GetEdgeData points: geom.Points Returns: (list of list of int, list of bool) - first list: each sublist is adjacent face indices for each face second list: maps edge index to True if it separates adjacent faces """ face_adj = [[] for i in range(len(faces))] is_interior_edge = [False] * len(edges) for e, ((vs, ve), f) in enumerate(edges): for other in vtoe[ve]: ((_, we), g) = edges[other] if we == vs: # face g is adjacent to face f # TODO: angle check if g not in face_adj[f]: face_adj[f].append(g) is_interior_edge[e] = True # Don't bother with mirror relations, will catch later return (face_adj, is_interior_edge) def _FindFaceGraphComponents(faces, face_adj): """Partition faces into connected components. Args: faces: list of list of int face_adj: list of list of int - see _GetFaceGraph Returns: (list of list of int, list of int) - first list partitions face indices into separate lists, each a component second list maps face indices into their component index """ if not faces: return ([], []) components = [] ftoc = [-1] * len(faces) for i in range(len(faces)): if ftoc[i] == -1: compi = len(components) comp = [] _FFGCSearch(i, faces, face_adj, ftoc, compi, comp) components.append(comp) return (components, ftoc) def _FFGCSearch(findex, faces, face_adj, ftoc, compi, comp): """Depth first search helper function for _FindFaceGraphComponents Searches recursively through all faces connected to findex, adding each face found to comp and setting ftoc for that face to compi. """ comp.append(findex) ftoc[findex] = compi for otherf in face_adj[findex]: if ftoc[otherf] == -1: _FFGCSearch(otherf, faces, face_adj, ftoc, compi, comp) def _FindOuterPoly(polys, points, faces): """Assuming polys has one CCW-oriented face when looking down average normal of faces, return that one. Only one of the faces should have a normal whose dot product with the average normal of faces is positive. Args: polys: list of list of int - list of polys given by vertex indices points: geom.Points faces: list of list of int - original selected region, used to find average normal Returns: int - the index in polys of the outermost one """ if len(polys) < 2: return 0 fnorm = (0.0, 0.0, 0.0) for face in faces: if len(face) > 2: fnorm = geom.VecAdd(fnorm, geom.Newell(face, points)) if fnorm == (0.0, 0.0, 0.0): return 0 # fnorm is really a multiple of the normal, but fine for test below for i, poly in enumerate(polys): if len(poly) > 2: pnorm = geom.Newell(poly, points) if geom.VecDot(fnorm, pnorm) > 0: return i print("whoops, couldn't find an outermost poly") return 0 def _RotatedPolyAreaToXY(polyarea, norm): """Return a PolyArea rotated to xy plane. Only the points in polyarea will be transferred. Args: polyarea: geom.PolyArea norm: the normal for polyarea Returns: (geom.PolyArea, (float, ..., float), dict{ int -> int }) - new PolyArea, 4x3 inverse transform, dict mapping new verts to old ones """ # find rotation matrix that takes norm to (0,0,1) (nx, ny, nz) = norm if abs(nx) < abs(ny) and abs(nx) < abs(nz): v = (vx, vy, vz) = geom.Norm3(0.0, nz, - ny) elif abs(ny) < abs(nz): v = (vx, vy, vz) = geom.Norm3(nz, 0.0, - nx) else: v = (vx, vy, vz) = geom.Norm3(ny, - nx, 0.0) (ux, uy, uz) = geom.Cross3(v, norm) rotmat = [ux, vx, nx, uy, vy, ny, uz, vz, nz, 0.0, 0.0, 0.0] # rotation matrices are orthogonal, so inverse is transpose invrotmat = [ux, uy, uz, vx, vy, vz, nx, ny, nz, 0.0, 0.0, 0.0] pointmap = dict() invpointmap = dict() newpoints = geom.Points() for poly in [polyarea.poly] + polyarea.holes: for v in poly: vcoords = polyarea.points.pos[v] newvcoords = geom.MulPoint3(vcoords, rotmat) newv = newpoints.AddPoint(newvcoords) pointmap[v] = newv invpointmap[newv] = v pa = geom.PolyArea(newpoints) pa.poly = [pointmap[v] for v in polyarea.poly] pa.holes = [[pointmap[v] for v in hole] for hole in polyarea.holes] pa.data = polyarea.data return (pa, invrotmat, invpointmap) def _AddTransformedPolysToModel(mdl, polys, points, poly_data, transform, pointmap): """Add (transformed) the points and faces to a model. Add polys to mdl. The polys have coordinates given by indices into points.pos; those need to be transformed by multiplying by the transform matrix. The vertices may already exist in mdl. Rather than relying on AddPoint to detect the duplicate (transform rounding error makes that dicey), the pointmap dictionar is used to map vertex indices in polys into those in mdl - if they exist already. Args: mdl: geom.Model - where to put new vertices, faces polys: list of list of int - each sublist a poly points: geom.Points - coords for vertices in polys poly_data: list of any - parallel to polys transform: (float, ..., float) - 12-tuple, a 4x3 transform matrix pointmap: dict { int -> int } - maps new vertex indices to old ones Side Effects: The model gets new faces and vertices, based on those in polys. We are allowed to modify pointmap, as it will be discarded after call. """ for i, coords in enumerate(points.pos): if i not in pointmap: p = geom.MulPoint3(coords, transform) pointmap[i] = mdl.points.AddPoint(p) for i, poly in enumerate(polys): mpoly = [pointmap[v] for v in poly] mdl.faces.append(mpoly) mdl.face_data.append(poly_data[i])