Welcome to mirror list, hosted at ThFree Co, Russian Federation.

add_curve_ivygen.py - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6b359e1493d8618e19096cdeade7793a999e5647 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

# <pep8-80 compliant>

bl_info = {
    "name": "IvyGen",
    "author": "testscreenings, PKHG, TrumanBlending",
    "version": (0, 1, 1),
    "blender": (2, 59, 0),
    "location": "View3D > Add > Curve",
    "description": "Adds generated ivy to a mesh object starting "
                   "at the 3D cursor",
    "warning": "",
    "wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
                "Scripts/Curve/Ivy_Gen",
    "category": "Add Curve",
}


import bpy
from bpy.props import FloatProperty, IntProperty, BoolProperty
from mathutils import Vector, Matrix
from collections import deque
from math import pow, cos, pi, atan2
from random import random as rand_val, seed as rand_seed
import time


def createIvyGeometry(IVY, growLeaves):
    """Create the curve geometry for IVY"""
    # Compute the local size and the gauss weight filter
    #local_ivyBranchSize = IVY.ivyBranchSize  # * radius * IVY.ivySize
    gaussWeight = (1.0, 2.0, 4.0, 7.0, 9.0, 10.0, 9.0, 7.0, 4.0, 2.0, 1.0)

    # Create a new curve and intialise it
    curve = bpy.data.curves.new("IVY", type='CURVE')
    curve.dimensions = '3D'
    curve.bevel_depth = 1
    curve.fill_mode = 'FULL'
    curve.resolution_u = 4

    if growLeaves:
        # Create the ivy leaves
        # Order location of the vertices
        signList = ((-1.0, +1.0),
                    (+1.0, +1.0),
                    (+1.0, -1.0),
                    (-1.0, -1.0),
                    )

        # Get the local size
        #local_ivyLeafSize = IVY.ivyLeafSize  # * radius * IVY.ivySize

        # Initialise the vertex and face lists
        vertList = deque()

        # Store the methods for faster calling
        addV = vertList.extend
        rotMat = Matrix.Rotation

    # Loop over all roots to generate its nodes
    for root in IVY.ivyRoots:
        # Only grow if more than one node
        numNodes = len(root.ivyNodes)
        if numNodes > 1:
            # Calculate the local radius
            local_ivyBranchRadius = 1.0 / (root.parents + 1) + 1.0
            prevIvyLength = 1.0 / root.ivyNodes[-1].length
            splineVerts = [ax for n in root.ivyNodes for ax in n.pos.to_4d()]

            radiusConstant = local_ivyBranchRadius * IVY.ivyBranchSize
            splineRadii = [radiusConstant * (1.3 - n.length * prevIvyLength)
                                                        for n in root.ivyNodes]

            # Add the poly curve and set coords and radii
            newSpline = curve.splines.new(type='POLY')
            newSpline.points.add(len(splineVerts) // 4 - 1)
            newSpline.points.foreach_set('co', splineVerts)
            newSpline.points.foreach_set('radius', splineRadii)

            # Loop over all nodes in the root
            for i, n in enumerate(root.ivyNodes):
                for k in range(len(gaussWeight)):
                    idx = max(0, min(i + k - 5, numNodes - 1))
                    n.smoothAdhesionVector += (gaussWeight[k] *
                                             root.ivyNodes[idx].adhesionVector)
                n.smoothAdhesionVector /= 56.0
                n.adhesionLength = n.smoothAdhesionVector.length
                n.smoothAdhesionVector.normalize()

                if growLeaves and (i < numNodes - 1):
                    node = root.ivyNodes[i]
                    nodeNext = root.ivyNodes[i + 1]

                    # Find the weight and normalize the smooth adhesion vector
                    weight = pow(node.length * prevIvyLength, 0.7)

                    # Calculate the ground ivy and the new weight
                    groundIvy = max(0.0, -node.smoothAdhesionVector.z)
                    weight += groundIvy * pow(1 - node.length *
                                                              prevIvyLength, 2)

