Welcome to mirror list, hosted at ThFree Co, Russian Federation.

utils.py « add_curve_sapling - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 14401a02196380febc18e05f2927b8b4fee13da8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####


import bpy
import time
import copy

from mathutils import *
from math import pi,sin,degrees,radians,atan2,copysign,cos,acos
from random import random,uniform,seed,choice,getstate,setstate
from bpy.props import *
from collections import deque

# Initialise the split error and axis vectors
splitError = 0.0
zAxis = Vector((0,0,1))
yAxis = Vector((0,1,0))
xAxis = Vector((1,0,0))

# This class will contain a part of the tree which needs to be extended and the required tree parameters
class stemSpline:
    def __init__(self,spline,curvature,curvatureV,segments,maxSegs,segLength,childStems,stemRadStart,stemRadEnd,splineNum):
        self.spline = spline
        self.p = spline.bezier_points[-1]
        self.curv = curvature
        self.curvV = curvatureV
        self.seg = segments
        self.segMax = maxSegs
        self.segL = segLength
        self.children = childStems
        self.radS = stemRadStart
        self.radE = stemRadEnd
        self.splN = splineNum
    # This method determines the quaternion of the end of the spline
    def quat(self):
        if len(self.spline.bezier_points) == 1:
            return ((self.spline.bezier_points[-1].handle_right - self.spline.bezier_points[-1].co).normalized()).to_track_quat('Z','Y')
        else:
            return ((self.spline.bezier_points[-1].co - self.spline.bezier_points[-2].co).normalized()).to_track_quat('Z','Y')
    # Determine the declination
    def dec(self):
        tempVec = zAxis.copy()
        tempVec.rotate(self.quat())
        return zAxis.angle(tempVec)
    # Update the end of the spline and increment the segment count
    def updateEnd(self):
        self.p = self.spline.bezier_points[-1]
        self.seg += 1
    # Determine the spread angle for a split
    def spreadAng(self):
        return radians(choice([-1,1])*(20 + 0.75*(30 + abs(degrees(self.dec()) - 90))*random()**2))
    # Determine the splitting angle for a split
    def splitAngle(self,splitAng,splitAngV):
        return max(0,splitAng+uniform(-splitAngV,splitAngV)-self.dec())
    # This is used to change the the curvature per segment of the spline
    def curvAdd(self,curvD):
        self.curv += curvD

# This class contains the data for a point where a new branch will sprout
class childPoint:
    def __init__(self,coords,quat,radiusPar,offset,lengthPar,parBone):
        self.co = coords
        self.quat = quat
        self.radiusPar = radiusPar
        self.offset = offset
        self.lengthPar = lengthPar
        self.parBone = parBone


# This function calculates the shape ratio as defined in the paper
def shapeRatio(shape,ratio,pruneWidthPeak=0.0,prunePowerHigh=0.0,prunePowerLow=0.0):
    if shape == 0:
        return 0.2 + 0.8*ratio
    elif shape == 1:
        return 0.2 + 0.8*sin(pi*ratio)
    elif shape == 2:
        return 0.2 + 0.8*sin(0.5*pi*ratio)
    elif shape == 3:
        return 1.0
    elif shape == 4:
        return 0.5 + 0.5*ratio
    elif shape == 5:
        if ratio <= 0.7:
            return ratio/0.7
        else:
            return (1.0 - ratio)/0.3
    elif shape == 6:
        return 1.0 - 0.8*ratio
    elif shape == 7:
        if ratio <= 0.7:
            return 0.5 + 0.5*ratio/0.7
        else:
            return 0.5 + 0.5*(1.0 - ratio)/0.3
    elif shape == 8:
        if (ratio < (1 - pruneWidthPeak)) and (ratio > 0.0):
            return ((ratio/(1 - pruneWidthPeak))**prunePowerHigh)
        elif (ratio >= (1 - pruneWidthPeak)) and (ratio < 1.0):
            return (((1 - ratio)/pruneWidthPeak)**prunePowerLow)
        else:
            return 0.0

# This function determines the actual number of splits at a given point using the global error
def splits(n):
    global splitError
    nEff = round(n + splitError,0)
    splitError -= (nEff - n)
    return int(nEff)

# Determine the declination from a given quaternion
def declination(quat):
    tempVec = zAxis.copy()
    tempVec.rotate(quat)
    tempVec.normalize()
    return degrees(acos(tempVec.z))

# Determine the length of a child stem
def lengthChild(lMax,offset,lPar,shape=False,lBase=None):
    if shape:
        return lPar*lMax*shapeRatio(shape,(lPar - offset)/(lPar - lBase))
    else:
        return lMax*(lPar - 0.6*offset)

# Find the actual downAngle taking into account the special case
def downAngle(downAng,downAngV,lPar=None,offset=None,lBase=None):
    if downAngV < 0:
        return downAng + (uniform(-downAngV,downAngV)*(1 - 2*shapeRatio(0,(lPar - offset)/(lPar - lBase))))
    else:
        return downAng + uniform(-downAngV,downAngV)

# Returns the rotation matrix equivalent to i rotations by 2*pi/(n+1)
def splitRotMat(n,i):
    return Matrix.Rotation(2*i*pi/(n+1),3,'Z')

# Returns the split angle
def angleSplit(splitAng,splitAngV,quat):
    return max(0,splitAng+uniform(-splitAngV,splitAngV)-declination(quat))

