# ##### BEGIN GPL LICENSE BLOCK ##### # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software Foundation, # Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # # ##### END GPL LICENSE BLOCK ##### import bpy import subprocess import os import sys import time import math from math import atan, pi, degrees, sqrt import platform as pltfrm if pltfrm.architecture()[0] == '64bit': bitness = 64 else: bitness = 32 ##############################SF########################### ##############find image texture def splitExt(path): dotidx = path.rfind('.') if dotidx == -1: return path, '' else: return (path[dotidx:]).upper().replace('.','') def imageFormat(imgF): ext = "" ext_orig = splitExt(imgF) if ext_orig == 'JPG' or ext_orig == 'JPEG': ext='jpeg' if ext_orig == 'GIF': ext = 'gif' if ext_orig == 'TGA': ext = 'tga' if ext_orig == 'IFF': ext = 'iff' if ext_orig == 'PPM': ext = 'ppm' if ext_orig == 'PNG': ext = 'png' if ext_orig == 'SYS': ext = 'sys' if ext_orig in ('TIFF', 'TIF'): ext = 'tiff' if ext_orig == 'EXR': ext = 'exr'#POV3.7 Only! if ext_orig == 'HDR': ext = 'hdr'#POV3.7 Only! --MR print(imgF) if not ext: print(' WARNING: texture image format not supported ') # % (imgF , '')) #(ext_orig))) return ext def imgMap(ts): image_map='' if ts.mapping=='FLAT':image_map= ' map_type 0 ' if ts.mapping=='SPHERE':image_map= ' map_type 1 '# map_type 7 in megapov if ts.mapping=='TUBE':image_map= ' map_type 2 ' #if ts.mapping=='?':image_map= ' map_type 3 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0) #if ts.mapping=='?':image_map= ' map_type 4 '# map_type 3 and 4 in development (?) for Povray, currently they just seem to default back to Flat (type 0) if ts.texture.use_interpolation: image_map+= " interpolate 2 " if ts.texture.extension == 'CLIP': image_map+=' once ' #image_map+='}' #if ts.mapping=='CUBE':image_map+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?) #if image_map=='': print(' No texture image found ') return image_map def imgMapBG(wts): image_mapBG='' if wts.texture_coords== 'VIEW':image_mapBG= ' map_type 0 ' #texture_coords refers to the mapping of world textures if wts.texture_coords=='ANGMAP':image_mapBG= ' map_type 1 ' if wts.texture_coords=='TUBE':image_mapBG= ' map_type 2 ' if wts.texture.use_interpolation: image_mapBG+= " interpolate 2 " if wts.texture.extension == 'CLIP': image_mapBG+=' once ' #image_mapBG+='}' #if wts.mapping=='CUBE':image_mapBG+= 'warp { cubic } rotate <-90,0,180>' #no direct cube type mapping. Though this should work in POV 3.7 it doesn't give that good results(best suited to environment maps?) #if image_mapBG=='': print(' No background texture image found ') return image_mapBG def splitFile(path): idx = path.rfind('/') if idx == -1: idx = path.rfind('\\') return path[idx:].replace("/", "").replace("\\", "") def splitPath(path): idx = path.rfind('/') if idx == -1: return path, '' else: return path[:idx] def findInSubDir(filename, subdirectory=''): pahFile='' if subdirectory: path = subdirectory else: path = os.getcwd() try: for root, dirs, names in os.walk(path): if filename in names: pahFile = os.path.join(root, filename) return pahFile except: #OSError: #was that the proper error type? return '' def path_image(image): import os fn = bpy.path.abspath(image) fn_strip = os.path.basename(fn) if not os.path.isfile(fn): fn=(findInSubDir(splitFile(fn),splitPath(bpy.data.filepath))) () return fn ##############end find image texture ##############safety string name material def safety(name, Level): # Level=1 is for texture with No specular nor Mirror reflection # Level=2 is for texture with translation of spec and mir levels for when no map influences them # Level=3 is for texture with Maximum Spec and Mirror try: if int(name) > 0: prefix='shader' except: prefix='' prefix='shader_' if Level == 2: return prefix+name elif Level == 1: return prefix+name+'0'#used for 0 of specular map elif Level == 3: return prefix+name+'1'#used for 1 of specular map ##############end safety string name material ##############################EndSF########################### def write_pov(filename, scene=None, info_callback=None): file = open(filename, 'w') # Only for testing if not scene: scene = bpy.data.scenes[0] render = scene.render world = scene.world def uniqueName(name, nameSeq): if name not in nameSeq: return name name_orig = name i = 1 while name in nameSeq: name = '%s_%.3d' % (name_orig, i) i += 1 return name def writeMatrix(matrix): file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\ (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2])) def writeObjectMaterial(material): # DH - modified some variables to be function local, avoiding RNA write # this should be checked to see if it is functionally correct if material: #and material.transparency_method == 'RAYTRACE':#Commented out: always write IOR to be able to use it for SSS, Fresnel reflections... #But there can be only one! if material.subsurface_scattering.use:#SSS IOR get highest priority file.write('\tinterior { ior %.6f\n' % material.subsurface_scattering.ior) elif material.pov_mirror_use_IOR:#Then the raytrace IOR taken from raytrace transparency properties and used for reflections if IOR Mirror option is checked file.write('\tinterior { ior %.6f\n' % material.raytrace_transparency.ior) else: file.write('\tinterior { ior %.6f\n' % material.raytrace_transparency.ior) pov_fake_caustics = False pov_photons_refraction = False pov_photons_reflection = False if material.pov_refraction_type=="0": pov_fake_caustics = False pov_photons_refraction = False pov_photons_reflection = True elif material.pov_refraction_type=="1": pov_fake_caustics = True pov_photons_refraction = False elif material.pov_refraction_type=="2": pov_fake_caustics = False pov_photons_refraction = True #If only Raytrace transparency is set, its IOR will be used for refraction, but user can set up "un-physical" fresnel reflections in raytrace mirror parameters. #Last, if none of the above is specified, user can set up "un-physical" fresnel reflections in raytrace mirror parameters. And pov IOR defaults to 1. if material.pov_caustics_enable: if pov_fake_caustics: file.write('\tcaustics %.3g\n' % material.pov_fake_caustics_power) if material.pov_photons_refraction: file.write('\tdispersion %.3g\n' % material.pov_photons_dispersion) #Default of 1 means no dispersion #TODO # Other interior args # if material.use_transparency and material.transparency_method == 'RAYTRACE': # fade_distance 2 # fade_power [Value] # fade_color # (variable) dispersion_samples (constant count for now) file.write('\t}\n') if pov_photons_refraction or pov_photons_reflection: file.write('\tphotons{\n') file.write('\t\ttarget\n') if pov_photons_refraction: file.write('\t\trefraction on\n') if pov_photons_reflection: file.write('\t\treflection on\n') file.write('\t}\n') materialNames = {} DEF_MAT_NAME = 'Default' def writeMaterial(material): # Assumes only called once on each material if material: name_orig = material.name else: name_orig = DEF_MAT_NAME name = materialNames[name_orig] = uniqueName(bpy.path.clean_name(name_orig), materialNames) ##################Several versions of the finish: Level conditions are variations for specular/Mirror texture channel map with alternative finish of 0 specular and no mirror reflection # Level=1 Means No specular nor Mirror reflection # Level=2 Means translation of spec and mir levels for when no map influences them # Level=3 Means Maximum Spec and Mirror def povHasnoSpecularMaps(Level): if Level == 2: file.write('#declare %s = finish {\n' % safety(name, Level = 2)) elif Level == 1: file.write('#declare %s = finish {\n' % safety(name, Level = 1)) elif Level == 3: file.write('#declare %s = finish {\n' % safety(name, Level = 3)) if material: #Povray 3.7 now uses two diffuse values respectively for front and back shading (the back diffuse is like blender translucency) frontDiffuse=material.diffuse_intensity backDiffuse=material.translucency if material.pov_conserve_energy: #Total should not go above one if (frontDiffuse + backDiffuse) <= 1.0: pass elif frontDiffuse==backDiffuse: frontDiffuse = backDiffuse = 0.5 # Try to respect the user's "intention" by comparing the two values but bringing the total back to one elif frontDiffuse>backDiffuse: # Let the highest value stay the highest value backDiffuse = 1-(1-frontDiffuse) else: frontDiffuse = 1-(1-backDiffuse) # map hardness between 0.0 and 1.0 roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0))) ## scale from 0.0 to 0.1 roughness *= 0.1 # add a small value because 0.0 is invalid roughness += (1 / 511.0) #####################################Diffuse Shader###################################### # Not used for Full spec (Level=3) of the shader if material.diffuse_shader == 'OREN_NAYAR' and Level != 3: file.write('\tbrilliance %.3g\n' % (0.9+material.roughness))#blender roughness is what is generally called oren nayar Sigma, and brilliance in povray if material.diffuse_shader == 'TOON' and Level != 3: file.write('\tbrilliance %.3g\n' % (0.01+material.diffuse_toon_smooth*0.25)) frontDiffuse*=0.5 #Lower diffuse and increase specular for toon effect seems to look better in povray if material.diffuse_shader == 'MINNAERT' and Level != 3: #file.write('\taoi %.3g\n' % material.darkness) pass #let's keep things simple for now if material.diffuse_shader == 'FRESNEL' and Level != 3: #file.write('\taoi %.3g\n' % material.diffuse_fresnel_factor) pass #let's keep things simple for now if material.diffuse_shader == 'LAMBERT' and Level != 3: file.write('\tbrilliance 1.8\n') #trying to best match lambert attenuation by that constant brilliance value if Level == 2: ####################################Specular Shader###################################### if material.specular_shader == 'COOKTORR' or material.specular_shader == 'PHONG':#No difference between phong and cook torrence in blender HaHa! file.write('\tphong %.3g\n' % (material.specular_intensity)) file.write('\tphong_size %.3g\n'% (material.specular_hardness / 2 + 0.25)) if material.specular_shader == 'BLINN':#Povray "specular" keyword corresponds to a Blinn model, without the ior. file.write('\tspecular %.3g\n' % (material.specular_intensity * (material.specular_ior/4))) #Use blender Blinn's IOR just as some factor for spec intensity file.write('\troughness %.3g\n' % roughness) #Could use brilliance 2(or varying around 2 depending on ior or factor) too. if material.specular_shader == 'TOON': file.write('\tphong %.3g\n' % (material.specular_intensity * 2)) file.write('\tphong_size %.3g\n' % (0.1+material.specular_toon_smooth / 2)) #use extreme phong_size if material.specular_shader == 'WARDISO': file.write('\tspecular %.3g\n' % (material.specular_intensity / (material.specular_slope+0.0005))) #find best suited default constant for brilliance Use both phong and specular for some values. file.write('\troughness %.4g\n' % (0.0005+material.specular_slope/10)) #find best suited default constant for brilliance Use both phong and specular for some values. file.write('\tbrilliance %.4g\n' % (1.8-material.specular_slope*1.8)) #find best suited default constant for brilliance Use both phong and specular for some values. ######################################################################################### elif Level == 1: file.write('\tspecular 0\n') elif Level == 3: file.write('\tspecular 1\n') file.write('\tdiffuse %.3g %.3g\n' % (frontDiffuse, backDiffuse)) file.write('\tambient %.3g\n' % material.ambient) #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value file.write('\temission %.3g\n' % material.emit) #New in povray 3.7 #file.write('\troughness %.3g\n' % roughness) #povray just ignores roughness if there's no specular keyword if material.pov_conserve_energy: file.write('\tconserve_energy\n')#added for more realistic shading. Needs some checking to see if it really works. --Maurice. # 'phong 70.0 ' if Level != 1: if material.raytrace_mirror.use: raytrace_mirror = material.raytrace_mirror if raytrace_mirror.reflect_factor: file.write('\treflection {\n') file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color)) if material.pov_mirror_metallic: file.write('\t\tmetallic %.3g' % (raytrace_mirror.reflect_factor)) if material.pov_mirror_use_IOR: #WORKING ? file.write('\t\tfresnel 1 ')#Removed from the line below: gives