                    # Find the alignment weight
                    alignmentWeight = node.adhesionLength

                    # Calculate the needed angles
                    phi = atan2(node.smoothAdhesionVector.y,
                                node.smoothAdhesionVector.x) - pi / 2.0

                    theta = (0.5 *
                        node.smoothAdhesionVector.angle(Vector((0, 0, -1)), 0))

                    # Find the size weight
                    sizeWeight = 1.5 - (cos(2 * pi * weight) * 0.5 + 0.5)

                    # Randomise the angles
                    phi += (rand_val() - 0.5) * (1.3 - alignmentWeight)
                    theta += (rand_val() - 0.5) * (1.1 - alignmentWeight)

                    # Calculate the leaf size an append the face to the list
                    leafSize = IVY.ivyLeafSize * sizeWeight

                    for j in range(10):
                        # Generate the probability
                        probability = rand_val()

                        # If we need to grow a leaf, do so
                        if (probability * weight) > IVY.leafProbability:

                            # Generate the random vector
                            randomVector = Vector((rand_val() - 0.5,
                                                   rand_val() - 0.5,
                                                   rand_val() - 0.5,
                                                   ))

                            # Find the leaf center
                            center = (node.pos.lerp(nodeNext.pos, j / 10.0) +
                                               IVY.ivyLeafSize * randomVector)

                            # For each of the verts, rotate/scale and append
                            basisVecX = Vector((1, 0, 0))
                            basisVecY = Vector((0, 1, 0))

                            horiRot = rotMat(theta, 3, 'X')
                            vertRot = rotMat(phi, 3, 'Z')

                            basisVecX.rotate(horiRot)
                            basisVecY.rotate(horiRot)

                            basisVecX.rotate(vertRot)
                            basisVecY.rotate(vertRot)

                            basisVecX *= leafSize
                            basisVecY *= leafSize

                            addV([k1 * basisVecX + k2 * basisVecY + center for
                                                           k1, k2 in signList])

    # Add the object and link to scene
    newCurve = bpy.data.objects.new("IVY_Curve", curve)
    bpy.context.scene.objects.link(newCurve)

    if growLeaves:
        faceList = [[4 * i + l for l in range(4)] for i in
                                                     range(len(vertList) // 4)]

        # Generate the new leaf mesh and link
        me = bpy.data.meshes.new('IvyLeaf')
        me.from_pydata(vertList, [], faceList)
        me.update(calc_edges=True)
        ob = bpy.data.objects.new('IvyLeaf', me)
        bpy.context.scene.objects.link(ob)

        me.uv_textures.new("Leaves")

        # Set the uv texture coords
        # TODO, this is non-functional, default uvs are ok?
        '''
        for d in tex.data:
            uv1, uv2, uv3, uv4 = signList
        '''

        ob.parent = newCurve

'''
def computeBoundingSphere(ob):
    # Get the mesh data
    me = ob.data
    # Intialise the center
    center = Vector((0.0, 0.0, 0.0))
    # Add all vertex coords
    for v in me.vertices:
        center += v.co
    # Average over all verts
    center /= len(me.vertices)
    # Create the iterator and find its max
    length_iter = ((center - v.co).length for v in me.vertices)
    radius = max(length_iter)
    return radius
'''


class IvyNode:
    """ The basic class used for each point on the ivy which is grown."""
    __slots__ = ('pos', 'primaryDir', 'adhesionVector', 'adhesionLength',
                 'smoothAdhesionVector', 'length', 'floatingLength', 'climb')

    def __init__(self):
        self.pos = Vector((0, 0, 0))
        self.primaryDir = Vector((0, 0, 1))
        self.adhesionVector = Vector((0, 0, 0))
        self.smoothAdhesionVector = Vector((0, 0, 0))
        self.length = 0.0001
        self.floatingLength = 0.0
        self.climb = True


