Welcome to mirror list, hosted at ThFree Co, Russian Federation.

DelaunayVoronoi.py « add_advanced_objects_panels - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: dcce7f689eac85de28656a57d6baa5a8275bf33b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
# -*- coding: utf-8 -*-

# Voronoi diagram calculator/ Delaunay triangulator
#
# - Voronoi Diagram Sweepline algorithm and C code by Steven Fortune,
#   1987, http://ect.bell-labs.com/who/sjf/
# - Python translation to file voronoi.py by Bill Simons, 2005, http://www.oxfish.com/
# - Additional changes for QGIS by Carson Farmer added November 2010
# - 2012 Ported to Python 3 and additional clip functions by domlysz at gmail.com
#
# Calculate Delaunay triangulation or the Voronoi polygons for a set of
# 2D input points.
#
# Derived from code bearing the following notice:
#
#  The author of this software is Steven Fortune.  Copyright (c) 1994 by AT&T
#  Bell Laboratories.
#  Permission to use, copy, modify, and distribute this software for any
#  purpose without fee is hereby granted, provided that this entire notice
#  is included in all copies of any software which is or includes a copy
#  or modification of this software and in all copies of the supporting
#  documentation for such software.
#  THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
#  WARRANTY.  IN PARTICULAR, NEITHER THE AUTHORS NOR AT&T MAKE ANY
#  REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
#  OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
#
# Comments were incorporated from Shane O'Sullivan's translation of the
# original code into C++ (http://mapviewer.skynet.ie/voronoi.html)
#
# Steve Fortune's homepage: http://netlib.bell-labs.com/cm/cs/who/sjf/index.html
#
# For programmatic use, two functions are available:
#
#   computeVoronoiDiagram(points, xBuff, yBuff, polygonsOutput=False, formatOutput=False):
#   Takes :
#       - a list of point objects (which must have x and y fields).
#       - x and y buffer values which are the expansion percentages of the
#         bounding box rectangle including all input points.
#       Returns :
#       - With default options :
#         A list of 2-tuples, representing the two points of each Voronoi diagram edge.
#         Each point contains 2-tuples which are the x,y coordinates of point.
#         if formatOutput is True, returns :
#               - a list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices.
#               - and a list of 2-tuples (v1, v2) representing edges of the Voronoi diagram.
#                 v1 and v2 are the indices of the vertices at the end of the edge.
#       - If polygonsOutput option is True, returns :
#         A dictionary of polygons, keys are the indices of the input points,
#         values contains n-tuples representing the n points of each Voronoi diagram polygon.
#         Each point contains 2-tuples which are the x,y coordinates of point.
#         if formatOutput is True, returns :
#               - A list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices.
#               - and a dictionary of input points indices. Values contains n-tuples representing
#                 the n points of each Voronoi diagram polygon.
#                 Each tuple contains the vertex indices of the polygon vertices.
#
#   computeDelaunayTriangulation(points):
#       Takes a list of point objects (which must have x and y fields).
#       Returns a list of 3-tuples: the indices of the points that form a Delaunay triangle.

import bpy
import math

# Globals
TOLERANCE = 1e-9
BIG_FLOAT = 1e38


class Context(object):

    def __init__(self):
        self.doPrint = 0
        self.debug = 0

        # tuple (xmin, xmax, ymin, ymax)
        self.extent = ()
        self.triangulate = False
        # list of vertex 2-tuples: (x,y)
        self.vertices = []
        # equation of line 3-tuple (a b c), for the equation of the line a*x+b*y = c
        self.lines = []

        # edge 3-tuple: (line index, vertex 1 index, vertex 2 index)
        # if either vertex index is -1, the edge extends to infinity
        self.edges = []
        # 3-tuple of vertex indices
        self.triangles = []
        # a dict of site:[edges] pairs
        self.polygons = {}