# Returns number of stems a stem will sprout
def stems(stemsMax,lPar,offset,lChild=False,lChildMax=None):
    if lChild:
        return stemsMax*(0.2 + 0.8*(lChild/lPar)/lChildMax)
    else:
        return stemsMax*(1.0 - 0.5*offset/lPar)

# Returns the spreading angle
def spreadAng(dec):
    return radians(choice([-1,1])*(20 + 0.75*(30 + abs(dec - 90))*random()**2))

# Determines the angle of upward rotation of a segment due to attractUp
def curveUp(attractUp,quat,curveRes):
    tempVec = yAxis.copy()
    tempVec.rotate(quat)
    tempVec.normalize()
    return attractUp*radians(declination(quat))*abs(tempVec.z)/curveRes

# Evaluate a bezier curve for the parameter 0<=t<=1 along its length
def evalBez(p1,h1,h2,p2,t):
    return ((1-t)**3)*p1 + (3*t*(1-t)**2)*h1 + (3*(t**2)*(1-t))*h2 + (t**3)*p2

# Evaluate the unit tangent on a bezier curve for t
def evalBezTan(p1,h1,h2,p2,t):
    return ((-3*(1-t)**2)*p1 + (-6*t*(1-t) + 3*(1-t)**2)*h1 + (-3*(t**2) + 6*t*(1-t))*h2 + (3*t**2)*p2).normalized()

# Determine the range of t values along a splines length where child stems are formed
def findChildPoints(stemList,numChild):
    numPoints = sum([len(n.spline.bezier_points) for n in stemList])
    numSplines = len(stemList)
    numSegs = numPoints - numSplines
    numPerSeg = numChild/numSegs
    numMain = round(numPerSeg*stemList[0].segMax,0)
    return [(a+1)/(numMain) for a in range(int(numMain))]

# Find the coordinates, quaternion and radius for each t on the stem
def interpStem(stem,tVals,lPar,parRad):
    tempList = deque()
    addpoint = tempList.append
    checkVal = (stem.segMax - len(stem.spline.bezier_points) + 1)/stem.segMax
    points = stem.spline.bezier_points
    numPoints = len(stem.spline.bezier_points)
    # Loop through all the parametric values to be determined
    for t in tVals:
        if (t >= checkVal) and (t < 1.0):
            scaledT = (t-checkVal)/(tVals[-1]-checkVal)
            length = (numPoints-1)*t#scaledT
            index = int(length)
            if scaledT == 1.0:
                coord = points[-1].co
                quat = (points[-1].handle_right - points[-1].co).to_track_quat('Z','Y')
                radius = parRad#points[-2].radius
            else:
                tTemp = length - index
                coord = evalBez(points[index].co,points[index].handle_right,points[index+1].handle_left,points[index+1].co,tTemp)
                quat = (evalBezTan(points[index].co,points[index].handle_right,points[index+1].handle_left,points[index+1].co,tTemp)).to_track_quat('Z','Y')
                radius = (1-tTemp)*points[index].radius + tTemp*points[index+1].radius # Not sure if this is the parent radius at the child point or parent start radius
            addpoint(childPoint(coord,quat,(parRad, radius),t*lPar,lPar,'bone'+(str(stem.splN).rjust(3,'0'))+'.'+(str(index).rjust(3,'0'))))
    return tempList

# Convert a list of degrees to radians
def toRad(list):
    return [radians(a) for a in list]

# This is the function which extends (or grows) a given stem.
def growSpline(stem,numSplit,splitAng,splitAngV,splineList,attractUp,hType,splineToBone):
    # First find the current direction of the stem
    dir = stem.quat()
    # If the stem splits, we need to add new splines etc
    if numSplit > 0:
        # Get the curve data
        cuData = stem.spline.id_data.name
        cu = bpy.data.curves[cuData]
        # Now for each split add the new spline and adjust the growth direction
        for i in range(numSplit):
            newSpline = cu.splines.new('BEZIER')
            newPoint = newSpline.bezier_points[-1]
            (newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (stem.p.co,'VECTOR','VECTOR')
            newPoint.radius = stem.radS*(1 - stem.seg/stem.segMax) + stem.radE*(stem.seg/stem.segMax)
            
            # Here we make the new "sprouting" stems diverge from the current direction
            angle = stem.splitAngle(splitAng,splitAngV)
            divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')#CurveUP should go after curve is applied
            dirVec = zAxis.copy()
            dirVec.rotate(divRotMat)
            dirVec.rotate(splitRotMat(numSplit,i+1))
            dirVec.rotate(dir)
            
            # if attractUp != 0.0: # Shouldn't have a special case as this will mess with random number generation
            divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')
            dirVec = zAxis.copy()
            dirVec.rotate(divRotMat)
            dirVec.rotate(splitRotMat(numSplit,i+1))
            dirVec.rotate(dir)
            
            #Different version of the commented code above. We could use the inbuilt vector rotations but given this is a special case, it can be quicker to initialise the vector to the correct value.
#            angle = stem.splitAngle(splitAng,splitAngV)
#            curveUpAng = curveUp(attractUp,dir,stem.segMax)
#            angleX = angle + stem.curv + uniform(-stem.curvV,stem.curvV) - curveUpAng
#            angleZ = 2*i*pi/(numSplit+1)
#            dirVec = Vector((sin(angleX)*sin(angleZ), -sin(angleX)*cos(angleZ), cos(angleX)))
#            dirVec.rotate(dir)

