Welcome to mirror list, hosted at ThFree Co, Russian Federation.

eroder.py « ant_landscape - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 0c7e2edbbfeb96d621209b4011262f2a53c7559f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  erode.py  -- a script to simulate erosion of height fields
#  (c) 2014 Michel J. Anders (varkenvarken)
#  now with some modifications by Ian Huish (nerk)
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

from time import time
import unittest
import sys
import os
# import resource     # so much for platform independence, this only works on unix :-(
from random import random as rand, shuffle
import numpy as np
#from .perlin import pnoise

numexpr_available = False
# Sorry, nerk can't handle numexpr at this time!
#try:
#    import numexpr as ne
#    numexpr_available = True
#except ImportError:
#    pass

def getmemsize():
  return 0.0
  #return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss*resource.getpagesize()/(1024.0*1024.0)
  
def getptime():
  #r = resource.getrusage(resource.RUSAGE_SELF)
  #return r.ru_utime + r.ru_stime
  return time()
      
class Grid:

    def __init__(self, size=10, dtype=np.single):
        self.center = np.zeros([size,size], dtype)
        #print("Centre\n", np.array_str(self.center,precision=3), file=sys.stderr)
        self.water = None
        self.sediment = None
        self.scour = None
        self.flowrate = None
        self.sedimentpct = None
        self.sedimentpct = None
        self.capacity = None
        self.avalanced = None
        self.minx=None
        self.miny=None
        self.maxx=None
        self.maxy=None
        self.zscale=1
        self.maxrss=0.0
        self.sequence=[0,1,2,3]
        self.watermax = 1.0
        self.flowratemax = 1.0
        self.scourmax = 1.0
        self.sedmax = 1.0
        self.scourmin = 1.0
 
    def init_water_and_sediment(self):
        if self.water is None:
            self.water = np.zeros(self.center.shape, dtype=np.single)
        if self.sediment is None:
            self.sediment = np.zeros(self.center.shape, dtype=np.single)
        if self.scour is None:
            self.scour = np.zeros(self.center.shape, dtype=np.single)
        if self.flowrate is None:
            self.flowrate = np.zeros(self.center.shape, dtype=np.single)
        if self.sedimentpct is None:
            self.sedimentpct = np.zeros(self.center.shape, dtype=np.single)
        if self.capacity is None:
            self.capacity = np.zeros(self.center.shape, dtype=np.single)
        if self.avalanced is None:
            self.avalanced = np.zeros(self.center.shape, dtype=np.single)

    def __str__(self):
        return ''.join(self.__str_iter__(fmt="%.3f"))
        
    def __str_iter__(self, fmt):
        for row in self.center[::]:
            values=[]
            for v in row:
                values.append(fmt%v)
            yield  ' '.join(values) + '\n'

    @staticmethod
    def fromFile(filename):
        if filename == '-' : filename = sys.stdin
        g=Grid()
        g.center=np.loadtxt(filename,np.single)
        return g

    def toFile(self, filename, fmt="%.3f"):
        if filename == '-' : 
            filename = sys.stdout.fileno()
        with open(filename,"w") as f:
            for line in self.__str_iter__(fmt):
                f.write(line)
    
    def raw(self,format="%.3f"):
        fstr=format+" "+ format+" "+ format+" "
        a=self.center / self.zscale
        minx=0.0 if self.minx is None else self.minx
        miny=0.0 if self.miny is None else self.miny
        maxx=1.0 if self.maxx is None else self.maxx
        maxy=1.0 if self.maxy is None else self.maxy
        dx=(maxx-minx)/(a.shape[0]-1)
        dy=(maxy-miny)/(a.shape[1]-1)
        for row in range(a.shape[0]-1):
            row0=miny+row*dy
            row1=row0+dy
            for col in range(a.shape[1]-1):
                col0=minx+col*dx
                col1=col0+dx
                yield (fstr%(row0 ,col0 ,a[row  ][col  ])+
                       fstr%(row0 ,col1 ,a[row  ][col+1])+
                       fstr%(row1 ,col0 ,a[row+1][col  ])+"\n")
                yield (fstr%(row0 ,col1 ,a[row  ][col+1])+
                       fstr%(row1 ,col0 ,a[row+1][col  ])+
                       fstr%(row1 ,col1 ,a[row+1][col+1])+"\n")

    def toRaw(self, filename, infomap=None):
        with open(filename if type(filename) == str else sys.stdout.fileno() , "w") as f:
            f.writelines(self.raw())
        if infomap:
            with open(os.path.splitext(filename)[0]+".inf" if type(filename) == str else sys.stdout.fileno() , "w") as f:
                f.writelines("\n".join("%-15s: %s"%t for t in sorted(infomap.items())))
            