# Clip functions #
    def getClipEdges(self):
        xmin, xmax, ymin, ymax = self.extent
        clipEdges = []
        for edge in self.edges:
            equation = self.lines[edge[0]]       # line equation
            if edge[1] != -1 and edge[2] != -1:  # finite line
                x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1]
                x2, y2 = self.vertices[edge[2]][0], self.vertices[edge[2]][1]
                pt1, pt2 = (x1, y1), (x2, y2)
                inExtentP1, inExtentP2 = self.inExtent(x1, y1), self.inExtent(x2, y2)
                if inExtentP1 and inExtentP2:
                    clipEdges.append((pt1, pt2))
                elif inExtentP1 and not inExtentP2:
                    pt2 = self.clipLine(x1, y1, equation, leftDir=False)
                    clipEdges.append((pt1, pt2))
                elif not inExtentP1 and inExtentP2:
                    pt1 = self.clipLine(x2, y2, equation, leftDir=True)
                    clipEdges.append((pt1, pt2))
            else:  # infinite line
                if edge[1] != -1:
                    x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1]
                    leftDir = False
                else:
                    x1, y1 = self.vertices[edge[2]][0], self.vertices[edge[2]][1]
                    leftDir = True
                if self.inExtent(x1, y1):
                    pt1 = (x1, y1)
                    pt2 = self.clipLine(x1, y1, equation, leftDir)
                    clipEdges.append((pt1, pt2))
        return clipEdges

    def getClipPolygons(self, closePoly):
        xmin, xmax, ymin, ymax = self.extent
        poly = {}
        for inPtsIdx, edges in self.polygons.items():
            clipEdges = []
            for edge in edges:
                equation = self.lines[edge[0]]       # line equation
                if edge[1] != -1 and edge[2] != -1:  # finite line
                    x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1]
                    x2, y2 = self.vertices[edge[2]][0], self.vertices[edge[2]][1]
                    pt1, pt2 = (x1, y1), (x2, y2)
                    inExtentP1, inExtentP2 = self.inExtent(x1, y1), self.inExtent(x2, y2)
                    if inExtentP1 and inExtentP2:
                        clipEdges.append((pt1, pt2))
                    elif inExtentP1 and not inExtentP2:
                        pt2 = self.clipLine(x1, y1, equation, leftDir=False)
                        clipEdges.append((pt1, pt2))
                    elif not inExtentP1 and inExtentP2:
                        pt1 = self.clipLine(x2, y2, equation, leftDir=True)
                        clipEdges.append((pt1, pt2))
                else:  # infinite line
                    if edge[1] != -1:
                        x1, y1 = self.vertices[edge[1]][0], self.vertices[edge[1]][1]
                        leftDir = False
                    else:
                        x1, y1 = self.vertices[edge[2]][0], self.vertices[edge[2]][1]
                        leftDir = True
                    if self.inExtent(x1, y1):
                        pt1 = (x1, y1)
                        pt2 = self.clipLine(x1, y1, equation, leftDir)
                        clipEdges.append((pt1, pt2))
            # create polygon definition from edges and check if polygon is completely closed
            polyPts, complete = self.orderPts(clipEdges)
            if not complete:
                startPt = polyPts[0]
                endPt = polyPts[-1]
                # if start & end points are collinear then they are along an extent border
                if startPt[0] == endPt[0] or startPt[1] == endPt[1]:
                    polyPts.append(polyPts[0])  # simple close
                else:  # close at extent corner
                    # upper left
                    if (startPt[0] == xmin and endPt[1] == ymax) or (endPt[0] == xmin and startPt[1] == ymax):
                        polyPts.append((xmin, ymax))  # corner point
                        polyPts.append(polyPts[0])    # close polygon
                    # upper right
                    if (startPt[0] == xmax and endPt[1] == ymax) or (endPt[0] == xmax and startPt[1] == ymax):
                        polyPts.append((xmax, ymax))
                        polyPts.append(polyPts[0])
                    # bottom right
                    if (startPt[0] == xmax and endPt[1] == ymin) or (endPt[0] == xmax and startPt[1] == ymin):
                        polyPts.append((xmax, ymin))
                        polyPts.append(polyPts[0])
                    # bottom left
                    if (startPt[0] == xmin and endPt[1] == ymin) or (endPt[0] == xmin and startPt[1] == ymin):
                        polyPts.append((xmin, ymin))
                        polyPts.append(polyPts[0])
            if not closePoly:  # unclose polygon
                polyPts = polyPts[:-1]
            poly[inPtsIdx] = polyPts
        return poly