            # Spread the stem out in a random fashion
            spreadMat = Matrix.Rotation(spreadAng(degrees(dirVec.z)),3,'Z')
            dirVec.rotate(spreadMat)
            # Introduce upward curvature
            upRotAxis = xAxis.copy()
            upRotAxis.rotate(dirVec.to_track_quat('Z','Y'))
            curveUpAng = curveUp(attractUp,dirVec.to_track_quat('Z','Y'),stem.segMax)
            upRotMat = Matrix.Rotation(-curveUpAng,3,upRotAxis)
            dirVec.rotate(upRotMat)
            # Make the growth vec the length of a stem segment
            dirVec.normalize()
            dirVec *= stem.segL

            # Get the end point position
            end_co = stem.p.co.copy()

            # Add the new point and adjust its coords, handles and radius
            newSpline.bezier_points.add()
            newPoint = newSpline.bezier_points[-1]
            (newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (end_co + dirVec,hType,hType)
            newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax)
            # If this isn't the last point on a stem, then we need to add it to the list of stems to continue growing
            if stem.seg != stem.segMax:
                splineList.append(stemSpline(newSpline,stem.curv-angle/(stem.segMax-stem.seg),stem.curvV,stem.seg+1,stem.segMax,stem.segL,stem.children,stem.radS,stem.radE,len(cu.splines)-1))
                splineToBone.append('bone'+(str(stem.splN)).rjust(3,'0')+'.'+(str(len(stem.spline.bezier_points)-2)).rjust(3,'0'))
        # The original spline also needs to keep growing so adjust its direction too
        angle = stem.splitAngle(splitAng,splitAngV)
        divRotMat = Matrix.Rotation(angle + stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')
        dirVec = zAxis.copy()
        dirVec.rotate(divRotMat)
        dirVec.rotate(dir)
        spreadMat = Matrix.Rotation(spreadAng(degrees(dirVec.z)),3,'Z')
        dirVec.rotate(spreadMat)
    else:
        # If there are no splits then generate the growth direction without accounting for spreading of stems
        dirVec = zAxis.copy()
        #curveUpAng = curveUp(attractUp,dir,stem.segMax)
        divRotMat = Matrix.Rotation(stem.curv + uniform(-stem.curvV,stem.curvV),3,'X')
        dirVec.rotate(divRotMat)
        #dirVec = Vector((0,-sin(stem.curv - curveUpAng),cos(stem.curv - curveUpAng)))
        dirVec.rotate(dir)
    upRotAxis = xAxis.copy()
    upRotAxis.rotate(dirVec.to_track_quat('Z','Y'))
    curveUpAng = curveUp(attractUp,dirVec.to_track_quat('Z','Y'),stem.segMax)
    upRotMat = Matrix.Rotation(-curveUpAng,3,upRotAxis)
    dirVec.rotate(upRotMat)
    dirVec.normalize()
    dirVec *= stem.segL

    # Get the end point position
    end_co = stem.p.co.copy()

    stem.spline.bezier_points.add()
    newPoint = stem.spline.bezier_points[-1]
    (newPoint.co,newPoint.handle_left_type,newPoint.handle_right_type) = (end_co + dirVec,hType,hType)
    newPoint.radius = stem.radS*(1 - (stem.seg + 1)/stem.segMax) + stem.radE*((stem.seg + 1)/stem.segMax)
    # There are some cases where a point cannot have handles as VECTOR straight away, set these now.
    if numSplit != 0:
        tempPoint = stem.spline.bezier_points[-2]
        (tempPoint.handle_left_type,tempPoint.handle_right_type) = ('VECTOR','VECTOR')
    if len(stem.spline.bezier_points) == 2:
        tempPoint = stem.spline.bezier_points[0]
        (tempPoint.handle_left_type,tempPoint.handle_right_type) = ('VECTOR','VECTOR')
    # Update the last point in the spline to be the newly added one
    stem.updateEnd()
    #return splineList

def genLeafMesh(leafScale,leafScaleX,loc,quat,index,downAngle,downAngleV,rotate,rotateV,oldRot,bend,leaves, leafShape):
    if leafShape == 'hex':
        verts = [Vector((0,0,0)),Vector((0.5,0,1/3)),Vector((0.5,0,2/3)),Vector((0,0,1)),Vector((-0.5,0,2/3)),Vector((-0.5,0,1/3))]
        edges = [[0,1],[1,2],[2,3],[3,4],[4,5],[5,0],[0,3]]
        faces = [[0,1,2,3],[0,3,4,5]]
    elif leafShape == 'rect':
        verts = [Vector((1,0,0)),Vector((1,0,1)),Vector((-1,0,1)),Vector((-1,0,0))]
        edges = [[0,1],[1,2],[2,3],[3,0]]
        faces = [[0,1,2,3],]
    #faces = [[0,1,5],[1,2,4,5],[2,3,4]]

    vertsList = []
    facesList = []

