Welcome to mirror list, hosted at ThFree Co, Russian Federation.

make_struts.py « add_advanced_objects - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 58e149abaefa31dcc4ade447f490889f75b34ea1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
#  Copyright (C) 2012 Bill Currie <bill@taniwha.org>
#  Date: 2012/2/20

# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8 compliant>

import bpy
import bmesh
from bpy.types import Operator
from bpy.props import (
        FloatProperty,
        IntProperty,
        BoolProperty,
        )
from mathutils import (
        Vector,
        Matrix,
        Quaternion,
        )
from math import (
        pi, cos,
        sin,
        )

cossin = []

# Initialize the cossin table based on the number of segments.
#
#   @param n  The number of segments into which the circle will be
#             divided.
#   @return   None


def build_cossin(n):
    global cossin
    cossin = []
    for i in range(n):
        a = 2 * pi * i / n
        cossin.append((cos(a), sin(a)))


def select_up(axis):
    # if axis.length != 0 and (abs(axis[0] / axis.length) < 1e-5 and abs(axis[1] / axis.length) < 1e-5):
    if (abs(axis[0] / axis.length) < 1e-5 and abs(axis[1] / axis.length) < 1e-5):
        up = Vector((-1, 0, 0))
    else:
        up = Vector((0, 0, 1))
    return up

# Make a single strut in non-manifold mode.
#
#   The strut will be a "cylinder" with @a n sides. The vertices of the
#   cylinder will be @a od / 2 from the center of the cylinder. Optionally,
#   extra loops will be placed (@a od - @a id) / 2 from either end. The
#   strut will be either a simple, open-ended single-surface "cylinder", or a
#   double walled "pipe" with the outer wall vertices @a od / 2 from the center
#   and the inner wall vertices @a id / 2 from the center. The two walls will
#   be joined together at the ends with a face ring such that the entire strut
#   is a manifold object. All faces of the strut will be quads.
#
#   @param v1       Vertex representing one end of the strut's center-line.
#   @param v2       Vertex representing the other end of the strut's
#                   center-line.
#   @param id       The diameter of the inner wall of a solid strut. Used for
#                   calculating the position of the extra loops irrespective
#                   of the solidity of the strut.
#   @param od       The diameter of the outer wall of a solid strut, or the
#                   diameter of a non-solid strut.
#   @param solid    If true, the strut will be made solid such that it has an
#                   inner wall (diameter @a id), an outer wall (diameter
#                   @a od), and face rings at either end of the strut such
#                   the strut is a manifold object. If false, the strut is
#                   a simple, open-ended "cylinder".
#   @param loops    If true, edge loops will be placed at either end of the
#                   strut, (@a od - @a id) / 2 from the end of the strut. The
#                   loops make subsurfed solid struts work nicely.
#   @return         A tuple containing a list of vertices and a list of faces.
#                   The face vertex indices are accurate only for the list of
#                   vertices for the created strut.


def make_strut(v1, v2, ind, od, n, solid, loops):
    v1 = Vector(v1)
    v2 = Vector(v2)
    axis = v2 - v1
    pos = [(0, od / 2)]
    if loops:
        pos += [((od - ind) / 2, od / 2),
                (axis.length - (od - ind) / 2, od / 2)]
    pos += [(axis.length, od / 2)]
    if solid:
        pos += [(axis.length, ind / 2)]
        if loops:
            pos += [(axis.length - (od - ind) / 2, ind / 2),
                    ((od - ind) / 2, ind / 2)]
        pos += [(0, ind / 2)]
    vps = len(pos)
    fps = vps
    if not solid:
        fps -= 1
    fw = axis.copy()
    fw.normalize()
    up = select_up(axis)
    lf = up.cross(fw)
    lf.normalize()
    up = fw.cross(lf)
    mat = Matrix((fw, lf, up))
    mat.transpose()
    verts = [None] * n * vps
    faces = [None] * n * fps
    for i in range(n):
        base = (i - 1) * vps
        x = cossin[i][0]
        y = cossin[i][1]
        for j in range(vps):
            p = Vector((pos[j][0], pos[j][1] * x, pos[j][1] * y))
            p = mat * p
            verts[i * vps + j] = p + v1
        if i:
            for j in range(fps):
                f = (i - 1) * fps + j
                faces[f] = [base + j, base + vps + j,
                            base + vps + (j + 1) % vps, base + (j + 1) % vps]
    base = len(verts) - vps
    i = n
    for j in range(fps):
        f = (i - 1) * fps + j
        faces[f] = [base + j, j, (j + 1) % vps, base + (j + 1) % vps]