a more physically correct material but needs proper IOR. --Maurice file.write('\t\tfalloff %.3g exponent %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor)) if material.subsurface_scattering.use: subsurface_scattering = material.subsurface_scattering file.write('\tsubsurface { <%.3g, %.3g, %.3g>, <%.3g, %.3g, %.3g> }\n' % (sqrt(subsurface_scattering.radius[0])*1.5, sqrt(subsurface_scattering.radius[1])*1.5, sqrt(subsurface_scattering.radius[2])*1.5, 1-subsurface_scattering.color[0], 1-subsurface_scattering.color[1], 1-subsurface_scattering.color[2])) if material.pov_irid_enable: file.write('\tirid { %.4g thickness %.4g turbulence %.4g }' % (material.pov_irid_amount, material.pov_irid_thickness, material.pov_irid_turbulence)) else: file.write('\tdiffuse 0.8\n') file.write('\tphong 70.0\n') #file.write('\tspecular 0.2\n') # This is written into the object ''' if material and material.transparency_method=='RAYTRACE': 'interior { ior %.3g} ' % material.raytrace_transparency.ior ''' #file.write('\t\t\tcrand 1.0\n') # Sand granyness #file.write('\t\t\tmetallic %.6f\n' % material.spec) #file.write('\t\t\tphong %.6f\n' % material.spec) #file.write('\t\t\tphong_size %.6f\n' % material.spec) #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness file.write('}\n') # Level=1 Means No specular nor Mirror reflection povHasnoSpecularMaps(Level=1) # Level=2 Means translation of spec and mir levels for when no map influences them povHasnoSpecularMaps(Level=2) # Level=3 Means Maximum Spec and Mirror povHasnoSpecularMaps(Level=3) def exportCamera(): camera = scene.camera # DH disabled for now, this isn't the correct context active_object = None #bpy.context.active_object # MR matrix = camera.matrix_world focal_point = camera.data.dof_distance # compute resolution Qsize = float(render.resolution_x) / float(render.resolution_y) file.write('#declare camLocation = <%.6f, %.6f, %.6f>;\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) file.write('#declare camLookAt = <%.6f, %.6f, %.6f>;\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()])) file.write('camera {\n') if scene.pov_baking_enable and active_object and active_object.type=='MESH': file.write('\tmesh_camera{ 1 3\n') # distribution 3 is what we want here file.write('\t\tmesh{%s}\n' % active_object.name) file.write('\t}\n') file.write('location <0,0,.01>') file.write('direction <0,0,-1>') # Using standard camera otherwise else: file.write('\tlocation <0, 0, 0>\n') file.write('\tlook_at <0, 0, -1>\n') file.write('\tright <%s, 0, 0>\n' % - Qsize) file.write('\tup <0, 1, 0>\n') file.write('\tangle %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi)) file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()])) file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2])) if focal_point != 0: file.write('\taperture 0.25\n') # fixed blur amount for now to do, add slider a button? file.write('\tblur_samples 96 128\n') file.write('\tvariance 1/10000\n') file.write('\tfocal_point <0, 0, %f>\n' % focal_point) file.write('}\n') def exportLamps(lamps): # Get all lamps for ob in lamps: lamp = ob.data matrix = ob.matrix_world color = tuple([c * lamp.energy *2 for c in lamp.color]) # Colour is modified by energy #muiltiplie by 2 for a better match --Maurice file.write('light_source {\n') file.write('\t< 0,0,0 >\n') file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color) if lamp.type == 'POINT': # Point Lamp pass elif lamp.type == 'SPOT': # Spot file.write('\tspotlight\n') # Falloff is the main radius from the centre line file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend))) # Blender does not have a tightness equivilent, 0 is most like blender default. file.write('\ttightness 0\n') # 0:10f file.write('\tpoint_at <0, 0, -1>\n') elif lamp.type == 'SUN': file.write('\tparallel\n') file.write('\tpoint_at <0, 0, -1>\n') # *must* be after 'parallel' elif lamp.type == 'AREA': file.write('\tfade_distance %.6f\n' % (lamp.distance / 5) ) file.write('\tfade_power %d\n' % 2) # Area lights have no falloff type, so always use blenders lamp quad equivalent for those? size_x = lamp.size samples_x = lamp.shadow_ray_samples_x if lamp.shape == 'SQUARE': size_y = size_x samples_y = samples_x else: size_y = lamp.size_y samples_y = lamp.shadow_ray_samples_y file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y)) if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED': if lamp.jitter: file.write('\tjitter\n') else: file.write('\tadaptive 1\n') file.write('\tjitter\n') if lamp.type == 'HEMI':#HEMI never has any shadow attribute file.write('\tshadowless\n') elif lamp.shadow_method == 'NOSHADOW': file.write('\tshadowless\n') if lamp.type != 'SUN' and lamp.type!='AREA' and lamp.type!='HEMI':#Sun shouldn't be attenuated. Hemi and area lights have no falloff attribute so they are put to type 2 attenuation a little higher above. file.write('\tfade_distance %.6f\n' % (lamp.distance / 5) ) if lamp.falloff_type == 'INVERSE_SQUARE': file.write('\tfade_power %d\n' % 2) # Use blenders lamp quad equivalent elif lamp.falloff_type == 'INVERSE_LINEAR': file.write('\tfade_power %d\n' % 1) # Use blenders lamp linear elif lamp.falloff_type == 'CONSTANT': #Supposing using no fade power keyword would default to constant, no attenuation. pass elif lamp.falloff_type == 'CUSTOM_CURVE': #Using Custom curve for fade power 3 for now. file.write('\tfade_power %d\n' % 4) writeMatrix(matrix) file.write('}\n') ################################################################################################################################## #Wip to be Used for fresnel, but not tested yet. ################################################################################################################################## ## lampLocation=[0,0,0] ## lampRotation=[0,0,0] ## lampDistance=0.00 ## averageLampLocation=[0,0,0] ## averageLampRotation=[0,0,0] ## averageLampDistance=0.00 ## lamps=[] ## for l in scene.objects: ## if l.type == 'LAMP':#get all lamps ## lamps += [l] ## for ob in lamps: ## lamp = ob.data ## lampLocation[0]+=ob.location[0] ## lampLocation[1]+=ob.location[1] ## lampLocation[2]+=ob.location[2] ## lampRotation[0]+=ob.rotation_euler[0] ## lampRotation[1]+=ob.rotation_euler[1] ## lampRotation[2]+=ob.rotation_euler[2] ## lampDistance+=ob.data.distance ## averageLampRotation[0]=lampRotation[0] / len(lamps)#create an average direction for all lamps. ## averageLampRotation[1]=lampRotation[1] / len(lamps)#create an average direction for all lamps. ## averageLampRotation[2]=lampRotation[2] / len(lamps)#create an average direction for all lamps. ## ## averageLampLocation[0]=lampLocation[0] / len(lamps)#create an average position for all lamps. ## averageLampLocation[1]=lampLocation[1] / len(lamps)#create an average position for all lamps. ## averageLampLocation[2]=lampLocation[2] / len(lamps)#create an average position for all lamps. ## ## averageLampDistance=lampDistance / len(lamps)#create an average distance for all lamps. ## file.write('\n#declare lampTarget= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);' % (-(averageLampLocation[0]-averageLampDistance), -(averageLampLocation[1]-averageLampDistance), -(averageLampLocation[2]-averageLampDistance), averageLampRotation[0], averageLampRotation[1], averageLampRotation[2])) ## #v(A,B) rotates vector A about origin by vector B. ## #################################################################################################################################### def exportMeta(metas): # TODO - blenders 'motherball' naming is not supported. for ob in metas: meta = ob.data file.write('blob {\n') file.write('\t\tthreshold %.4g\n' % meta.threshold) try: material = meta.materials[0] # lame! - blender cant do enything else. except: material = None for elem in meta.elements: if elem.type not in ('BALL', 'ELLIPSOID'): continue # Not supported loc = elem.co stiffness = elem.stiffness if elem.use_negative: stiffness = - stiffness if elem.type == 'BALL': file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness)) # After this wecould do something simple like... # "pigment {Blue} }" # except we'll write the color elif elem.type == 'ELLIPSOID': # location is modified by scale file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness)) file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z)) if material: diffuse_color = material.diffuse_color if material.use_transparency and material.transparency_method == 'RAYTRACE': trans = 1.0 - material.raytrace_transparency.filter else: trans = 0.0 file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \ (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name])) else: file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME) # Write the finish last. writeObjectMaterial(material) writeMatrix(ob.matrix_world) file.write('}\n') def exportMeshs(scene, sel): ob_num = 0 for ob in sel: ob_num += 1 if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE', 'LATTICE'): continue me = ob.data me_materials = me.materials me = ob.create_mesh(scene, True, 'RENDER') if not me or not me.faces: continue if info_callback: info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name)) #if ob.type!='MESH': # continue # me = ob.data matrix = ob.matrix_world try: uv_layer = me.uv_textures.active.data except: uv_layer = None try: vcol_layer = me.vertex_colors.active.data except: vcol_layer = None faces_verts = [f.vertices[:] for f in me.faces] faces_normals = [tuple(f.normal) for f in me.faces] verts_normals = [tuple(v.normal) for v in me.vertices] # quads incur an extra face quadCount = sum(1 for f in faces_verts if len(f) == 4) # Use named declaration to allow reference e.g. for baking. MR file.write('#declare %s=\n' % ob.name) file.write('mesh2 {\n') file.write('\tvertex_vectors {\n') file.write('\t\t%s' % (len(me.vertices))) # vert count for v in me.vertices: file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count file.write('\n }\n') # Build unique Normal list uniqueNormals = {} for fi, f in enumerate(me.faces): fv = faces_verts[fi] # [-1] is a dummy index, use a list so we can modify in place if f.use_smooth: # Use vertex normals for v in fv: key = verts_normals[v] uniqueNormals[key] = [-1] else: # Use face normal key = faces_normals[fi] uniqueNormals[key] = [-1] file.write('\tnormal_vectors {\n') file.write('\t\t%d' % len(uniqueNormals)) # vert count idx = 0 for no, index in uniqueNormals.items(): file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count index[0] = idx idx += 1 file.write('\n }\n') # Vertex colours vertCols = {} # Use for material colours also. if uv_layer: # Generate unique UV's uniqueUVs = {} for fi, uv in enumerate(uv_layer): if len(faces_verts[fi]) == 4: uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4 else: uvs = uv.uv1, uv.uv2, uv.uv3 for uv in uvs: uniqueUVs[tuple(uv)] = [-1] file.write('\tuv_vectors {\n') #print unique_uvs file.write('\t\t%s' % (len(uniqueUVs))) # vert count idx = 0 for uv, index in uniqueUVs.items(): file.write(',\n\t\t<%.6f, %.6f>' % uv) index[0] = idx idx += 1 ''' else: # Just add 1 dummy vector, no real UV's file.write('\t\t1') # vert count file.write(',\n\t\t<0.0, 0.0>') ''' file.write('\n }\n') if me.vertex_colors: for fi, f in enumerate(me.faces): material_index = f.material_index material = me_materials[material_index] if material and material.use_vertex_color_paint: col = vcol_layer[fi] if len(faces_verts[fi]) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 for col in cols: key = col[0], col[1], col[2], material_index # Material index! vertCols[key] = [-1] else: if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index vertCols[key] = [-1] else: # No vertex colours, so write material colours as vertex colours for i, material in enumerate(me_materials): if material: diffuse_color = tuple(material.diffuse_color) key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat vertCols[key] = [-1] # Vert Colours file.write('\ttexture_list {\n') file.write('\t\t%s' % (len(vertCols))) # vert count idx = 0 for col, index in vertCols.items(): if me_materials: material = me_materials[col[3]] material_finish = materialNames[material.name] if material.use_transparency: trans = 1.0 - material.alpha else: trans = 0.0 else: material_finish = DEF_MAT_NAME # not working properly, trans = 0.0 ##############SF