    # If the special -ve flag is used we need a different rotation of the leaf geometry
    if leaves < 0:
        rotMat = Matrix.Rotation(oldRot,3,'Y')
        oldRot += rotate/(abs(leaves)-1)
    else:
        oldRot += rotate+uniform(-rotateV,rotateV)
        downRotMat = Matrix.Rotation(downAngle+uniform(-downAngleV,downAngleV),3,'X')
        rotMat = Matrix.Rotation(oldRot,3,'Z')

    normal = yAxis.copy()
    #dirVec = zAxis.copy()
    orientationVec = zAxis.copy()

    # If the bending of the leaves is used we need to rotated them differently
    if (bend != 0.0) and (leaves >= 0):
#        normal.rotate(downRotMat)
#        orientationVec.rotate(downRotMat)
#
#        normal.rotate(rotMat)
#        orientationVec.rotate(rotMat)

        normal.rotate(quat)
        orientationVec.rotate(quat)

        thetaPos = atan2(loc.y,loc.x)
        thetaBend = thetaPos - atan2(normal.y,normal.x)
        rotateZ = Matrix.Rotation(bend*thetaBend,3,'Z')
        normal.rotate(rotateZ)
        orientationVec.rotate(rotateZ)

        phiBend = atan2((normal.xy).length,normal.z)
        orientation = atan2(orientationVec.y,orientationVec.x)
        rotateZOrien = Matrix.Rotation(orientation,3,'X')

        rotateX = Matrix.Rotation(bend*phiBend,3,'Z')

        rotateZOrien2 = Matrix.Rotation(-orientation,3,'X')

    # For each of the verts we now rotate and scale them, then append them to the list to be added to the mesh
    for v in verts:
        
        v.z *= leafScale
        v.x *= leafScaleX*leafScale

        if leaves > 0:
            v.rotate(downRotMat)

        v.rotate(rotMat)
        v.rotate(quat)

        if (bend != 0.0) and (leaves > 0):
            # Correct the rotation
            v.rotate(rotateZ)
            v.rotate(rotateZOrien)
            v.rotate(rotateX)
            v.rotate(rotateZOrien2)

        #v.rotate(quat)
    for v in verts:
        v += loc
        vertsList.append([v.x,v.y,v.z])

    for f in faces:
        facesList.append([f[0] + index,f[1] + index,f[2] + index,f[3] + index])
    return vertsList,facesList,oldRot

def addTree(props):
        global splitError
        #startTime = time.time()
        # Set the seed for repeatable results
        seed(props.seed)#
        
        # Set all other variables
        levels = props.levels#
        length = props.length#
        lengthV = props.lengthV#
        branches = props.branches#
        curveRes = props.curveRes#
        curve = toRad(props.curve)#
        curveV = toRad(props.curveV)#
        curveBack = toRad(props.curveBack)#
        baseSplits = props.baseSplits#
        segSplits = props.segSplits#
        splitAngle = toRad(props.splitAngle)#
        splitAngleV = toRad(props.splitAngleV)#
        scale = props.scale#
        scaleV = props.scaleV#
        attractUp = props.attractUp#
        shape = int(props.shape)#
        baseSize = props.baseSize
        ratio = props.ratio
        taper = props.taper#
        ratioPower = props.ratioPower#
        downAngle = toRad(props.downAngle)#
        downAngleV = toRad(props.downAngleV)#
        rotate = toRad(props.rotate)#
        rotateV = toRad(props.rotateV)#
        scale0 = props.scale0#
        scaleV0 = props.scaleV0#
        prune = props.prune#
        pruneWidth = props.pruneWidth#
        pruneWidthPeak = props.pruneWidthPeak#
        prunePowerLow = props.prunePowerLow#
        prunePowerHigh = props.prunePowerHigh#
        pruneRatio = props.pruneRatio#
        leafScale = props.leafScale#
        leafScaleX = props.leafScaleX#
        leafShape = props.leafShape
        bend = props.bend#
        leafDist = int(props.leafDist)#
        bevelRes = props.bevelRes#
        resU = props.resU#
        useArm = props.useArm
        
        frameRate = props.frameRate
        windSpeed = props.windSpeed
        windGust = props.windGust
        armAnim = props.armAnim
        
        leafObj = None
        
        # Some effects can be turned ON and OFF, the necessary variables are changed here
        if not props.bevel:
            bevelDepth = 0.0
        else:
            bevelDepth = 1.0

        if not props.showLeaves:
            leaves = 0
        else:
            leaves = props.leaves

        if props.handleType == '0':
            handles = 'AUTO'
        else:
            handles = 'VECTOR'

        for ob in bpy.data.objects:
            ob.select = False

        childP = []
        stemList = []

        # Initialise the tree object and curve and adjust the settings
        cu = bpy.data.curves.new('tree','CURVE')
        treeOb = bpy.data.objects.new('tree',cu)
        bpy.context.scene.objects.link(treeOb)

        cu.dimensions = '3D'
        cu.use_fill_back = False
        cu.use_fill_front = False
        cu.bevel_depth = bevelDepth
        cu.bevel_resolution = bevelRes