class IvyRoot:
    """ The class used to hold all ivy nodes growing from this root point."""
    __slots__ = ('ivyNodes', 'alive', 'parents')

    def __init__(self):
        self.ivyNodes = deque()
        self.alive = True
        self.parents = 0


class Ivy:
    """ The class holding all parameters and ivy roots."""
    __slots__ = ('ivyRoots', 'primaryWeight', 'randomWeight',
                 'gravityWeight', 'adhesionWeight', 'branchingProbability',
                 'leafProbability', 'ivySize', 'ivyLeafSize', 'ivyBranchSize',
                 'maxFloatLength', 'maxAdhesionDistance', 'maxLength')

    def __init__(self,
                 primaryWeight=0.5,
                 randomWeight=0.2,
                 gravityWeight=1.0,
                 adhesionWeight=0.1,
                 branchingProbability=0.05,
                 leafProbability=0.35,
                 ivySize=0.02,
                 ivyLeafSize=0.02,
                 ivyBranchSize=0.001,
                 maxFloatLength=0.5,
                 maxAdhesionDistance=1.0):

        self.ivyRoots = deque()
        self.primaryWeight = primaryWeight
        self.randomWeight = randomWeight
        self.gravityWeight = gravityWeight
        self.adhesionWeight = adhesionWeight
        self.branchingProbability = 1 - branchingProbability
        self.leafProbability = 1 - leafProbability
        self.ivySize = ivySize
        self.ivyLeafSize = ivyLeafSize
        self.ivyBranchSize = ivyBranchSize
        self.maxFloatLength = maxFloatLength
        self.maxAdhesionDistance = maxAdhesionDistance
        self.maxLength = 0.0

        # Normalize all the weights only on intialisation
        sum = self.primaryWeight + self.randomWeight + self.adhesionWeight
        self.primaryWeight /= sum
        self.randomWeight /= sum
        self.adhesionWeight /= sum

    def seed(self, seedPos):
        # Seed the Ivy by making a new root and first node
        tmpRoot = IvyRoot()
        tmpIvy = IvyNode()
        tmpIvy.pos = seedPos

        tmpRoot.ivyNodes.append(tmpIvy)
        self.ivyRoots.append(tmpRoot)

    def grow(self, ob):
        # Determine the local sizes
        #local_ivySize = self.ivySize  # * radius
        #local_maxFloatLength = self.maxFloatLength  # * radius
        #local_maxAdhesionDistance = self.maxAdhesionDistance  # * radius

        for root in self.ivyRoots:
            # Make sure the root is alive, if not, skip
            if not root.alive:
                continue

            # Get the last node in the current root
            prevIvy = root.ivyNodes[-1]

            # If the node is floating for too long, kill the root
            if prevIvy.floatingLength > self.maxFloatLength:
                root.alive = False

            # Set the primary direction from the last node
            primaryVector = prevIvy.primaryDir

            # Make the random vector and normalize
            randomVector = Vector((rand_val() - 0.5, rand_val() - 0.5,
                                   rand_val() - 0.5)) + Vector((0, 0, 0.2))
            randomVector.normalize()

            # Calculate the adhesion vector
            adhesionVector = adhesion(prevIvy.pos, ob,
                                                      self.maxAdhesionDistance)

            # Calculate the growing vector
            growVector = self.ivySize * (primaryVector * self.primaryWeight +
                                          randomVector * self.randomWeight +
                                          adhesionVector * self.adhesionWeight)

            # Find the gravity vector
            gravityVector = (self.ivySize * self.gravityWeight *
                                                            Vector((0, 0, -1)))
            gravityVector *= pow(prevIvy.floatingLength / self.maxFloatLength,
                                 0.7)

            # Determine the new position vector
            newPos = prevIvy.pos + growVector + gravityVector

            # Check for collisions with the object
            climbing = collision(ob, prevIvy.pos, newPos)

            # Update the growing vector for any collisions
            growVector = newPos - prevIvy.pos - gravityVector
            growVector.normalize()