texturesDif='' texturesSpec='' texturesNorm='' texturesAlpha='' for t in material.texture_slots: if t and t.texture.type == 'IMAGE' and t.use and t.texture.image: image_filename = path_image(t.texture.image.filepath) if image_filename: if t.use_map_color_diffuse: texturesDif = image_filename colvalue = t.default_value t_dif = t if t.use_map_specular or t.use_map_raymir: texturesSpec = image_filename colvalue = t.default_value t_spec = t if t.use_map_normal: texturesNorm = image_filename colvalue = t.normal_factor * 10.0 #textNormName=t.texture.image.name + '.normal' #was the above used? --MR t_nor = t if t.use_map_alpha: texturesAlpha = image_filename colvalue = t.alpha_factor * 10.0 #textDispName=t.texture.image.name + '.displ' #was the above used? --MR t_alpha = t ############################################################################################################## file.write('\n\t\ttexture {') #THIS AREA NEEDS TO LEAVE THE TEXTURE OPEN UNTIL ALL MAPS ARE WRITTEN DOWN. --MR ############################################################################################################## if material.diffuse_shader == 'MINNAERT': file.write('\n\t\t\taoi') file.write('\n\t\t\ttexture_map {') file.write('\n\t\t\t\t[%.3g finish {diffuse %.3g}]' % ((material.darkness/2), (2-material.darkness))) file.write('\n\t\t\t\t[%.3g' % (1-(material.darkness/2))) ######TO OPTIMIZE? or present a more elegant way? At least make it work!################################################################## #If Fresnel gets removed from 2.5, why bother? if material.diffuse_shader == 'FRESNEL': ######END of part TO OPTIMIZE? or present a more elegant way?################################################################## ## #lampLocation=lamp.position ## lampRotation= ## a=lamp.Rotation[0] ## b=lamp.Rotation[1] ## c=lamp.Rotation[2] ## lampLookAt=tuple (x,y,z) ## lampLookAt[3]= 0.0 #Put "target" of the lamp on the floor plane to elimianate one unknown value ## degrees(atan((lampLocation - lampLookAt).y/(lampLocation - lampLookAt).z))=lamp.rotation[0] ## degrees(atan((lampLocation - lampLookAt).z/(lampLocation - lampLookAt).x))=lamp.rotation[1] ## degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2] ## degrees(atan((lampLocation - lampLookAt).y/(lampLocation.z))=lamp.rotation[0] ## degrees(atan((lampLocation.z/(lampLocation - lampLookAt).x))=lamp.rotation[1] ## degrees(atan((lampLocation - lampLookAt).x/(lampLocation - lampLookAt).y))=lamp.rotation[2] #color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy file.write('\n\t\t\tslope { lampTarget }') file.write('\n\t\t\ttexture_map {') file.write('\n\t\t\t\t[%.3g finish {diffuse %.3g}]' % ((material.diffuse_fresnel/2), (2-material.diffuse_fresnel_factor))) file.write('\n\t\t\t\t[%.3g' % (1-(material.diffuse_fresnel/2))) #if material.diffuse_shader == 'FRESNEL': pigment pattern aoi pigment and texture map above, the rest below as one of its entry ########################################################################################################################## if texturesSpec !='': file.write('\n\t\t\t\tpigment_pattern {') mappingSpec = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_spec.offset.x / 10 ,t_spec.offset.y / 10 ,t_spec.offset.z / 10, t_spec.scale.x / 2.25, t_spec.scale.y / 2.25, t_spec.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\t\tuv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesSpec) ,texturesSpec ,imgMap(t_spec),mappingSpec)) file.write('\n\t\t\t\t\t\ttexture_map {') file.write('\n\t\t\t\t\t\t\t[0 ') if texturesDif == '': if texturesAlpha !='': mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha)) file.write('\n\t\t\t\t\tpigment_map {') file.write('\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]') file.write('\n\t\t\t\t\t\t[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n\t\t\t\t\t}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) file.write('\n\t\t\t\t}') else: file.write('\n\t\t\t\tpigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) if texturesSpec !='': file.write('finish {%s}' % (safety(material_finish, Level=1)))# Level 1 is no specular else: file.write('finish {%s}' % (safety(material_finish, Level=2)))# Level 2 is translated spec else: mappingDif = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. if texturesAlpha !='': mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha)) file.write('\n\t\t\t\t\tpigment_map {\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]') file.write('\n\t\t\t\t\t\t[1 uv_mapping image_map {%s \"%s\" %s}%s]\n\t\t\t\t}' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif)) file.write('\n\t\t\t\t}') else: file.write("\n\t\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif)) if texturesSpec !='': file.write('finish {%s}' % (safety(material_finish, Level=1)))# Level 1 is no specular else: file.write('finish {%s}' % (safety(material_finish, Level=2)))# Level 2 is translated specular ## scale 1 rotate y*0 #imageMap = ("{image_map {%s \"%s\" %s }" % (imageFormat(textures),textures,imgMap(t_dif))) #file.write("\n\t\t\tuv_mapping pigment %s} %s finish {%s}" % (imageMap,mapping,safety(material_finish))) #file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish))) if texturesNorm !='': ## scale 1 rotate y*0 mappingNor = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25)) #imageMapNor = ("{bump_map {%s \"%s\" %s mapping}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor))) #We were not using the above maybe we should? file.write("\n\t\t\t\tnormal {uv_mapping bump_map {%s \"%s\" %s bump_size %.4g }%s}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor)) if texturesSpec !='': file.write('\n\t\t\t\t\t\t\t]') ################################Second index for mapping specular max value################################################################################################## file.write('\n\t\t\t\t\t\t\t[1 ') if texturesDif == '': if texturesAlpha !='': mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha) ,texturesAlpha ,imgMap(t_alpha),mappingAlpha)) file.write('\n\t\t\t\t\tpigment_map {') file.write('\n\t\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]') file.write('\n\t\t\t\t\t\t[1 color rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>]\n\t\t\t\t\t}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) file.write('\n\t\t\t\t}') else: file.write('\n\t\t\t\tpigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>}' % (col[0], col[1], col[2], 1.0 - material.alpha, trans)) if texturesSpec !='': file.write('finish {%s}' % (safety(material_finish, Level=3)))# Level 3 is full specular else: file.write('finish {%s}' % (safety(material_finish, Level=2)))# Level 2 is translated specular else: mappingDif = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_dif.offset.x / 10 ,t_dif.offset.y / 10 ,t_dif.offset.z / 10, t_dif.scale.x / 2.25, t_dif.scale.y / 2.25, t_dif.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. if texturesAlpha !='': mappingAlpha = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_alpha.offset.x / 10 ,t_alpha.offset.y / 10 ,t_alpha.offset.z / 10, t_alpha.scale.x / 2.25, t_alpha.scale.y / 2.25, t_alpha.scale.z / 2.25)) #strange that the translation factor for scale is not the same as for translate. ToDo: verify both matches with blender internal. file.write('\n\t\t\t\tpigment {pigment_pattern {uv_mapping image_map{%s \"%s\" %s}%s}' % (imageFormat(texturesAlpha),texturesAlpha,imgMap(t_alpha),mappingAlpha)) file.write('\n\t\t\t\tpigment_map {\n\t\t\t\t\t[0 color rgbft<0,0,0,1,1>]') file.write('\n\t\t\t\t\t\t[1 uv_mapping image_map {%s \"%s\" %s}%s]\n\t\t\t\t\t}' % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif)) file.write('\n\t\t\t\t}') else: file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif)) if texturesSpec !='': file.write('finish {%s}' % (safety(material_finish, Level=3)))# Level 3 is full specular else: file.write('finish {%s}' % (safety(material_finish, Level=2)))# Level 2 is translated specular ## scale 1 rotate y*0 #imageMap = ("{image_map {%s \"%s\" %s }" % (imageFormat(textures),textures,imgMap(t_dif))) #file.write("\n\t\t\tuv_mapping pigment %s} %s finish {%s}" % (imageMap,mapping,safety(material_finish))) #file.write("\n\t\t\tpigment {uv_mapping image_map {%s \"%s\" %s}%s} finish {%s}" % (imageFormat(texturesDif),texturesDif,imgMap(t_dif),mappingDif,safety(material_finish))) if texturesNorm !='': ## scale 1 rotate y*0 mappingNor = (" translate <%.4g-0.75,%.4g-0.75,%.4g-0.75> scale <%.4g,%.4g,%.4g>" % (t_nor.offset.x / 10 ,t_nor.offset.y / 10 ,t_nor.offset.z / 10, t_nor.scale.x / 2.25, t_nor.scale.y / 2.25, t_nor.scale.z / 2.25)) #imageMapNor = ("{bump_map {%s \"%s\" %s mapping}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor))) #We were not using the above maybe we should? file.write("\n\t\t\t\tnormal {uv_mapping bump_map {%s \"%s\" %s bump_size %.4g }%s}" % (imageFormat(texturesNorm),texturesNorm,imgMap(t_nor),(t_nor.normal_factor * 10),mappingNor)) if texturesSpec !='': file.write('\n\t\t\t\t\t\t\t]') file.write('\n\t\t\t\t}') #End of slope/ior texture_map if material.diffuse_shader == 'MINNAERT' or material.diffuse_shader == 'FRESNEL': file.write('\n\t\t\t\t]') file.write('\n\t\t\t}') file.write('\n\t\t}') #THEN IT CAN CLOSE IT --MR ############################################################################################################ index[0] = idx idx += 1 file.write('\n\t}\n') # Face indicies file.write('\tface_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, f in enumerate(me.faces): fv = faces_verts[fi] material_index = f.material_index if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) if vcol_layer: col = vcol_layer[fi] if len(fv) == 4: cols = col.color1, col.color2, col.color3, col.color4 else: cols = col.color1, col.color2, col.color3 if not me_materials or me_materials[material_index] is None: # No materials for i1, i2, i3 in indicies: file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count else: material = me_materials[material_index] for i1, i2, i3 in indicies: if me.vertex_colors and material.use_vertex_color_paint: # Colour per vertex - vertex colour col1 = cols[i1] col2 = cols[i2] col3 = cols[i3] ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0] ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0] ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0] else: # Colour per material - flat material colour diffuse_color = material.diffuse_color ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0] file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count file.write('\n }\n') # normal_indices indicies file.write('\tnormal_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, fv in enumerate(faces_verts): if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) for i1, i2, i3 in indicies: if f.use_smooth: file.write(',\n\t\t<%d,%d,%d>' %\ (uniqueNormals[verts_normals[fv[i1]]][0],\ uniqueNormals[verts_normals[fv[i2]]][0],\ uniqueNormals[verts_normals[fv[i3]]][0])) # vert count else: idx = uniqueNormals[faces_normals[fi]][0] file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count file.write('\n }\n') if uv_layer: file.write('\tuv_indices {\n') file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count for fi, fv in enumerate(faces_verts): if len(fv) == 4: indicies = (0, 1, 2), (0, 2, 3) else: indicies = ((0, 1, 2),) uv = uv_layer[fi] if len(faces_verts[fi]) == 4: uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4) else: uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3) for i1, i2, i3 in indicies: file.write(',\n\t\t<%d,%d,%d>' %\ (uniqueUVs[uvs[i1]][0],\ uniqueUVs[uvs[i2]][0],\ uniqueUVs[uvs[i3]][0])) file.write('\n }\n') if me.materials: try: material = me.materials[0] # dodgy writeObjectMaterial(material) except IndexError: print(me) writeMatrix(matrix) file.write('}\n') file.write('%s\n' % ob.name) # Use named declaration to allow reference e.g. for baking. MR bpy.data.meshes.remove(me) def exportWorld(world): render = scene.render camera = scene.camera matrix = camera.matrix_world if not world: return #############Maurice#################################### #These lines added to get sky gradient (visible with PNG output) if world: #For simple flat background: if not world.use_sky_blend: #Non fully transparent background could premultiply alpha and avoid anti-aliasing