    return verts, faces


# Project a point along a vector onto a plane.
#
#   Really, just find the intersection of the line represented by @a point
#   and @a dir with the plane represented by @a norm and @a p. However, if
#   the point is on or in front of the plane, or the line is parallel to
#   the plane, the original point will be returned.
#
#   @param point    The point to be projected onto the plane.
#   @param dir      The vector along which the point will be projected.
#   @param norm     The normal of the plane onto which the point will be
#                   projected.
#   @param p        A point through which the plane passes.
#   @return         A vector representing the projected point, or the
#                   original point.

def project_point(point, dir, norm, p):
    d = (point - p).dot(norm)
    if d >= 0:
        # the point is already on or in front of the plane
        return point
    v = dir.dot(norm)
    if v * v < 1e-8:
        # the plane is unreachable
        return point
    return point - dir * d / v


# Make a simple strut for debugging.
#
#   The strut is just a single quad representing the Z axis of the edge.
#
#   @param mesh     The base mesh. Used for finding the edge vertices.
#   @param edge_num The number of the current edge. For the face vertex
#                   indices.
#   @param edge     The edge for which the strut will be built.
#   @param od       Twice the width of the strut.
#   @return         A tuple containing a list of vertices and a list of faces.
#                   The face vertex indices are pre-adjusted by the edge
#                   number.
#   @fixme          The face vertex indices should be accurate for the local
#                   vertices (consistency)

def make_debug_strut(mesh, edge_num, edge, od):
    v = [mesh.verts[edge.verts[0].index].co,
         mesh.verts[edge.verts[1].index].co,
         None, None]
    v[2] = v[1] + edge.z * od / 2
    v[3] = v[0] + edge.z * od / 2
    f = [[edge_num * 4 + 0, edge_num * 4 + 1,
          edge_num * 4 + 2, edge_num * 4 + 3]]
    return v, f


# Make a cylinder with ends clipped to the end-planes of the edge.
#
#   The strut is just a single quad representing the Z axis of the edge.
#
#   @param mesh     The base mesh. Used for finding the edge vertices.
#   @param edge_num The number of the current edge. For the face vertex
#                   indices.
#   @param edge     The edge for which the strut will be built.
#   @param od       The diameter of the strut.
#   @return         A tuple containing a list of vertices and a list of faces.
#                   The face vertex indices are pre-adjusted by the edge
#                   number.
#   @fixme          The face vertex indices should be accurate for the local
#                   vertices (consistency)

def make_clipped_cylinder(mesh, edge_num, edge, od):
    n = len(cossin)
    cyl = [None] * n
    v0 = mesh.verts[edge.verts[0].index].co
    c0 = v0 + od * edge.y
    v1 = mesh.verts[edge.verts[1].index].co
    c1 = v1 - od * edge.y
    for i in range(n):
        x = cossin[i][0]
        y = cossin[i][1]
        r = (edge.z * x - edge.x * y) * od / 2
        cyl[i] = [c0 + r, c1 + r]
        for p in edge.verts[0].planes:
            cyl[i][0] = project_point(cyl[i][0], edge.y, p, v0)
        for p in edge.verts[1].planes:
            cyl[i][1] = project_point(cyl[i][1], -edge.y, p, v1)
    v = [None] * n * 2
    f = [None] * n
    base = edge_num * n * 2
    for i in range(n):
        v[i * 2 + 0] = cyl[i][1]
        v[i * 2 + 1] = cyl[i][0]
        f[i] = [None] * 4
        f[i][0] = base + i * 2 + 0
        f[i][1] = base + i * 2 + 1
        f[i][2] = base + (i * 2 + 3) % (n * 2)
        f[i][3] = base + (i * 2 + 2) % (n * 2)
    return v, f