    def clipLine(self, x1, y1, equation, leftDir):
        xmin, xmax, ymin, ymax = self.extent
        a, b, c = equation
        if b == 0:       # vertical line
            if leftDir:  # left is bottom of vertical line
                return (x1, ymax)
            else:
                return (x1, ymin)
        elif a == 0:     # horizontal line
            if leftDir:
                return (xmin, y1)
            else:
                return (xmax, y1)
        else:
            y2_at_xmin = (c - a * xmin) / b
            y2_at_xmax = (c - a * xmax) / b
            x2_at_ymin = (c - b * ymin) / a
            x2_at_ymax = (c - b * ymax) / a
            intersectPts = []
            if ymin <= y2_at_xmin <= ymax:  # valid intersect point
                intersectPts.append((xmin, y2_at_xmin))
            if ymin <= y2_at_xmax <= ymax:
                intersectPts.append((xmax, y2_at_xmax))
            if xmin <= x2_at_ymin <= xmax:
                intersectPts.append((x2_at_ymin, ymin))
            if xmin <= x2_at_ymax <= xmax:
                intersectPts.append((x2_at_ymax, ymax))
            # delete duplicate (happens if intersect point is at extent corner)
            intersectPts = set(intersectPts)
            # choose target intersect point
            if leftDir:
                pt = min(intersectPts)  # smaller x value
            else:
                pt = max(intersectPts)
            return pt

    def inExtent(self, x, y):
        xmin, xmax, ymin, ymax = self.extent
        return x >= xmin and x <= xmax and y >= ymin and y <= ymax

    def orderPts(self, edges):
        poly = []  # returned polygon points list [pt1, pt2, pt3, pt4 ....]
        pts = []
        # get points list
        for edge in edges:
            pts.extend([pt for pt in edge])
        # try to get start & end point
        try:
            startPt, endPt = [pt for pt in pts if pts.count(pt) < 2]  # start and end point aren't duplicate
        except:  # all points are duplicate --> polygon is complete --> append some or other edge points
            complete = True
            firstIdx = 0
            poly.append(edges[0][0])
            poly.append(edges[0][1])
        else:  # incomplete --> append the first edge points
            complete = False
            # search first edge
            for i, edge in enumerate(edges):
                if startPt in edge:  # find
                    firstIdx = i
                    break
            poly.append(edges[firstIdx][0])
            poly.append(edges[firstIdx][1])
            if poly[0] != startPt:
                poly.reverse()
        # append next points in list
        del edges[firstIdx]
        while edges:  # all points will be treated when edges list will be empty
            currentPt = poly[-1]  # last item
            for i, edge in enumerate(edges):
                if currentPt == edge[0]:
                    poly.append(edge[1])
                    break
                elif currentPt == edge[1]:
                    poly.append(edge[0])
                    break
            del edges[i]
        return poly, complete

    def setClipBuffer(self, xpourcent, ypourcent):
        xmin, xmax, ymin, ymax = self.extent
        witdh = xmax - xmin
        height = ymax - ymin
        xmin = xmin - witdh * xpourcent / 100
        xmax = xmax + witdh * xpourcent / 100
        ymin = ymin - height * ypourcent / 100
        ymax = ymax + height * ypourcent / 100
        self.extent = xmin, xmax, ymin, ymax

    # End clip functions #

    def outSite(self, s):
        if(self.debug):
            print("site (%d) at %f %f" % (s.sitenum, s.x, s.y))
        elif(self.triangulate):
            pass
        elif(self.doPrint):
            print("s %f %f" % (s.x, s.y))

    def outVertex(self, s):
        self.vertices.append((s.x, s.y))
        if(self.debug):
            print("vertex(%d) at %f %f" % (s.sitenum, s.x, s.y))
        elif(self.triangulate):
            pass
        elif(self.doPrint):
            print("v %f %f" % (s.x, s.y))

    def outTriple(self, s1, s2, s3):
        self.triangles.append((s1.sitenum, s2.sitenum, s3.sitenum))
        if (self.debug):
            print("circle through left=%d right=%d bottom=%d" % (s1.sitenum, s2.sitenum, s3.sitenum))
        elif (self.triangulate and self.doPrint):
            print("%d %d %d" % (s1.sitenum, s2.sitenum, s3.sitenum))

    def outBisector(self, edge):
        self.lines.append((edge.a, edge.b, edge.c))
        if (self.debug):
            print("line(%d) %gx+%gy=%g, bisecting %d %d" % (edge.edgenum, edge.a, edge.b,
                                                            edge.c, edge.reg[0].sitenum,
                                                            edge.reg[1].sitenum)
                )
        elif(self.doPrint):
            print("l %f %f %f" % (edge.a, edge.b, edge.c))

    def outEdge(self, edge):
        sitenumL = -1
        if edge.ep[Edge.LE] is not None:
            sitenumL = edge.ep[Edge.LE].sitenum
        sitenumR = -1
        if edge.ep[Edge.RE] is not None:
            sitenumR = edge.ep[Edge.RE].sitenum