display issue: if render.alpha_mode == 'PREMUL' or render.alpha_mode == 'PREMUL' : file.write('background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n' % (tuple(world.horizon_color))) #Currently using no alpha with Sky option: elif render.alpha_mode == 'SKY': file.write('background {rgbt<%.3g, %.3g, %.3g, 0>}\n' % (tuple(world.horizon_color))) #StraightAlpha: else: file.write('background {rgbt<%.3g, %.3g, %.3g, 1>}\n' % (tuple(world.horizon_color))) #For Background image textures for t in world.texture_slots: #risk to write several sky_spheres but maybe ok. if t and t.texture.type == 'IMAGE': #and t.use: #No enable checkbox for world textures yet (report it?) image_filename = path_image(t.texture.image.filepath) if t.texture.image.filepath != image_filename: t.texture.image.filepath = image_filename if image_filename != '' and t.use_map_blend: texturesBlend = image_filename #colvalue = t.default_value t_blend = t #commented below was an idea to make the Background image oriented as camera taken here: http://news.povray.org/povray.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.povray.org%3E/ #mappingBlend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees(atan((camLocation - camLookAt).x/(camLocation - camLookAt).y)) rotate x*degrees(atan((camLocation - camLookAt).y/(camLocation - camLookAt).z)) rotate y*degrees(atan((camLocation - camLookAt).z/(camLocation - camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, t_blend.scale.x ,t_blend.scale.y ,t_blend.scale.z))#replace 4/3 by the ratio of each image found by some custom or existing function #using camera rotation valuesdirectly from blender seems much easier mappingBlend = (" translate <%.4g-0.5,%.4g-0.5,%.4g-0.5> rotate<%.4g,%.4g,%.4g> scale <%.4g,%.4g,%.4g>" % (t_blend.offset.x / 10 ,t_blend.offset.y / 10 ,t_blend.offset.z / 10, degrees(camera.rotation_euler[0]), degrees(camera.rotation_euler[1]), degrees(camera.rotation_euler[2]), t_blend.scale.x*0.85 , t_blend.scale.y*0.85 , t_blend.scale.z*0.85 )) #Putting the map on a plane would not introduce the skysphere distortion and allow for better image scale matching but also some waay to chose depth and size of the plane relative to camera. file.write('sky_sphere {\n') file.write('\tpigment {\n') file.write("\t\timage_map{%s \"%s\" %s}\n\t}\n\t%s\n" % (imageFormat(texturesBlend),texturesBlend,imgMapBG(t_blend),mappingBlend)) file.write('}\n') #file.write('\t\tscale 2\n') #file.write('\t\ttranslate -1\n') #For only Background gradient if not t: if world.use_sky_blend: file.write('sky_sphere {\n') file.write('\tpigment {\n') file.write('\t\tgradient z\n')#maybe Should follow the advice of POV doc about replacing gradient for skysphere..5.5 file.write('\t\tcolor_map {\n') if render.alpha_mode == 'STRAIGHT': file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.horizon_color))) file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n' % (tuple(world.zenith_color))) elif render.alpha_mode == 'PREMUL': file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.horizon_color))) file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n' % (tuple(world.zenith_color))) #aa premult not solved with transmit 1 else: file.write('\t\t\t[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.horizon_color))) file.write('\t\t\t[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n' % (tuple(world.zenith_color))) file.write('\t\t}\n') file.write('\t}\n') file.write('}\n') #sky_sphere alpha (transmit) is not translating into image alpha the same way as "background" if world.light_settings.use_indirect_light: scene.pov_radio_enable=1 #Maybe change the above to scene.pov_radio_enable = world.light_settings.use_indirect_light ? ############################################################### mist = world.mist_settings if mist.use_mist: file.write('fog {\n') file.write('\tdistance %.6f\n' % mist.depth) file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,))) #file.write('\tfog_offset %.6f\n' % mist.start) #file.write('\tfog_alt 5\n') #file.write('\tturbulence 0.2\n') #file.write('\tturb_depth 0.3\n') file.write('\tfog_type 1\n') file.write('}\n') def exportGlobalSettings(scene): file.write('global_settings {\n') file.write('\tmax_trace_level 7\n') if scene.pov_radio_enable: file.write('\tradiosity {\n') file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout) file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample) file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness) file.write("\t\tcount %d\n" % scene.pov_radio_count) file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound) file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold) file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor) file.write("\t\tmedia %d\n" % scene.pov_radio_media) file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse) file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count) file.write("\t\tnormal %d\n" % scene.pov_radio_normal) file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit) file.write('\t}\n') once=1 for material in bpy.data.materials: if material.subsurface_scattering.use and once: file.write("\tmm_per_unit %.6f\n" % (material.subsurface_scattering.scale * (-100) + 15))#In pov, the scale has reversed influence compared to blender. these number should correct that once=0 #In povray, the scale factor for all subsurface shaders needs to be the same if world: file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color)) if material.pov_photons_refraction or material.pov_photons_reflection: file.write("\tphotons {\n") file.write("\t\tspacing 0.003\n") file.write("\t\tmax_trace_level 4\n") file.write("\t\tadc_bailout 0.1\n") file.write("\t\tgather 30, 150\n") file.write("\t}\n") file.write('}\n') # Convert all materials to strings we can access directly per vertex. writeMaterial(None) # default material for material in bpy.data.materials: writeMaterial(material) #exportMaterials() sel = scene.objects exportLamps([l for l in sel if l.type == 'LAMP']) exportMeta([l for l in sel if l.type == 'META']) exportMeshs(scene, sel) exportCamera() exportWorld(scene.world) exportGlobalSettings(scene) file.close() def