        # Fix the scale of the tree now
        scaleVal = scale + uniform(-scaleV,scaleV)

        # If pruning is turned on we need to draw the pruning envelope
        if prune:
            enHandle = 'VECTOR'
            enNum = 128
            enCu = bpy.data.curves.new('envelope','CURVE')
            enOb = bpy.data.objects.new('envelope',enCu)
            enOb.parent = treeOb
            bpy.context.scene.objects.link(enOb)
            newSpline = enCu.splines.new('BEZIER')
            newPoint = newSpline.bezier_points[-1]
            newPoint.co = Vector((0,0,scaleVal))
            (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle)
            # Set the coordinates by varying the z value, envelope will be aligned to the x-axis
            for c in range(enNum):
                newSpline.bezier_points.add()
                newPoint = newSpline.bezier_points[-1]
                ratioVal = (c+1)/(enNum)
                zVal = scaleVal - scaleVal*(1-baseSize)*ratioVal
                newPoint.co = Vector((scaleVal*pruneWidth*shapeRatio(8,ratioVal,pruneWidthPeak,prunePowerHigh,prunePowerLow),0,zVal))
                (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle)
            newSpline = enCu.splines.new('BEZIER')
            newPoint = newSpline.bezier_points[-1]
            newPoint.co = Vector((0,0,scaleVal))
            (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle)
            # Create a second envelope but this time on the y-axis
            for c in range(enNum):
                newSpline.bezier_points.add()
                newPoint = newSpline.bezier_points[-1]
                ratioVal = (c+1)/(enNum)
                zVal = scaleVal - scaleVal*(1-baseSize)*ratioVal
                newPoint.co = Vector((0,scaleVal*pruneWidth*shapeRatio(8,ratioVal,pruneWidthPeak,prunePowerHigh,prunePowerLow),zVal))
                (newPoint.handle_right_type,newPoint.handle_left_type) = (enHandle,enHandle)

        leafVerts = []
        leafFaces = []
        levelCount = []

        splineToBone = deque([''])
        addsplinetobone = splineToBone.append

        # Each of the levels needed by the user we grow all the splines
        for n in range(levels):
            storeN = n
            stemList = deque()
            addstem = stemList.append
            # If n is used as an index to access parameters for the tree it must be at most 3 or it will reference outside the array index
            n = min(3,n)
            vertAtt = attractUp
            splitError = 0.0
            # If this is the first level of growth (the trunk) then we need some special work to begin the tree
            if n == 0:
                vertAtt = 0.0
                newSpline = cu.splines.new('BEZIER')
                cu.resolution_u = resU
                newPoint = newSpline.bezier_points[-1]
                newPoint.co = Vector((0,0,0))
                newPoint.handle_right = Vector((0,0,1))
                newPoint.handle_left = Vector((0,0,-1))
                #(newPoint.handle_right_type,newPoint.handle_left_type) = ('VECTOR','VECTOR')
                branchL = (scaleVal)*(length[0] + uniform(-lengthV[0],lengthV[0]))
                childStems = branches[1]
                startRad = branchL*ratio*(scale0 + uniform(-scaleV0,scaleV0))
                endRad = startRad*(1 - taper[0])
                newPoint.radius = startRad
                addstem(stemSpline(newSpline,curve[0]/curveRes[0],curveV[0]/curveRes[0],0,curveRes[0],branchL/curveRes[0],childStems,startRad,endRad,0))
            # If this isn't the trunk then we may have multiple stem to intialise
            else:
                # Store the old rotation to allow new stems to be rotated away from the previous one.
                oldRotate = 0
                # For each of the points defined in the list of stem starting points we need to grow a stem.
                for p in childP:
                    # Add a spline and set the coordinate of the first point.
                    newSpline = cu.splines.new('BEZIER')
                    cu.resolution_u = resU
                    newPoint = newSpline.bezier_points[-1]
                    newPoint.co = p.co
                    tempPos = zAxis.copy()
                    # If the -ve flag for downAngle is used we need a special formula to find it
                    if downAngleV[n] < 0.0:
                        downV = downAngleV[n]*(1 - 2*shapeRatio(0,(p.lengthPar - p.offset)/(p.lengthPar - baseSize*scaleVal)))
                        random()
                    # Otherwise just find a random value
                    else:
                        downV = uniform(-downAngleV[n],downAngleV[n])
                    downRotMat = Matrix.Rotation(downAngle[n]+downV,3,'X')
                    tempPos.rotate(downRotMat)
                    # If the -ve flag for rotate is used we need to find which side of the stem the last child point was and then grow in the opposite direction.
                    if rotate[n] < 0.0:
                        oldRotate = -copysign(rotate[n] + uniform(-rotateV[n],rotateV[n]),oldRotate)
                    # Otherwise just generate a random number in the specified range
                    else:
                        oldRotate += rotate[n]+uniform(-rotateV[n],rotateV[n])
                    # Rotate the direction of growth and set the new point coordinates
                    rotMat = Matrix.Rotation(oldRotate,3,'Z')
                    tempPos.rotate(rotMat)
                    tempPos.rotate(p.quat)
                    newPoint.handle_right = p.co + tempPos
                    # If this is the first level of branching then upward attraction has no effect and a special formula is used to find branch length and the number of child stems
                    if n == 1:
                        vertAtt = 0.0
                        lMax = length[1] + uniform(-lengthV[1],lengthV[1])
                        branchL = p.lengthPar*lMax*shapeRatio(shape,(p.lengthPar - p.offset)/(p.lengthPar - baseSize*scaleVal))
                        childStems = branches[2]*(0.2 + 0.8*(branchL/p.lengthPar)/lMax)
                    elif storeN <= levels - 2:
                        branchL = (length[n] + uniform(-lengthV[n],lengthV[n]))*(p.lengthPar - 0.6*p.offset)
                        childStems = branches[min(3,n+1)]*(1.0 - 0.5*p.offset/p.lengthPar)
                    # If this is the last level before leaves then we need to generate the child points differently
                    else:
                        branchL = (length[n] + uniform(-lengthV[n],lengthV[n]))*(p.lengthPar - 0.6*p.offset)
                        if leaves < 0:
                            childStems = False
                        else:
                            childStems = leaves*shapeRatio(leafDist,p.offset/p.lengthPar)
                    # Determine the starting and ending radii of the stem using the tapering of the stem
                    startRad = min(p.radiusPar[0]*((branchL/p.lengthPar)**ratioPower), p.radiusPar[1])
                    endRad = startRad*(1 - taper[n])
                    newPoint.radius = startRad
                    # If curveBack is used then the curviness of the stem is different for the first half
                    if curveBack[n] == 0:
                        curveVal = curve[n]/curveRes[n]
                    else:
                        curveVal = 2*curve[n]/curveRes[n]
                    # Add the new stem to list of stems to grow and define which bone it will be parented to
                    addstem(stemSpline(newSpline,curveVal,curveV[n]/curveRes[n],0,curveRes[n],branchL/curveRes[n],childStems,startRad,endRad,len(cu.splines)-1))
                    addsplinetobone(p.parBone)