        # polygons dict add by CF
        if edge.reg[0].sitenum not in self.polygons:
            self.polygons[edge.reg[0].sitenum] = []
        if edge.reg[1].sitenum not in self.polygons:
            self.polygons[edge.reg[1].sitenum] = []
        self.polygons[edge.reg[0].sitenum].append((edge.edgenum, sitenumL, sitenumR))
        self.polygons[edge.reg[1].sitenum].append((edge.edgenum, sitenumL, sitenumR))

        self.edges.append((edge.edgenum, sitenumL, sitenumR))

        if (not self.triangulate):
            if (self.doPrint):
                print("e %d" % edge.edgenum)
                print(" %d " % sitenumL)
                print("%d" % sitenumR)


def voronoi(siteList, context):
    context.extent = siteList.extent
    edgeList = EdgeList(siteList.xmin, siteList.xmax, len(siteList))
    priorityQ = PriorityQueue(siteList.ymin, siteList.ymax, len(siteList))
    siteIter = siteList.iterator()

    bottomsite = siteIter.next()
    context.outSite(bottomsite)
    newsite = siteIter.next()
    minpt = Site(-BIG_FLOAT, -BIG_FLOAT)
    while True:
        if not priorityQ.isEmpty():
            minpt = priorityQ.getMinPt()

        if (newsite and (priorityQ.isEmpty() or newsite < minpt)):
            # newsite is smallest -  this is a site event
            context.outSite(newsite)

            # get first Halfedge to the LEFT and RIGHT of the new site
            lbnd = edgeList.leftbnd(newsite)
            rbnd = lbnd.right

            # if this halfedge has no edge, bot = bottom site (whatever that is)
            # create a new edge that bisects
            bot = lbnd.rightreg(bottomsite)
            edge = Edge.bisect(bot, newsite)
            context.outBisector(edge)

            # create a new Halfedge, setting its pm field to 0 and insert
            # this new bisector edge between the left and right vectors in
            # a linked list
            bisector = Halfedge(edge, Edge.LE)
            edgeList.insert(lbnd, bisector)

            # if the new bisector intersects with the left edge, remove
            # the left edge's vertex, and put in the new one
            p = lbnd.intersect(bisector)
            if p is not None:
                priorityQ.delete(lbnd)
                priorityQ.insert(lbnd, p, newsite.distance(p))

            # create a new Halfedge, setting its pm field to 1
            # insert the new Halfedge to the right of the original bisector
            lbnd = bisector
            bisector = Halfedge(edge, Edge.RE)
            edgeList.insert(lbnd, bisector)

            # if this new bisector intersects with the right Halfedge
            p = bisector.intersect(rbnd)
            if p is not None:
                # push the Halfedge into the ordered linked list of vertices
                priorityQ.insert(bisector, p, newsite.distance(p))

            newsite = siteIter.next()

        elif not priorityQ.isEmpty():
            # intersection is smallest - this is a vector (circle) event
            # pop the Halfedge with the lowest vector off the ordered list of
            # vectors.  Get the Halfedge to the left and right of the above HE
            # and also the Halfedge to the right of the right HE
            lbnd = priorityQ.popMinHalfedge()
            llbnd = lbnd.left
            rbnd = lbnd.right
            rrbnd = rbnd.right

            # get the Site to the left of the left HE and to the right of
            # the right HE which it bisects
            bot = lbnd.leftreg(bottomsite)
            top = rbnd.rightreg(bottomsite)

            # output the triple of sites, stating that a circle goes through them
            mid = lbnd.rightreg(bottomsite)
            context.outTriple(bot, top, mid)

            # get the vertex that caused this event and set the vertex number
            # couldn't do this earlier since we didn't know when it would be processed
            v = lbnd.vertex
            siteList.setSiteNumber(v)
            context.outVertex(v)