write_pov_ini(filename_ini, filename_pov, filename_image): scene = bpy.data.scenes[0] render = scene.render x = int(render.resolution_x * render.resolution_percentage * 0.01) y = int(render.resolution_y * render.resolution_percentage * 0.01) file = open(filename_ini, 'w') file.write('Input_File_Name="%s"\n' % filename_pov) file.write('Output_File_Name="%s"\n' % filename_image) file.write('Width=%d\n' % x) file.write('Height=%d\n' % y) # Needed for border render. ''' file.write('Start_Column=%d\n' % part.x) file.write('End_Column=%d\n' % (part.x+part.w)) file.write('Start_Row=%d\n' % (part.y)) file.write('End_Row=%d\n' % (part.y+part.h)) ''' file.write('Bounding_method=2\n')#The new automatic BSP is faster in most scenes file.write('Display=1\n')#Activated (turn this back off when better live exchange is done between the two programs (see next comment) file.write('Pause_When_Done=0\n') file.write('Output_File_Type=N\n') # PNG, with POV 3.7, can show background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #file.write('Output_File_Type=T\n') # TGA, best progressive loading file.write('Output_Alpha=1\n') if render.use_antialiasing: aa_mapping = {'5': 2, '8': 3, '11': 4, '16': 5} # method 2 (recursive) with higher max subdiv forced because no mipmapping in povray needs higher sampling. file.write('Antialias=1\n') file.write('Sampling_Method=2n') file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples]) file.write('Antialias_Threshold=0.1\n')#rather high settings but necessary. file.write('Jitter=off\n')#prevent animation flicker else: file.write('Antialias=0\n') file.close() class PovrayRender(bpy.types.RenderEngine): bl_idname = 'POVRAY_RENDER' bl_label = "Povray 3.7" DELAY = 0.05 def _export(self, scene): import tempfile self._temp_file_in = tempfile.mktemp(suffix='.pov') self._temp_file_out = tempfile.mktemp(suffix='.png')#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #self._temp_file_out = tempfile.mktemp(suffix='.tga') self._temp_file_ini = tempfile.mktemp(suffix='.ini') ''' self._temp_file_in = '/test.pov' self._temp_file_out = '/test.png'#PNG with POV 3.7, can show the background color with alpha. In the long run using the Povray interactive preview like bishop 3D could solve the preview for all formats. #self._temp_file_out = '/test.tga' self._temp_file_ini = '/test.ini' ''' def info_callback(txt): self.update_stats("", "POVRAY 3.7: " + txt) write_pov(self._temp_file_in, scene, info_callback) def _render(self): try: os.remove(self._temp_file_out) # so as not to load the old file except: #OSError: #was that the proper error type? pass write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out) print ("***-STARTING-***") pov_binary = "povray" extra_args = [] if sys.platform == 'win32': import winreg regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.7\\Windows') if bitness == 64: pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64' else: pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine' else: # DH - added -d option to prevent render window popup which leads to segfault on linux extra_args.append("-d") if 1: # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists try: self._process = subprocess.Popen([pov_binary, self._temp_file_ini] + extra_args) # stdout=subprocess.PIPE, stderr=subprocess.PIPE except OSError: # TODO, report api print("POVRAY 3.7: could not execute '%s', possibly povray isn't installed" % pov_binary) import traceback traceback.print_exc() print ("***-DONE-***") return False else: # This works too but means we have to wait until its done os.system('%s %s' % (pov_binary, self._temp_file_ini)) # print ("***-DONE-***") return True def _cleanup(self): for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out): try: os.remove(f) pass except OSError: #was that the proper error type? pass self.update_stats("", "") _process = None def render(self, scene): self.update_stats("", "POVRAY 3.7: Exporting data from Blender") self._export(scene) self.update_stats("", "POVRAY 3.7: Parsing File") if not self._render(): self.update_stats("", "POVRAY 3.7: Not found") return r = scene.render ##WIP output format ## if r.file_format == 'OPENEXR': ## fformat = 'EXR' ## render.color_mode = 'RGBA' ## else: ## fformat = 'TGA' ## r.file_format = 'TARGA' ## r.color_mode = 'RGBA' # compute resolution x = int(r.resolution_x * r.resolution_percentage * 0.01) y = int(r.resolution_y * r.resolution_percentage * 0.01) # Wait for the file to be created while not os.path.exists(self._temp_file_out): # print("***POV WAITING FOR FILE***") if self.test_break(): try: # DH - added various checks for _process and some debug output print()s if self._process: self._process.terminate() print("***POV INTERRUPTED***") except: #OSError: #was that the proper error type? pass break poll_result = self._process.poll() if self._process and poll_result != None: print("***POV PROCESS FAILED : %s ***" % poll_result) self.update_stats("", "POVRAY 3.7: Failed") break time.sleep(self.DELAY) if os.path.exists(self._temp_file_out): # print("***POV FILE OK***") self.update_stats("", "POVRAY 3.7: Rendering") prev_size = -1 def update_image(): # print("***POV UPDATING IMAGE***") result = self.begin_result(0, 0, x, y) lay = result.layers[0] # possible the image wont load early on. try: lay.load_from_file(self._temp_file_out) except: #OSError: #was that the proper error type? pass self.end_result(result) # Update while povray renders while True: # print("***POV RENDER LOOP***") # test if povray exists if self._process and self._process.poll() != None: print("***POV PROCESS FINISHED***") update_image() break # user exit if self.test_break(): try: if self._process: self._process.terminate() print("***POV PROCESS INTERRUPTED***") except: #OSError: #was that the proper error type? pass break # Would be nice to redirect the output # stdout_value, stderr_value = self._process.communicate() # locks # check if the file updated new_size = os.path.getsize(self._temp_file_out) if new_size != prev_size: update_image() prev_size = new_size time.sleep(self.DELAY) else: print("***POV FILE NOT FOUND***") print("***POV FINISHED***") self._cleanup()