Welcome to mirror list, hosted at ThFree Co, Russian Federation.

add_mesh_supertoroid.py « add_mesh_extra_objects - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5836ed5e5df2f8f84ab0886700c5aa3dea046cf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# GPL # "author": "DreamPainter"

import bpy
from bpy.props import (
        FloatProperty,
        BoolProperty,
        IntProperty,
        )
from math import pi, cos, sin
from mathutils import Vector


# Create a new mesh (object) from verts/edges/faces
# verts/edges/faces ... List of vertices/edges/faces for the
#                       new mesh (as used in from_pydata)
# name ... Name of the new mesh (& object)

def create_mesh_object(context, verts, edges, faces, name):

    # Create new mesh
    mesh = bpy.data.meshes.new(name)

    # Make a mesh from a list of verts/edges/faces.
    mesh.from_pydata(verts, edges, faces)

    # Update mesh geometry after adding stuff.
    mesh.update()

    from bpy_extras import object_utils
    return object_utils.object_data_add(context, mesh, operator=None)


# A very simple "bridge" tool

def createFaces(vertIdx1, vertIdx2, closed=False, flipped=False):
    faces = []

    if not vertIdx1 or not vertIdx2:
        return None

    if len(vertIdx1) < 2 and len(vertIdx2) < 2:
        return None

    fan = False
    if (len(vertIdx1) != len(vertIdx2)):
        if (len(vertIdx1) == 1 and len(vertIdx2) > 1):
            fan = True
        else:
            return None

    total = len(vertIdx2)

    if closed:
        # Bridge the start with the end.
        if flipped:
            face = [
                vertIdx1[0],
                vertIdx2[0],
                vertIdx2[total - 1]]
            if not fan:
                face.append(vertIdx1[total - 1])
            faces.append(face)

        else:
            face = [vertIdx2[0], vertIdx1[0]]
            if not fan:
                face.append(vertIdx1[total - 1])
            face.append(vertIdx2[total - 1])
            faces.append(face)

    # Bridge the rest of the faces.
    for num in range(total - 1):
        if flipped:
            if fan:
                face = [vertIdx2[num], vertIdx1[0], vertIdx2[num + 1]]
            else:
                face = [vertIdx2[num], vertIdx1[num],
                    vertIdx1[num + 1], vertIdx2[num + 1]]
            faces.append(face)
        else:
            if fan:
                face = [vertIdx1[0], vertIdx2[num], vertIdx2[num + 1]]
            else:
                face = [vertIdx1[num], vertIdx2[num],
                    vertIdx2[num + 1], vertIdx1[num + 1]]
            faces.append(face)

    return faces


def power(a, b):
    if a < 0:
        return -((-a) ** b)
    return a ** b


def supertoroid(R, r, u, v, n1, n2):
    """
    R = big radius
    r = small radius
    u = lateral segmentation
    v = radial segmentation
    n1 = value determines the shape of the torus
    n2 = value determines the shape of the cross-section
    """
    # create the necessary constants
    a = 2 * pi / u
    b = 2 * pi / v

    verts = []
    faces = []

    # create each cross-section by calculating each vector on the
    # the wannabe circle
    # x = (cos(theta) ** n1)*(R + r * (cos(phi) ** n2))
    # y = (sin(theta) ** n1)*(R + r * (cos(phi) ** n2))
    # z = (r * sin(phi) ** n2)
    # with theta and phi rangeing from 0 to 2pi

    for i in range(u):
        s = power(sin(i * a), n1)
        c = power(cos(i * a), n1)
        for j in range(v):
            c2 = R + r * power(cos(j * b), n2)
            s2 = r * power(sin(j * b), n2)
            verts.append(Vector((c * c2, s * c2, s2)))

        # bridge the last circle with the previous circle
        if i > 0:   # but not for the first circle, 'cus there's no previous before the first
            f = createFaces(range((i - 1) * v, i * v), range(i * v, (i + 1) * v), closed=True)
            faces.extend(f)
    # bridge the last circle with the first
    f = createFaces(range((u - 1) * v, u * v), range(v), closed=True)
    faces.extend(f)

    return verts, faces


class add_supertoroid(bpy.types.Operator):
    bl_idname = "mesh.primitive_supertoroid_add"
    bl_label = "Add SuperToroid"
    bl_description = "Construct a supertoroid mesh"
    bl_options = {'REGISTER', 'UNDO', 'PRESET'}

    R: FloatProperty(
            name="Big radius",
            description="The radius inside the tube",
            default=1.0,
            min=0.01, max=100.0
            )
    r: FloatProperty(
            name="Small radius",
            description="The radius of the tube",
            default=0.3,
            min=0.01, max=100.0
            )
    u: IntProperty(
            name="U-segments",
            description="Radial segmentation",
            default=16,
            min=3, max=265
            )
    v: IntProperty(
            name="V-segments",
            description="Lateral segmentation",
            default=8,
            min=3, max=265
            )
    n1: FloatProperty(
            name="Ring manipulator",
            description="Manipulates the shape of the Ring",
            default=1.0,
            min=0.01, max=100.0
            )
    n2: FloatProperty(
            name="Cross manipulator",
            description="Manipulates the shape of the cross-section",
            default=1.0,
            min=0.01, max=100.0
            )
    ie: BoolProperty(
            name="Use Int. and Ext. radii",
            description="Use internal and external radii",
            default=False
            )
    edit: BoolProperty(
            name="",
            description="",
            default=False,
            options={'HIDDEN'}
            )

    def execute(self, context):
        props = self.properties

        # check how the radii properties must be used
        if props.ie:
            rad1 = (props.R + props.r) / 2
            rad2 = (props.R - props.r) / 2
            # for consistency in the mesh, ie no crossing faces, make the largest of the two
            # the outer radius
            if rad2 > rad1:
                [rad1, rad2] = [rad2, rad1]
        else:
            rad1 = props.R
            rad2 = props.r
            # again for consistency, make the radius in the tube,
            # at least as big as the radius of the tube
            if rad2 > rad1:
                rad1 = rad2

        # create mesh
        verts, faces = supertoroid(rad1,
                                  rad2,
                                  props.u,
                                  props.v,
                                  props.n1,
                                  props.n2
                                  )
        # create the object
        obj = create_mesh_object(context, verts, [], faces, "SuperToroid")

        return {'FINISHED'}