            # set the endpoint of the left and right Halfedge to be this vector
            if lbnd.edge.setEndpoint(lbnd.pm, v):
                context.outEdge(lbnd.edge)

            if rbnd.edge.setEndpoint(rbnd.pm, v):
                context.outEdge(rbnd.edge)

            # delete the lowest HE, remove all vertex events to do with the
            # right HE and delete the right HE
            edgeList.delete(lbnd)
            priorityQ.delete(rbnd)
            edgeList.delete(rbnd)

            # if the site to the left of the event is higher than the Site
            # to the right of it, then swap them and set 'pm' to RIGHT
            pm = Edge.LE
            if bot.y > top.y:
                bot, top = top, bot
                pm = Edge.RE

            # Create an Edge (or line) that is between the two Sites.  This
            # creates the formula of the line, and assigns a line number to it
            edge = Edge.bisect(bot, top)
            context.outBisector(edge)

            # create a HE from the edge
            bisector = Halfedge(edge, pm)

            # insert the new bisector to the right of the left HE
            # set one endpoint to the new edge to be the vector point 'v'
            # If the site to the left of this bisector is higher than the right
            # Site, then this endpoint is put in position 0; otherwise in pos 1
            edgeList.insert(llbnd, bisector)
            if edge.setEndpoint(Edge.RE - pm, v):
                context.outEdge(edge)

            # if left HE and the new bisector don't intersect, then delete
            # the left HE, and reinsert it
            p = llbnd.intersect(bisector)
            if p is not None:
                priorityQ.delete(llbnd)
                priorityQ.insert(llbnd, p, bot.distance(p))

            # if right HE and the new bisector don't intersect, then reinsert it
            p = bisector.intersect(rrbnd)
            if p is not None:
                priorityQ.insert(bisector, p, bot.distance(p))
        else:
            break

    he = edgeList.leftend.right
    while he is not edgeList.rightend:
        context.outEdge(he.edge)
        he = he.right
    Edge.EDGE_NUM = 0  # CF


def isEqual(a, b, relativeError=TOLERANCE):
    # is nearly equal to within the allowed relative error
    norm = max(abs(a), abs(b))
    return (norm < relativeError) or (abs(a - b) < (relativeError * norm))


class Site(object):

    def __init__(self, x=0.0, y=0.0, sitenum=0):
        self.x = x
        self.y = y
        self.sitenum = sitenum

    def dump(self):
        print("Site #%d (%g, %g)" % (self.sitenum, self.x, self.y))

    def __lt__(self, other):
        if self.y < other.y:
            return True
        elif self.y > other.y:
            return False
        elif self.x < other.x:
            return True
        elif self.x > other.x:
            return False
        else:
            return False

    def __eq__(self, other):
        if self.y == other.y and self.x == other.x:
            return True

    def distance(self, other):
        dx = self.x - other.x
        dy = self.y - other.y
        return math.sqrt(dx * dx + dy * dy)


class Edge(object):
    LE = 0  # left end indice --> edge.ep[Edge.LE]
    RE = 1  # right end indice
    EDGE_NUM = 0
    DELETED = {}  # marker value

    def __init__(self):
        self.a = 0.0  # equation of the line a*x+b*y = c
        self.b = 0.0
        self.c = 0.0
        self.ep = [None, None]  # end point (2 tuples of site)
        self.reg = [None, None]
        self.edgenum = 0

    def dump(self):
        print("(#%d a=%g, b=%g, c=%g)" % (self.edgenum, self.a, self.b, self.c))
        print("ep", self.ep)
        print("reg", self.reg)

    def setEndpoint(self, lrFlag, site):
        self.ep[lrFlag] = site
        if self.ep[Edge.RE - lrFlag] is None:
            return False
        return True

    @staticmethod
    def bisect(s1, s2):
        newedge = Edge()
        newedge.reg[0] = s1  # store the sites that this edge is bisecting
        newedge.reg[1] = s2

        # to begin with, there are no endpoints on the bisector - it goes to infinity
        # ep[0] and ep[1] are None

        # get the difference in x dist between the sites
        dx = float(s2.x - s1.x)
        dy = float(s2.y - s1.y)
        adx = abs(dx)  # make sure that the difference in positive
        ady = abs(dy)