            childP = []
            # Now grow each of the stems in the list of those to be extended
            for st in stemList:
                # When using pruning, we need to ensure that the random effects will be the same for each iteration to make sure the problem is linear.
                randState = getstate()
                startPrune = True
                lengthTest = 0.0
                # Store all the original values for the stem to make sure we have access after it has been modified by pruning
                originalLength = st.segL
                originalCurv = st.curv
                originalCurvV = st.curvV
                originalSeg = st.seg
                originalHandleR = st.p.handle_right.copy()
                originalHandleL = st.p.handle_left.copy()
                originalCo = st.p.co.copy()
                currentMax = 1.0
                currentMin = 0.0
                currentScale = 1.0
                oldMax = 1.0
                deleteSpline = False
                orginalSplineToBone = copy.copy(splineToBone)
                forceSprout = False
                # Now do the iterative pruning, this uses a binary search and halts once the difference between upper and lower bounds of the search are less than 0.005
                while startPrune and ((currentMax - currentMin) > 0.005):
                    setstate(randState)
                    
                    # If the search will halt after this iteration, then set the adjustment of stem length to take into account the pruning ratio
                    if (currentMax - currentMin) < 0.01:
                        currentScale = (currentScale - 1)*pruneRatio + 1
                        startPrune = False
                        forceSprout = True
                    # Change the segment length of the stem by applying some scaling
                    st.segL = originalLength*currentScale
                    # To prevent millions of splines being created we delete any old ones and replace them with only their first points to begin the spline again
                    if deleteSpline:
                        for x in splineList:
                            cu.splines.remove(x.spline)
                        newSpline = cu.splines.new('BEZIER')
                        newPoint = newSpline.bezier_points[-1]
                        newPoint.co = originalCo
                        newPoint.handle_right = originalHandleR
                        newPoint.handle_left = originalHandleL
                        (newPoint.handle_left_type,newPoint.handle_right_type) = ('VECTOR','VECTOR')
                        st.spline = newSpline
                        st.curv = originalCurv
                        st.curvV = originalCurvV
                        st.seg = originalSeg
                        st.p = newPoint
                        newPoint.radius = st.radS
                        splineToBone = orginalSplineToBone

                    # Initialise the spline list for those contained in the current level of branching
                    splineList = [st]
                    # For each of the segments of the stem which must be grown we have to add to each spline in splineList
                    for k in range(curveRes[n]):
                        # Make a copy of the current list to avoid continually adding to the list we're iterating over
                        tempList = splineList[:]
                        #print('Leng: ',len(tempList))
                        # For each of the splines in this list set the number of splits and then grow it
                        for spl in tempList:
                            if k == 0:
                                numSplit = 0
                            elif (k == 1) and (n == 0):
                                numSplit = baseSplits
                            else:
                                numSplit = splits(segSplits[n])
                            if (k == int(curveRes[n]/2)) and (curveBack[n] != 0):
                                spl.curvAdd(-2*curve[n]/curveRes[n] + 2*curveBack[n]/curveRes[n])
                            growSpline(spl,numSplit,splitAngle[n],splitAngleV[n],splineList,vertAtt,handles,splineToBone)# Add proper refs for radius and attractUp