            # Create a new IvyNode and set its properties
            tmpNode = IvyNode()
            tmpNode.climb = climbing
            tmpNode.pos = newPos
            tmpNode.primaryDir = prevIvy.primaryDir.lerp(growVector, 0.5)
            tmpNode.primaryDir.normalize()
            tmpNode.adhesionVector = adhesionVector
            tmpNode.length = prevIvy.length + (newPos - prevIvy.pos).length

            if tmpNode.length > self.maxLength:
                self.maxLength = tmpNode.length

            # If the node isn't climbing, update it's floating length
            # Otherwise set it to 0
            if not climbing:
                tmpNode.floatingLength = prevIvy.floatingLength + (newPos -
                                                            prevIvy.pos).length
            else:
                tmpNode.floatingLength = 0.0

            root.ivyNodes.append(tmpNode)

        # Loop through all roots to check if a new root is generated
        for root in self.ivyRoots:
            # Check the root is alive and isn't at high level of recursion
            if (root.parents > 3) or (not root.alive):
                continue

            # Check to make sure there's more than 1 node
            if len(root.ivyNodes) > 1:
                # Loop through all nodes in root to check if new root is grown
                for node in root.ivyNodes:
                    # Set the last node of the root and find the weighting
                    prevIvy = root.ivyNodes[-1]
                    weight = 1.0 - (cos(2.0 * pi * node.length /
                                        prevIvy.length) * 0.5 + 0.5)

                    probability = rand_val()

                    # Check if a new root is grown and if so, set its values
                    if (probability * weight > self.branchingProbability):
                        tmpNode = IvyNode()
                        tmpNode.pos = node.pos
                        tmpNode.floatingLength = node.floatingLength

                        tmpRoot = IvyRoot()
                        tmpRoot.parents = root.parents + 1

                        tmpRoot.ivyNodes.append(tmpNode)
                        self.ivyRoots.append(tmpRoot)
                        return


def adhesion(loc, ob, max_l):
    # Get transfor vector and transformed loc
    tran_mat = ob.matrix_world.inverted()
    tran_loc = tran_mat * loc

    # Compute the adhesion vector by finding the nearest point
    nearest_result = ob.closest_point_on_mesh(tran_loc, max_l)
    adhesion_vector = Vector((0.0, 0.0, 0.0))
    if nearest_result[2] != -1:
        # Compute the distance to the nearest point
        adhesion_vector = ob.matrix_world * nearest_result[0] - loc
        distance = adhesion_vector.length
        # If it's less than the maximum allowed and not 0, continue
        if distance:
            # Compute the direction vector between the closest point and loc
            adhesion_vector.normalize()
            adhesion_vector *= 1.0 - distance / max_l
            #adhesion_vector *= getFaceWeight(ob.data, nearest_result[2])
    return adhesion_vector


def collision(ob, pos, new_pos):
    # Check for collision with the object
    climbing = False

    # Transform vecs
    tran_mat = ob.matrix_world.inverted()
    tran_pos = tran_mat * pos
    tran_new_pos = tran_mat * new_pos

    ray_result = ob.ray_cast(tran_pos, tran_new_pos)
    # If there's a collision we need to check it
    if ray_result[2] != -1:
        # Check whether the collision is going into the object
        if (tran_new_pos - tran_pos).dot(ray_result[1]) < 0.0:
            # Find projection of the piont onto the plane
            p0 = tran_new_pos - (tran_new_pos -
                                          ray_result[0]).project(ray_result[1])
            # Reflect in the plane
            tran_new_pos += 2 * (p0 - tran_new_pos)
            new_pos *= 0
            new_pos += ob.matrix_world * tran_new_pos
            climbing = True
    return climbing


class IvyGen(bpy.types.Operator):
    bl_idname = "curve.ivy_gen"
    bl_label = "IvyGen"
    bl_options = {'REGISTER', 'UNDO'}