        # get the slope of the line
        newedge.c = float(s1.x * dx + s1.y * dy + (dx * dx + dy * dy) * 0.5)
        if adx > ady:
            # set formula of line, with x fixed to 1
            newedge.a = 1.0
            newedge.b = dy / dx
            newedge.c /= dx
        else:
            # set formula of line, with y fixed to 1
            newedge.b = 1.0
            newedge.a = dx / dy
            newedge.c /= dy

        newedge.edgenum = Edge.EDGE_NUM
        Edge.EDGE_NUM += 1
        return newedge


class Halfedge(object):

    def __init__(self, edge=None, pm=Edge.LE):
        self.left = None    # left Halfedge in the edge list
        self.right = None   # right Halfedge in the edge list
        self.qnext = None   # priority queue linked list pointer
        self.edge = edge    # edge list Edge
        self.pm = pm
        self.vertex = None  # Site()
        self.ystar = BIG_FLOAT

    def dump(self):
        print("Halfedge--------------------------")
        print("left: ", self.left)
        print("right: ", self.right)
        print("edge: ", self.edge)
        print("pm: ", self.pm)
        print("vertex: "),
        if self.vertex:
            self.vertex.dump()
        else:
            print("None")
        print("ystar: ", self.ystar)

    def __lt__(self, other):
        if self.ystar < other.ystar:
            return True
        elif self.ystar > other.ystar:
            return False
        elif self.vertex.x < other.vertex.x:
            return True
        elif self.vertex.x > other.vertex.x:
            return False
        else:
            return False

    def __eq__(self, other):
        if self.ystar == other.ystar and self.vertex.x == other.vertex.x:
            return True

    def leftreg(self, default):
        if not self.edge:
            return default
        elif self.pm == Edge.LE:
            return self.edge.reg[Edge.LE]
        else:
            return self.edge.reg[Edge.RE]

    def rightreg(self, default):
        if not self.edge:
            return default
        elif self.pm == Edge.LE:
            return self.edge.reg[Edge.RE]
        else:
            return self.edge.reg[Edge.LE]

    # returns True if p is to right of halfedge self
    def isPointRightOf(self, pt):
        e = self.edge
        topsite = e.reg[1]
        right_of_site = pt.x > topsite.x

        if(right_of_site and self.pm == Edge.LE):
            return True

        if(not right_of_site and self.pm == Edge.RE):
            return False

        if(e.a == 1.0):
            dyp = pt.y - topsite.y
            dxp = pt.x - topsite.x
            fast = 0
            if ((not right_of_site and e.b < 0.0) or (right_of_site and e.b >= 0.0)):
                above = dyp >= e.b * dxp
                fast = above
            else:
                above = pt.x + pt.y * e.b > e.c
                if(e.b < 0.0):
                    above = not above
                if (not above):
                    fast = 1
            if (not fast):
                dxs = topsite.x - (e.reg[0]).x
                above = e.b * (dxp * dxp - dyp * dyp) < dxs * dyp * (1.0 + 2.0 * dxp / dxs + e.b * e.b)
                if(e.b < 0.0):
                    above = not above
        else:  # e.b == 1.0
            yl = e.c - e.a * pt.x
            t1 = pt.y - yl
            t2 = pt.x - topsite.x
            t3 = yl - topsite.y
            above = t1 * t1 > t2 * t2 + t3 * t3

        if(self.pm == Edge.LE):
            return above
        else:
            return not above

    # create a new site where the Halfedges el1 and el2 intersect
    def intersect(self, other):
        e1 = self.edge
        e2 = other.edge
        if (e1 is None) or (e2 is None):
            return None

        # if the two edges bisect the same parent return None
        if e1.reg[1] is e2.reg[1]:
            return None

        d = e1.a * e2.b - e1.b * e2.a
        if isEqual(d, 0.0):
            return None

        xint = (e1.c * e2.b - e2.c * e1.b) / d
        yint = (e2.c * e1.a - e1.c * e2.a) / d
        if e1.reg[1] < e2.reg[1]:
            he = self
            e = e1
        else:
            he = other
            e = e2

        rightOfSite = xint >= e.reg[1].x
        if((rightOfSite and he.pm == Edge.LE) or
                (not rightOfSite and he.pm == Edge.RE)):
            return None