                    # If pruning is enabled then we must to the check to see if the end of the spline is within the evelope
                    if prune:
                        # Check each endpoint to see if it is inside
                        for s in splineList:
                            coordMag = (s.spline.bezier_points[-1].co.xy).length
                            ratio = (scaleVal - s.spline.bezier_points[-1].co.z)/(scaleVal*(1 - baseSize))
                            # Don't think this if part is needed
                            if (n == 0) and (s.spline.bezier_points[-1].co.z < baseSize*scaleVal):
                                pass#insideBool = True
                            else:
                                insideBool = ((coordMag/scaleVal) < pruneWidth*shapeRatio(8,ratio,pruneWidthPeak,prunePowerHigh,prunePowerLow))
                            # If the point is not inside then we adjust the scale and current search bounds
                            if not insideBool:
                                oldMax = currentMax
                                currentMax = currentScale
                                currentScale = 0.5*(currentMax + currentMin)
                                break
                        # If the scale is the original size and the point is inside then we need to make sure it won't be pruned or extended to the edge of the envelope
                        if insideBool and (currentScale != 1):
                            currentMin = currentScale
                            currentMax = oldMax
                            currentScale = 0.5*(currentMax + currentMin)
                        if insideBool and ((currentMax - currentMin) == 1):
                            currentMin = 1
                    # If the search will halt on the next iteration then we need to make sure we sprout child points to grow the next splines or leaves
                    if (((currentMax - currentMin) < 0.005) or not prune) or forceSprout:
                        tVals = findChildPoints(splineList,st.children)
                        # If leaves is -ve then we need to make sure the only point which sprouts is the end of the spline
                        #if not st.children:
                        if not st.children:
                            tVals = [0.9]
                        # If this is the trunk then we need to remove some of the points because of baseSize
                        if n == 0:
                            trimNum = int(baseSize*(len(tVals)+1))
                            tVals = tVals[trimNum:]

                        # For all the splines, we interpolate them and add the new points to the list of child points
                        for s in splineList:
                            #print(str(n)+'level: ',s.segMax*s.segL)
                            childP.extend(interpStem(s,tVals,s.segMax*s.segL,s.radS))

                    # Force the splines to be deleted
                    deleteSpline = True
                    # If pruning isn't enabled then make sure it doesn't loop
                    if not prune:
                        startPrune = False

            levelCount.append(len(cu.splines))
            # If we need to add leaves, we do it here
            if (storeN == levels-1) and leaves:
                oldRot = 0.0
                n = min(3,n+1)
                # For each of the child points we add leaves
                for cp in childP:
                    # If the special flag is set then we need to add several leaves at the same location
                    if leaves < 0:
                        oldRot = -rotate[n]/2
                        for g in range(abs(leaves)):
                            (vertTemp,faceTemp,oldRot) = genLeafMesh(leafScale,leafScaleX,cp.co,cp.quat,len(leafVerts),downAngle[n],downAngleV[n],rotate[n],rotateV[n],oldRot,bend,leaves, leafShape)
                            leafVerts.extend(vertTemp)
                            leafFaces.extend(faceTemp)
                    # Otherwise just add the leaves like splines.
                    else:
                        (vertTemp,faceTemp,oldRot) = genLeafMesh(leafScale,leafScaleX,cp.co,cp.quat,len(leafVerts),downAngle[n],downAngleV[n],rotate[n],rotateV[n],oldRot,bend,leaves, leafShape)
                        leafVerts.extend(vertTemp)
                        leafFaces.extend(faceTemp)
                # Create the leaf mesh and object, add geometry using from_pydata, edges are currently added by validating the mesh which isn't great
                leafMesh = bpy.data.meshes.new('leaves')
                leafObj = bpy.data.objects.new('leaves',leafMesh)
                bpy.context.scene.objects.link(leafObj)
                leafObj.parent = treeOb
                leafMesh.from_pydata(leafVerts,(),leafFaces)
                leafMesh.validate()
                
                if leafShape == 'rect':
                    uv = leafMesh.uv_textures.new("leafUV")
                    for tf in uv.data:
                        tf.uv1, tf.uv2, tf.uv3, tf.uv4 = Vector((1, 0)), Vector((1, 1)), Vector((1 - leafScaleX, 1)), Vector((1 - leafScaleX, 0))

# This can be used if we need particle leaves
#            if (storeN == levels-1) and leaves:
#                normalList = []
#                oldRot = 0.0
#                n = min(3,n+1)
#                oldRot = 0.0
#                # For each of the child points we add leaves
#                for cp in childP:
#                    # Here we make the new "sprouting" stems diverge from the current direction
#                    dirVec = zAxis.copy()
#                    oldRot += rotate[n]+uniform(-rotateV[n],rotateV[n])
#                    downRotMat = Matrix.Rotation(downAngle[n]+uniform(-downAngleV[n],downAngleV[n]),3,'X')
#                    rotMat = Matrix.Rotation(oldRot,3,'Z')
#                    dirVec.rotate(downRotMat)
#                    dirVec.rotate(rotMat)
#                    dirVec.rotate(cp.quat)
#                    normalList.extend([dirVec.x,dirVec.y,dirVec.z])
#                    leafVerts.append(cp.co)
#                # Create the leaf mesh and object, add geometry using from_pydata, edges are currently added by validating the mesh which isn't great
#                edgeList = [(a,a+1) for a in range(len(childP)-1)]
#                leafMesh = bpy.data.meshes.new('leaves')
#                leafObj = bpy.data.objects.new('leaves',leafMesh)
#                bpy.context.scene.objects.link(leafObj)
#                leafObj.parent = treeOb
#                leafMesh.from_pydata(leafVerts,edgeList,())
#                leafMesh.vertices.foreach_set('normal',normalList)

        # If we need and armature we add it
        if useArm:
            # Create the armature and objects
            arm = bpy.data.armatures.new('tree')
            armOb = bpy.data.objects.new('treeArm',arm)
            bpy.context.scene.objects.link(armOb)
            
