Welcome to mirror list, hosted at ThFree Co, Russian Federation.

add_mesh_honeycomb.py « add_mesh_extra_objects - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: df60671b1f26c542180263dd7d44cbfd7ed9ad9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# GPL # "author": "Kayo Phoenix"

from math import pi, sin, cos

class honeycomb_geometry():
    def __init__(self, rows, cols, D, E):
        self.rows = rows
        self.cols = cols
        self.D = D
        self.E = E

        self.hE = 0.5 * self.E
        self.R = 0.5 * self.D

        self.a = sin(pi / 3)

        self.d = self.a * self.D
        self.hd = 0.5 * self.d
        self.e = self.hE / self.a
        self.he = 0.5 * self.e
        self.r = self.R - self.e
        self.hr = 0.5 * self.r


        self.H = self.R * (1.5 * self.rows + 0.5) + self.e
        if self.rows > 1:
            self.W = self.d * (self.cols + 0.5) + self.E
        else:
            self.W = self.d * self.cols + self.E

        self.hH = 0.5 * self.H
        self.hW = 0.5 * self.W

        self.sy = -self.hH + self.he + self.R
        self.sx = -self.hW + self.hE + self.hd

        self.gx = self.hd

        self.dy = 1.5 * self.R
        self.dx = self.d

    def vert(self, row, col):
        # full cell
        if row >= 0 and row < self.rows and col >= 0 and col < self.cols: return [0, 1, 2, 3, 4, 5]
        # right down corner
        if row == -1 and col == self.cols - 1: return [1, 2]
        if row == 0 and self.rows > 1 and col == self.cols: return [1, 2, 3]
        # left down corner
        if row == -1 and col == -1: return [0, 1]
        if self.rows % 2:
            # left up corner
            if row == self.rows and col == -1: return [4, 5]
            # right up corner
            if row == self.rows and col == self.cols - 1: return [3, 4]
            if row == self.rows - 1 and self.rows > 1 and col == self.cols: return [2, 3, 4]
        else:
            # left up corner
            if row == self.rows and col == 0: return [4, 5]
            if row == self.rows - 1 and self.rows > 1 and col == -1: return [0, 4, 5]
            # right up corner
            if row == self.rows and col == self.cols: return [3, 4]
        # horizontal lines
        if col >= 0 and col < self.cols:
            if row == -1: return [0, 1, 2]
            if row == self.rows: return [3, 4, 5]
        # vertical lines
        if row >= 0 and row < self.rows:
            if col == -1:
                if row % 2: return [0, 1, 4, 5]
                else: return [0, 5]
            if col == self.cols:
                if row % 2 or self.rows == 1: return [2, 3]
                else: return [1, 2, 3, 4]
        return []

    def cell(self, row, col, idx):
        cp = [self.sx + self.dx * col, self.sy + self.dy * row, 0] # central point
        if row % 2: cp[0] += self.gx
        co = [] # vertexes coords
        vi = self.vert(row, col)
        ap = {}

        for i in vi:
            a = pi / 6 + i * pi / 3 # angle
            ap[i] = idx + len(co)
            co.append((cp[0] + cos(a) * self.r, cp[1] + sin(a) * self.r, cp[2]))
        return co, ap

    def generate(self):
        ar = 1
        ac = 1

        cells = []
        verts = []
        faces = []

        for row in range(-ar, self.rows + ar):
            level = []
            for col in range(-ac, self.cols + ac):
                co, ap = self.cell(row, col, len(verts))
                verts += co
                level.append(ap)
            cells.append(level)

        # bottom row
        row = 0
        for col in range(1, len(cells[row]) - 1):
            s = cells[row][col]
            l = cells[row][col - 1]
            u = cells[row + 1][col]

            faces.append((s[1], u[5], u[4], s[2]))
            faces.append((s[2], u[4], l[0]))

        # top row
        row = len(cells) - 1
        cs = 0
        if row % 2: cs += 1
        for col in range(1 + cs, len(cells[row]) - 1):
            s = cells[row][col]
            l = cells[row][col - 1]
            d = cells[row - 1][col - cs]
            faces.append((s[3], l[5], d[1]))
            faces.append([s[3], d[1], d[0], s[4]])

        # middle rows
        for row in range(1, len(cells) - 1):
            cs = 0
            if row % 2: cs += 1
            for col in range(1, len(cells[row]) - 1):
                s = cells[row][col]
                l = cells[row][col - 1]
                u = cells[row + 1][col - cs]
                d = cells[row - 1][col - cs]

                faces.append((s[1], u[5], u[4], s[2]))
                faces.append((s[2], u[4], l[0]))
                faces.append([s[2], l[0], l[5], s[3]])
                faces.append((s[3], l[5], d[1]))
                faces.append([s[3], d[1], d[0], s[4]])

        # right column
        row = 0
        col = len(cells[row]) - 1
        for row in range(1, len(cells) - 1):
            cs = 0
            if row % 2: cs += 1

            s = cells[row][col]
            l = cells[row][col - 1]
            u = cells[row + 1][col - cs]
            d = cells[row - 1][col - cs]

            if row % 2 and row < len(cells) - 2:
                faces.append((s[1], u[5], u[4], s[2]))
            faces.append((s[2], u[4], l[0]))
            faces.append([s[2], l[0], l[5], s[3]])
            faces.append((s[3], l[5], d[1]))
            if row % 2 and row > 1:
                faces.append([s[3], d[1], d[0], s[4]])

        # final fix
        if not self.rows % 2:
            row = len(cells) - 1
            s = cells[row][col]
            l = cells[row][col - 1]
            d = cells[row - 1][col - 1]
            faces.append((s[3], l[5], d[1]))
            faces.append([s[3], d[1], d[0], s[4]])

        return verts, faces

import bpy
from bpy.props import *
from bpy_extras import object_utils

def edge_max(diam):
    return diam * sin(pi / 3)

class add_mesh_honeycomb(bpy.types.Operator):
    """Simple honeycomb mesh generator"""
    bl_idname = 'mesh.honeycomb_add'
    bl_label = 'Add HoneyComb'
    bl_options = {'REGISTER', 'UNDO'}

    rows = IntProperty(
        name = 'Num of rows', default = 2,
        min = 1, max = 100,
        description='Number of the rows')

    cols = IntProperty(
        name = 'Num of cols', default = 2,
        min = 1, max = 100,
        description='Number of the columns')

    def fix_edge(self, context):
        m = edge_max(self.diam)
        if self.edge > m: self.edge = m

    diam = FloatProperty(
        name = 'Cell Diameter', default = 1.0,
        min = 0.0, update = fix_edge,
        description='Diameter of the cell')

    edge = FloatProperty(
        name = 'Edge Width', default = 0.1,
        min = 0.0, update = fix_edge,
        description='Width of the edge')

    # generic transform props
    view_align = BoolProperty(
        name="Align to View",
        default=False)
    location = FloatVectorProperty(
        name="Location",
        subtype='TRANSLATION')
    rotation = FloatVectorProperty(
        name="Rotation",
        subtype='EULER')

    ##### POLL #####
    @classmethod
    def poll(cls, context):
        return context.scene is not None

    ##### EXECUTE #####
    def execute(self, context):
        mesh = bpy.data.meshes.new(name='honeycomb')

        comb = honeycomb_geometry(self.rows, self.cols, self.diam, self.edge)
        verts, faces = comb.generate()

        mesh.from_pydata(vertices = verts, edges = [], faces = faces)
        mesh.update()

        object_utils.object_data_add(context, mesh, operator=self)

        return {'FINISHED'}