        # create a new site at the point of intersection - this is a new
        # vector event waiting to happen
        return Site(xint, yint)


class EdgeList(object):

    def __init__(self, xmin, xmax, nsites):
        if xmin > xmax:
            xmin, xmax = xmax, xmin
        self.hashsize = int(2 * math.sqrt(nsites + 4))

        self.xmin = xmin
        self.deltax = float(xmax - xmin)
        self.hash = [None] * self.hashsize

        self.leftend = Halfedge()
        self.rightend = Halfedge()
        self.leftend.right = self.rightend
        self.rightend.left = self.leftend
        self.hash[0] = self.leftend
        self.hash[-1] = self.rightend

    def insert(self, left, he):
        he.left = left
        he.right = left.right
        left.right.left = he
        left.right = he

    def delete(self, he):
        he.left.right = he.right
        he.right.left = he.left
        he.edge = Edge.DELETED

    # Get entry from hash table, pruning any deleted nodes
    def gethash(self, b):
        if(b < 0 or b >= self.hashsize):
            return None
        he = self.hash[b]
        if he is None or he.edge is not Edge.DELETED:
            return he

        #  Hash table points to deleted half edge.  Patch as necessary.
        self.hash[b] = None
        return None

    def leftbnd(self, pt):
        # Use hash table to get close to desired halfedge
        bucket = int(((pt.x - self.xmin) / self.deltax * self.hashsize))

        if(bucket < 0):
            bucket = 0

        if(bucket >= self.hashsize):
            bucket = self.hashsize - 1

        he = self.gethash(bucket)
        if(he is None):
            i = 1
            while True:
                he = self.gethash(bucket - i)
                if (he is not None):
                    break
                he = self.gethash(bucket + i)
                if (he is not None):
                    break
                i += 1

        # Now search linear list of halfedges for the corect one
        if (he is self.leftend) or (he is not self.rightend and he.isPointRightOf(pt)):
            he = he.right
            while he is not self.rightend and he.isPointRightOf(pt):
                he = he.right
            he = he.left
        else:
            he = he.left
            while (he is not self.leftend and not he.isPointRightOf(pt)):
                he = he.left

        # Update hash table and reference counts
        if(bucket > 0 and bucket < self.hashsize - 1):
            self.hash[bucket] = he
        return he


class PriorityQueue(object):

    def __init__(self, ymin, ymax, nsites):
        self.ymin = ymin
        self.deltay = ymax - ymin
        self.hashsize = int(4 * math.sqrt(nsites))
        self.count = 0
        self.minidx = 0
        self.hash = []
        for i in range(self.hashsize):
            self.hash.append(Halfedge())

    def __len__(self):
        return self.count

    def isEmpty(self):
        return self.count == 0

    def insert(self, he, site, offset):
        he.vertex = site
        he.ystar = site.y + offset
        last = self.hash[self.getBucket(he)]
        next = last.qnext
        while((next is not None) and he > next):
            last = next
            next = last.qnext
        he.qnext = last.qnext
        last.qnext = he
        self.count += 1

    def delete(self, he):
        if (he.vertex is not None):
            last = self.hash[self.getBucket(he)]
            while last.qnext is not he:
                last = last.qnext
            last.qnext = he.qnext
            self.count -= 1
            he.vertex = None

    def getBucket(self, he):
        bucket = int(((he.ystar - self.ymin) / self.deltay) * self.hashsize)
        if bucket < 0:
            bucket = 0
        if bucket >= self.hashsize:
            bucket = self.hashsize - 1
        if bucket < self.minidx:
            self.minidx = bucket
        return bucket

    def getMinPt(self):
        while(self.hash[self.minidx].qnext is None):
            self.minidx += 1
        he = self.hash[self.minidx].qnext
        x = he.vertex.x
        y = he.ystar
        return Site(x, y)

    def popMinHalfedge(self):
        curr = self.hash[self.minidx].qnext
        self.hash[self.minidx].qnext = curr.qnext
        self.count -= 1
        return curr


class SiteList(object):

    def __init__(self, pointList):
        self.__sites = []
        self.__sitenum = 0

        self.__xmin = min([pt.x for pt in pointList])
        self.__ymin = min([pt.y for pt in pointList])
        self.__xmax = max([pt.x for pt in pointList])
        self.__ymax = max([pt.y for pt in pointList])
        self.__extent = (self.__xmin, self.__xmax, self.__ymin, self.__ymax)

        for i, pt in enumerate(pointList):
            self.__sites.append(Site(pt.x, pt.y, i))
        self.__sites.sort()