            # Create a new action to store all animation
            newAction = bpy.data.actions.new(name='windAction')
            armOb.animation_data_create()
            armOb.animation_data.action = newAction

            arm.draw_type = 'STICK'
            arm.use_deform_delay = True
            
            # Add the armature modifier to the curve
            armMod = treeOb.modifiers.new('windSway','ARMATURE')
            #armMod.use_apply_on_spline = True
            armMod.object = armOb
            
            # If there are leaves then they need a modifier
            if leaves:
                armMod = leafObj.modifiers.new('windSway','ARMATURE')
                armMod.object = armOb

            # Make sure all objects are deselected (may not be required?)
            for ob in bpy.data.objects:
                ob.select = False

            # Set the armature as active and go to edit mode to add bones
            bpy.context.scene.objects.active = armOb
            bpy.ops.object.mode_set(mode='EDIT')

            masterBones = []

            offsetVal = 0

            # For all the splines in the curve we need to add bones at each bezier point
            for i,parBone in enumerate(splineToBone):
                s = cu.splines[i]
                b = None
                # Get some data about the spline like length and number of points
                numPoints = len(s.bezier_points)-1
                splineL = numPoints*((s.bezier_points[0].co-s.bezier_points[1].co).length)
                # Set the random phase difference of the animation
                bxOffset = uniform(0,2*pi)
                byOffset = uniform(0,2*pi)
                # Set the phase multiplier for the spline
                bMult = (s.bezier_points[0].radius/splineL)*(1/15)*(1/frameRate)
                # For all the points in the curve (less the last) add a bone and name it by the spline it will affect
                for n in range(numPoints):
                    oldBone = b
                    boneName = 'bone'+(str(i)).rjust(3,'0')+'.'+(str(n)).rjust(3,'0')
                    b = arm.edit_bones.new(boneName)
                    b.head = s.bezier_points[n].co
                    b.tail = s.bezier_points[n+1].co

                    b.head_radius = s.bezier_points[n].radius
                    b.tail_radius = s.bezier_points[n+1].radius
                    b.envelope_distance = 0.001#0.001

                    # If there are leaves then we need a new vertex group so they will attach to the bone
                    if (len(levelCount) > 1) and (i >= levelCount[-2]) and leafObj:
                        leafObj.vertex_groups.new(boneName)
                    elif (len(levelCount) == 1) and leafObj:
                        leafObj.vertex_groups.new(boneName)
                    # If this is first point of the spline then it must be parented to the level above it
                    if n == 0:
                        if parBone:
                            b.parent = arm.edit_bones[parBone]
#                            if len(parBone) > 11:
#                                b.use_connect = True
                    # Otherwise, we need to attach it to the previous bone in the spline
                    else:
                        b.parent = oldBone
                        b.use_connect = True
                    # If there isn't a previous bone then it shouldn't be attached
                    if not oldBone:
                        b.use_connect = False
                    #tempList.append(b)
                    
                    # Add the animation to the armature if required
                    if armAnim:
                        # Define all the required parameters of the wind sway by the dimension of the spline
                        a0 = 4*splineL*(1-n/(numPoints+1))/s.bezier_points[n].radius
                        a1 = (windSpeed/50)*a0
                        a2 = (windGust/50)*a0 + a1/2

                        # Add new fcurves for each sway  as well as the modifiers
                        swayX = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler',0)
                        swayY = armOb.animation_data.action.fcurves.new('pose.bones["' + boneName + '"].rotation_euler',2)
                        
                        swayXMod1 = swayX.modifiers.new(type='FNGENERATOR')
                        swayXMod2 = swayX.modifiers.new(type='FNGENERATOR')
                        
                        swayYMod1 = swayY.modifiers.new(type='FNGENERATOR')
                        swayYMod2 = swayY.modifiers.new(type='FNGENERATOR')
                        
                        # Set the parameters for each modifier
                        swayXMod1.amplitude = radians(a1)/numPoints
                        swayXMod1.phase_offset = bxOffset
                        swayXMod1.phase_multiplier = degrees(bMult)
                        
                        swayXMod2.amplitude = radians(a2)/numPoints
                        swayXMod2.phase_offset = 0.7*bxOffset
                        swayXMod2.phase_multiplier = 0.7*degrees(bMult) # This shouldn't have to be in degrees but it looks much better in animation
                        swayXMod2.use_additive = True
                        
                        swayYMod1.amplitude = radians(a1)/numPoints
                        swayYMod1.phase_offset = byOffset
                        swayYMod1.phase_multiplier = degrees(bMult) # This shouldn't have to be in degrees but it looks much better in animation
                        
                        swayYMod2.amplitude = radians(a2)/numPoints
                        swayYMod2.phase_offset = 0.7*byOffset
                        swayYMod2.phase_multiplier = 0.7*degrees(bMult) # This shouldn't have to be in degrees but it looks much better in animation
                        swayYMod2.use_additive = True

            # If there are leaves we need to assign vertices to their vertex groups
            if leaves:
                offsetVal = 0
                for i,cp in enumerate(childP):
                    for v in leafMesh.vertices[6*i:(6*i+6)]:
                        leafObj.vertex_groups[cp.parBone].add([v.index],1.0,'ADD')

            # Now we need the rotation mode to be 'XYZ' to ensure correct rotation
            bpy.ops.object.mode_set(mode='OBJECT')
            for p in armOb.pose.bones:
                p.rotation_mode = 'XYZ'
            treeOb.parent = armOb
        #print(time.time()-startTime)