# Represent a vertex in the base mesh, with additional information.
#
#   These vertices are @b not shared between edges.
#
#   @var index  The index of the vert in the base mesh
#   @var edge   The edge to which this vertex is attached.
#   @var edges  A tuple of indicess of edges attached to this vert, not
#               including the edge to which this vertex is attached.
#   @var planes List of vectors representing the normals of the planes that
#               bisect the angle between this vert's edge and each other
#               adjacant edge.

class SVert:
    # Create a vertex holding additional information about the bmesh vertex.
    #   @param bmvert   The bmesh vertex for which additional information is
    #                   to be stored.
    #   @param bmedge   The edge to which this vertex is attached.

    def __init__(self, bmvert, bmedge, edge):
        self.index = bmvert.index
        self.edge = edge
        edges = bmvert.link_edges[:]
        edges.remove(bmedge)
        self.edges = tuple(map(lambda e: e.index, edges))
        self.planes = []

    def calc_planes(self, edges):
        for ed in self.edges:
            self.planes.append(calc_plane_normal(self.edge, edges[ed]))


# Represent an edge in the base mesh, with additional information.
#
#   Edges do not share vertices so that the edge is always on the front (back?
#   must verify) side of all the planes attached to its vertices. If the
#   vertices were shared, the edge could be on either side of the planes, and
#   there would be planes attached to the vertex that are irrelevant to the
#   edge.
#
#   @var index      The index of the edge in the base mesh.
#   @var bmedge     Cached reference to this edge's bmedge
#   @var verts      A tuple of 2 SVert vertices, one for each end of the
#                   edge. The vertices are @b not shared between edges.
#                   However, if two edges are connected via a vertex in the
#                   bmesh, their corresponding SVert vertices will have the
#                   the same index value.
#   @var x          The x axis of the edges local frame of reference.
#                   Initially invalid.
#   @var y          The y axis of the edges local frame of reference.
#                   Initialized such that the edge runs from verts[0] to
#                   verts[1] along the negative y axis.
#   @var z          The z axis of the edges local frame of reference.
#                   Initially invalid.


class SEdge:

    def __init__(self, bmesh, bmedge):

        self.index = bmedge.index
        self.bmedge = bmedge
        bmesh.verts.ensure_lookup_table()
        self.verts = (SVert(bmedge.verts[0], bmedge, self),
                      SVert(bmedge.verts[1], bmedge, self))
        self.y = (bmesh.verts[self.verts[0].index].co -
                  bmesh.verts[self.verts[1].index].co)
        self.y.normalize()
        self.x = self.z = None

    def set_frame(self, up):
        self.x = self.y.cross(up)
        self.x.normalize()
        self.z = self.x.cross(self.y)

    def calc_frame(self, base_edge):
        baxis = base_edge.y
        if (self.verts[0].index == base_edge.verts[0].index or
              self.verts[1].index == base_edge.verts[1].index):
            axis = -self.y
        elif (self.verts[0].index == base_edge.verts[1].index or
                self.verts[1].index == base_edge.verts[0].index):
            axis = self.y
        else:
            raise ValueError("edges not connected")
        if baxis.dot(axis) in (-1, 1):
            # aligned axis have their up/z aligned
            up = base_edge.z
        else:
            # Get the unit vector dividing the angle (theta) between baxis and
            # axis in two equal parts
            h = (baxis + axis)
            h.normalize()
            # (cos(theta/2), sin(theta/2) * n) where n is the unit vector of the
            # axis rotating baxis onto axis
            q = Quaternion([baxis.dot(h)] + list(baxis.cross(h)))
            # rotate the base edge's up around the rotation axis (blender
            # quaternion shortcut:)
            up = q * base_edge.z
        self.set_frame(up)