    def setSiteNumber(self, site):
        site.sitenum = self.__sitenum
        self.__sitenum += 1

    class Iterator(object):

        def __init__(this, lst):
            this.generator = (s for s in lst)

        def __iter__(this):
            return this

        def next(this):
            try:
                # Note: Blender is Python 3.x so no need for 2.x checks
                return this.generator.__next__()
            except StopIteration:
                return None

    def iterator(self):
        return SiteList.Iterator(self.__sites)

    def __iter__(self):
        return SiteList.Iterator(self.__sites)

    def __len__(self):
        return len(self.__sites)

    def _getxmin(self):
        return self.__xmin

    def _getymin(self):
        return self.__ymin

    def _getxmax(self):
        return self.__xmax

    def _getymax(self):
        return self.__ymax

    def _getextent(self):
        return self.__extent

    xmin = property(_getxmin)
    ymin = property(_getymin)
    xmax = property(_getxmax)
    ymax = property(_getymax)
    extent = property(_getextent)


def computeVoronoiDiagram(points, xBuff=0, yBuff=0, polygonsOutput=False,
                          formatOutput=False, closePoly=True):
    """
    Takes :
    - a list of point objects (which must have x and y fields).
    - x and y buffer values which are the expansion percentages of the bounding box
        rectangle including all input points.
    Returns :
    - With default options :
      A list of 2-tuples, representing the two points of each Voronoi diagram edge.
      Each point contains 2-tuples which are the x,y coordinates of point.
      if formatOutput is True, returns :
                    - a list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices.
                    - and a list of 2-tuples (v1, v2) representing edges of the Voronoi diagram.
                      v1 and v2 are the indices of the vertices at the end of the edge.
    - If polygonsOutput option is True, returns :
      A dictionary of polygons, keys are the indices of the input points,
      values contains n-tuples representing the n points of each Voronoi diagram polygon.
      Each point contains 2-tuples which are the x,y coordinates of point.
      if formatOutput is True, returns :
                    - A list of 2-tuples, which are the x,y coordinates of the Voronoi diagram vertices.
                    - and a dictionary of input points indices. Values contains n-tuples representing
                      the n points of each Voronoi diagram polygon.
                      Each tuple contains the vertex indices of the polygon vertices.
    - if closePoly is True then, in the list of points of a polygon, last point will be the same of first point
    """
    siteList = SiteList(points)
    context = Context()
    voronoi(siteList, context)
    context.setClipBuffer(xBuff, yBuff)
    if not polygonsOutput:
        clipEdges = context.getClipEdges()
        if formatOutput:
            vertices, edgesIdx = formatEdgesOutput(clipEdges)
            return vertices, edgesIdx
        else:
            return clipEdges
    else:
        clipPolygons = context.getClipPolygons(closePoly)
        if formatOutput:
            vertices, polyIdx = formatPolygonsOutput(clipPolygons)
            return vertices, polyIdx
        else:
            return clipPolygons


def formatEdgesOutput(edges):
    # get list of points
    pts = []
    for edge in edges:
        pts.extend(edge)
    # get unique values
    pts = set(pts)  # unique values (tuples are hashable)
    # get dict {values:index}
    valuesIdxDict = dict(zip(pts, range(len(pts))))
    # get edges index reference
    edgesIdx = []
    for edge in edges:
        edgesIdx.append([valuesIdxDict[pt] for pt in edge])
    return list(pts), edgesIdx


def formatPolygonsOutput(polygons):
    # get list of points
    pts = []
    for poly in polygons.values():
        pts.extend(poly)
    # get unique values
    pts = set(pts)  # unique values (tuples are hashable)
    # get dict {values:index}
    valuesIdxDict = dict(zip(pts, range(len(pts))))
    # get polygons index reference
    polygonsIdx = {}
    for inPtsIdx, poly in polygons.items():
        polygonsIdx[inPtsIdx] = [valuesIdxDict[pt] for pt in poly]
    return list(pts), polygonsIdx


def computeDelaunayTriangulation(points):
    """ Takes a list of point objects (which must have x and y fields).
            Returns a list of 3-tuples: the indices of the points that form a
            Delaunay triangle.
    """
    siteList = SiteList(points)
    context = Context()
    context.triangulate = True
    voronoi(siteList, context)
    return context.triangles