    maxIvyLength = FloatProperty(name="Max Ivy Length",
                    description="Maximum ivy length in Blender Units",
                    default=1.0,
                    min=0.0,
                    soft_max=3.0,
                    subtype='DISTANCE',
                    unit='LENGTH')
    primaryWeight = FloatProperty(name="Primary Weight",
                    description="Weighting given to the current direction",
                    default=0.5,
                    min=0.0,
                    soft_max=1.0)
    randomWeight = FloatProperty(name="Random Weight",
                    description="Weighting given to the random direction",
                    default=0.2,
                    min=0.0,
                    soft_max=1.0)
    gravityWeight = FloatProperty(name="Gravity Weight",
                    description="Weighting given to the gravity direction",
                    default=1.0,
                    min=0.0,
                    soft_max=1.0)
    adhesionWeight = FloatProperty(name="Adhesion Weight",
                    description="Weighting given to the adhesion direction",
                    default=0.1,
                    min=0.0,
                    soft_max=1.0)
    branchingProbability = FloatProperty(name="Branching Probability",
                    description="Probability of a new branch forming",
                    default=0.05,
                    min=0.0,
                    soft_max=1.0)
    leafProbability = FloatProperty(name="Leaf Probability",
                    description="Probability of a leaf forming",
                    default=0.35,
                    min=0.0,
                    soft_max=1.0)
    ivySize = FloatProperty(name="Ivy Size",
                    description=("The length of an ivy segment in Blender"
                                 " Units"),
                    default=0.02,
                    min=0.0,
                    soft_max=1.0,
                    precision=3)
    ivyLeafSize = FloatProperty(name="Ivy Leaf Size",
                    description="The size of the ivy leaves",
                    default=0.02,
                    min=0.0,
                    soft_max=0.5,
                    precision=3)
    ivyBranchSize = FloatProperty(name="Ivy Branch Size",
                    description="The size of the ivy branches",
                    default=0.001,
                    min=0.0,
                    soft_max=0.1,
                    precision=4)
    maxFloatLength = FloatProperty(name="Max Float Length",
                    description=("The maximum distance that a branch "
                                 "can live while floating"),
                    default=0.5,
                    min=0.0,
                    soft_max=1.0)
    maxAdhesionDistance = FloatProperty(name="Max Adhesion Length",
                    description=("The maximum distance that a branch "
                                 "will feel the effects of adhesion"),
                    default=1.0,
                    min=0.0,
                    soft_max=2.0,
                    precision=2)
    randomSeed = IntProperty(name="Random Seed",
                    description="The seed governing random generation",
                    default=0,
                    min=0)
    maxTime = FloatProperty(name="Maximum Time",
                    description=("The maximum time to run the generation for "
                                 "in seconds generation (0.0 = Disabled)"),
                    default=0.0,
                    min=0.0,
                    soft_max=10)
    growLeaves = BoolProperty(name="Grow Leaves",
                    description="Grow leaves or not",
                    default=True)
    updateIvy = BoolProperty(name="Update Ivy", default=False)

    @classmethod
    def poll(self, context):
        # Check if there's an object and whether it's a mesh
        ob = context.active_object
        return ((ob is not None) and
                (ob.type == 'MESH') and
                (context.mode == 'OBJECT'))

    def execute(self, context):
        if not self.updateIvy:
            return {'PASS_THROUGH'}

        bpy.ops.object.mode_set(mode='EDIT', toggle=False)
        bpy.ops.object.mode_set(mode='OBJECT', toggle=False)

        # Get the selected object
        ob = context.active_object

        # Compute bounding sphere radius
        #radius = computeBoundingSphere(ob)  # Not needed anymore

        # Get the seeding point
        seedPoint = context.scene.cursor_location

        # Fix the random seed
        rand_seed(self.randomSeed)

        # Make the new ivy
        IVY = Ivy(**self.as_keywords(ignore=('randomSeed', 'growLeaves',
                                  'maxIvyLength', 'maxTime', 'updateIvy')))