    def calc_vert_planes(self, edges):
        for v in self.verts:
            v.calc_planes(edges)

    def bisect_faces(self):
        n1 = self.bmedge.link_faces[0].normal
        if len(self.bmedge.link_faces) > 1:
            n2 = self.bmedge.link_faces[1].normal
            return (n1 + n2).normalized()
        return n1

    def calc_simple_frame(self):
        return self.y.cross(select_up(self.y)).normalized()

    def find_edge_frame(self, sedges):
        if self.bmedge.link_faces:
            return self.bisect_faces()
        if self.verts[0].edges or self.verts[1].edges:
            edges = list(self.verts[0].edges + self.verts[1].edges)
            for i in range(len(edges)):
                edges[i] = sedges[edges[i]]
            while edges and edges[-1].y.cross(self.y).length < 1e-3:
                edges.pop()
            if not edges:
                return self.calc_simple_frame()
            n1 = edges[-1].y.cross(self.y).normalized()
            edges.pop()
            while edges and edges[-1].y.cross(self.y).cross(n1).length < 1e-3:
                edges.pop()
            if not edges:
                return n1
            n2 = edges[-1].y.cross(self.y).normalized()
            return (n1 + n2).normalized()
        return self.calc_simple_frame()


def calc_plane_normal(edge1, edge2):
    if edge1.verts[0].index == edge2.verts[0].index:
        axis1 = -edge1.y
        axis2 = edge2.y
    elif edge1.verts[1].index == edge2.verts[1].index:
        axis1 = edge1.y
        axis2 = -edge2.y
    elif edge1.verts[0].index == edge2.verts[1].index:
        axis1 = -edge1.y
        axis2 = -edge2.y
    elif edge1.verts[1].index == edge2.verts[0].index:
        axis1 = edge1.y
        axis2 = edge2.y
    else:
        raise ValueError("edges not connected")
    # Both axis1 and axis2 are unit vectors, so this will produce a vector
    # bisects the two, so long as they are not 180 degrees apart (in which
    # there are infinite solutions).
    return (axis1 + axis2).normalized()


def build_edge_frames(edges):
    edge_set = set(edges)
    while edge_set:
        edge_queue = [edge_set.pop()]
        edge_queue[0].set_frame(edge_queue[0].find_edge_frame(edges))
        while edge_queue:
            current_edge = edge_queue.pop()
            for i in (0, 1):
                for e in current_edge.verts[i].edges:
                    edge = edges[e]
                    if edge.x is not None:  # edge already processed
                        continue
                    edge_set.remove(edge)
                    edge_queue.append(edge)
                    edge.calc_frame(current_edge)


def make_manifold_struts(truss_obj, od, segments):
    bpy.context.scene.objects.active = truss_obj
    bpy.ops.object.editmode_toggle()
    truss_mesh = bmesh.from_edit_mesh(truss_obj.data).copy()
    bpy.ops.object.editmode_toggle()
    edges = [None] * len(truss_mesh.edges)
    for i, e in enumerate(truss_mesh.edges):
        edges[i] = SEdge(truss_mesh, e)
    build_edge_frames(edges)
    verts = []
    faces = []
    for e, edge in enumerate(edges):
        # v, f = make_debug_strut(truss_mesh, e, edge, od)
        edge.calc_vert_planes(edges)
        v, f = make_clipped_cylinder(truss_mesh, e, edge, od)
        verts += v
        faces += f
    return verts, faces


def make_simple_struts(truss_mesh, ind, od, segments, solid, loops):
    vps = 2
    if solid:
        vps *= 2
    if loops:
        vps *= 2
    fps = vps
    if not solid:
        fps -= 1

    verts = [None] * len(truss_mesh.edges) * segments * vps
    faces = [None] * len(truss_mesh.edges) * segments * fps
    vbase = 0
    fbase = 0