        # Generate first root and node
        IVY.seed(seedPoint)

        checkTime = False
        maxLength = self.maxIvyLength  # * radius

        # If we need to check time set the flag
        if self.maxTime != 0.0:
            checkTime = True

        t = time.time()
        startPercent = 0.0
        checkAliveIter = [True, ]

        # Grow until 200 roots is reached or backup counter exceeds limit
        while (any(checkAliveIter) and
               (IVY.maxLength < maxLength) and
               (not checkTime or (time.time() - t < self.maxTime))):
            # Grow the ivy for this iteration
            IVY.grow(ob)

            # Print the proportion of ivy growth to console
            if (IVY.maxLength / maxLength * 100) > 10 * startPercent // 10:
                print('%0.2f%% of Ivy nodes have grown' %
                                         (IVY.maxLength / maxLength * 100))
                startPercent += 10
                if IVY.maxLength / maxLength > 1:
                    print("Halting Growth")

            # Make an iterator to check if all are alive
            checkAliveIter = (r.alive for r in IVY.ivyRoots)

        # Create the curve and leaf geometry
        createIvyGeometry(IVY, self.growLeaves)
        print("Geometry Generation Complete")

        print("Ivy generated in %0.2f s" % (time.time() - t))

        self.updateIvy = False

        return {'FINISHED'}

    def draw(self, context):
        layout = self.layout

        layout.prop(self, 'updateIvy', icon='CURVE_DATA')

        properties = layout.operator('curve.ivy_gen', text="Add New Ivy")
        properties.randomSeed = self.randomSeed
        properties.maxTime = self.maxTime
        properties.maxIvyLength = self.maxIvyLength
        properties.ivySize = self.ivySize
        properties.maxFloatLength = self.maxFloatLength
        properties.maxAdhesionDistance = self.maxAdhesionDistance
        properties.primaryWeight = self.primaryWeight
        properties.randomWeight = self.randomWeight
        properties.gravityWeight = self.gravityWeight
        properties.adhesionWeight = self.adhesionWeight
        properties.branchingProbability = self.branchingProbability
        properties.leafProbability = self.leafProbability
        properties.ivyBranchSize = self.ivyBranchSize
        properties.ivyLeafSize = self.ivyLeafSize
        properties.updateIvy = True

        prop_def = layout.operator('curve.ivy_gen', text="Add New Default Ivy")
        prop_def.updateIvy = True

        layout.prop(self, 'growLeaves')

        box = layout.box()
        box.label("Generation Settings:")
        box.prop(self, 'randomSeed')
        box.prop(self, 'maxTime')

        box = layout.box()
        box.label("Size Settings:")
        box.prop(self, 'maxIvyLength')
        box.prop(self, 'ivySize')
        box.prop(self, 'maxFloatLength')
        box.prop(self, 'maxAdhesionDistance')

        box = layout.box()
        box.label("Weight Settings:")
        box.prop(self, 'primaryWeight')
        box.prop(self, 'randomWeight')
        box.prop(self, 'gravityWeight')
        box.prop(self, 'adhesionWeight')

        box = layout.box()
        box.label("Branch Settings:")
        box.prop(self, 'branchingProbability')
        box.prop(self, 'ivyBranchSize')

        if self.growLeaves:
            box = layout.box()
            box.label("Leaf Settings:")
            box.prop(self, 'ivyLeafSize')
            box.prop(self, 'leafProbability')


def menu_func(self, context):
    self.layout.operator(IvyGen.bl_idname, text="Add Ivy to Mesh",
                                                icon='PLUGIN').updateIvy = True


def register():
    bpy.utils.register_module(__name__)
    bpy.types.INFO_MT_curve_add.append(menu_func)


def unregister():
    bpy.types.INFO_MT_curve_add.remove(menu_func)
    bpy.utils.unregister_module(__name__)


if __name__ == "__main__":
    register()