    for e in truss_mesh.edges:
        v1 = truss_mesh.vertices[e.vertices[0]]
        v2 = truss_mesh.vertices[e.vertices[1]]
        v, f = make_strut(v1.co, v2.co, ind, od, segments, solid, loops)
        for fv in f:
            for i in range(len(fv)):
                fv[i] += vbase
        for i in range(len(v)):
            verts[vbase + i] = v[i]
        for i in range(len(f)):
            faces[fbase + i] = f[i]
        # if not base % 12800:
        #    print (base * 100 / len(verts))
        vbase += vps * segments
        fbase += fps * segments

    return verts, faces


def create_struts(self, context, ind, od, segments, solid, loops, manifold):
    build_cossin(segments)

    for truss_obj in bpy.context.scene.objects:
        if not truss_obj.select:
            continue
        truss_obj.select = False
        truss_mesh = truss_obj.to_mesh(context.scene, True, 'PREVIEW')
        if not truss_mesh.edges:
            continue
        if manifold:
            verts, faces = make_manifold_struts(truss_obj, od, segments)
        else:
            verts, faces = make_simple_struts(truss_mesh, ind, od, segments,
                                              solid, loops)
        mesh = bpy.data.meshes.new("Struts")
        mesh.from_pydata(verts, [], faces)
        obj = bpy.data.objects.new("Struts", mesh)
        bpy.context.scene.objects.link(obj)
        obj.select = True
        obj.location = truss_obj.location
        bpy.context.scene.objects.active = obj
        mesh.update()


class Struts(Operator):
    bl_idname = "mesh.generate_struts"
    bl_label = "Struts"
    bl_description = ("Add one or more struts meshes based on selected truss meshes \n"
                      "Note: can get very high poly\n"
                      "Needs an existing Active Mesh Object")
    bl_options = {'REGISTER', 'UNDO'}

    ind = FloatProperty(
            name="Inside Diameter",
            description="Diameter of inner surface",
            min=0.0, soft_min=0.0,
            max=100, soft_max=100,
            default=0.04
            )
    od = FloatProperty(
            name="Outside Diameter",
            description="Diameter of outer surface",
            min=0.001, soft_min=0.001,
            max=100, soft_max=100,
            default=0.05
            )
    manifold = BoolProperty(
            name="Manifold",
            description="Connect struts to form a single solid",
            default=False
            )
    solid = BoolProperty(
            name="Solid",
            description="Create inner surface",
            default=False
            )
    loops = BoolProperty(
            name="Loops",
            description="Create sub-surf friendly loops",
            default=False
            )
    segments = IntProperty(
            name="Segments",
            description="Number of segments around strut",
            min=3, soft_min=3,
            max=64, soft_max=64,
            default=12
            )

    def draw(self, context):
        layout = self.layout

        col = layout.column(align=True)
        col.prop(self, "ind")
        col.prop(self, "od")
        col.prop(self, "segments")
        col.separator()

        col.prop(self, "manifold")
        col.prop(self, "solid")
        col.prop(self, "loops")

    @classmethod
    def poll(cls, context):
        obj = context.active_object
        return obj is not None and obj.type == "MESH"

    def execute(self, context):
        store_undo = bpy.context.user_preferences.edit.use_global_undo
        bpy.context.user_preferences.edit.use_global_undo = False
        keywords = self.as_keywords()

        try:
            create_struts(self, context, **keywords)
            bpy.context.user_preferences.edit.use_global_undo = store_undo

            return {"FINISHED"}

        except Exception as e:
            bpy.context.user_preferences.edit.use_global_undo = store_undo
            self.report({"WARNING"},
                        "Make Struts could not be performed. Operation Cancelled")
            print("\n[mesh.generate_struts]\n{}".format(e))
            return {"CANCELLED"}


def register():
    bpy.utils.register_module(__name__)


def unregister():
    bpy.utils.unregister_module(__name__)


if __name__ == "__main__":
    register()