    @staticmethod
    def fromRaw(filename):
        """initialize a grid from a Blender .raw file.
        currenly suports just rectangular grids of all triangles
        """
        g=Grid.fromFile(filename)
        #  we assume tris and an axis aligned grid
        g.center=np.reshape(g.center,(-1,3))
        g._sort()
        return g

    def _sort(self, expfact):
        #  keep unique vertices only by creating a set and sort first on x then on y coordinate
        #  using rather slow python sort but couldn;t wrap my head around np.lexsort
        verts = sorted(list({ tuple(t) for t in self.center[::] }))
        x=set(c[0] for c in verts)
        y=set(c[1] for c in verts)
        nx=len(x)
        ny=len(y)
        self.minx=min(x)
        self.maxx=max(x)
        self.miny=min(y)
        self.maxy=max(y)
        xscale=(self.maxx-self.minx)/(nx-1)
        yscale=(self.maxy-self.miny)/(ny-1)
        # note: a purely flat plane cannot be scaled 
        if (yscale != 0.0) and (abs(xscale/yscale) - 1.0 > 1e-3) : raise ValueError("Mesh spacing not square %d x %d  %.4f x %4.f"%(nx,ny,xscale,yscale))
        self.zscale=1.0
        if abs(yscale) > 1e-6 :
            self.zscale=1.0/yscale
        
        #  keep just the z-values and null any ofsset
        #  we might catch a reshape error that will occur if nx*ny != # of vertices (if we are not dealing with a heightfield but with a mesh with duplicate x,y coords, like an axis aligned cube
        self.center=np.array([c[2] for c in verts],dtype=np.single).reshape(nx,ny)
        self.center=(self.center-np.amin(self.center))*self.zscale
        if self.rainmap is not None:
            #rainmap = sorted(list({ tuple(t) for t in self.rainmap[::] }))
            #self.rainmap=np.array([c[2] for c in rainmap],dtype=np.single).reshape(nx,ny)
            rmscale = np.max(self.center)
            #self.rainmap = (self.center/rmscale) * np.exp(expfact*((self.center/rmscale)-1))
            self.rainmap = expfact + (1-expfact)*(self.center/rmscale)
        
    @staticmethod
    def fromBlenderMesh(me, vg, expfact):
        g=Grid()
        g.center=np.asarray(list(tuple(v.co) for v in me.vertices), dtype=np.single )
        g.rainmap=None
        print("VertexGroup\n",vg, file=sys.stderr)
        if vg is not None:
            for v in me.vertices:
                vg.add([v.index],0.0,'ADD')
            g.rainmap=np.asarray(list( (v.co[0], v.co[1], vg.weight(v.index)) for v in me.vertices), dtype=np.single )
        g._sort(expfact)
        #print("CentreMesh\n", np.array_str(g.center,precision=3), file=sys.stderr)
        #print('rainmap',np.max(g.rainmap),np.min(g.rainmap))
        return g

#    def rainmapcolor(me, vg):
#        if vg is not None:
#            for v in me.vertices:
                
        

    def setrainmap(self, rainmap):
        self.rainmap = rainmap
        
    def _verts(self, surface):
        a=surface / self.zscale
        minx=0.0 if self.minx is None else self.minx
        miny=0.0 if self.miny is None else self.miny
        maxx=1.0 if self.maxx is None else self.maxx
        maxy=1.0 if self.maxy is None else self.maxy
        dx=(maxx-minx)/(a.shape[0]-1)
        dy=(maxy-miny)/(a.shape[1]-1)
        for row in range(a.shape[0]):
            row0=miny+row*dy
            for col in range(a.shape[1]):
                col0=minx+col*dx
                yield (row0 ,col0 ,a[row  ][col  ])

    def _faces(self):
        nrow, ncol = self.center.shape
        for row in range(nrow-1):
            for col in range(ncol-1):
              vi = row * ncol + col
              yield (vi, vi+ncol, vi+1)
              yield (vi+1, vi+ncol, vi+ncol+1)      
    
    def toBlenderMesh(self, me): # pass me as argument so that we don't need to import bpy and create a dependency
        # the docs state that from_pydata takes iterators as arguments but it will fail with generators because it does len(arg)
        me.from_pydata(list(self._verts(self.center)),[],list(self._faces()))
    
    def toWaterMesh(self, me): # pass me as argument so that we don't need to import bpy and create a dependency
        # the docs state that from_pydata takes iterators as arguments but it will fail with generators because it does len(arg)
        me.from_pydata(list(self._verts(self.water)),[],list(self._faces()))
    
    def peak(self, value=1):
        nx,ny = self.center.shape
        self.center[int(nx/2),int(ny/2)] += value

    def shelf(self, value=1):
        nx,ny = self.center.shape
        self.center[:nx/2] += value

    def mesa(self, value=1):
        nx,ny = self.center.shape
        self.center[nx/4:3*nx/4,ny/4:3*ny/4] += value

    def random(self, value=1):
        self.center += np.random.random_sample(self.center.shape)*value

    def neighborgrid(self):
        self.up=np.roll(self.center,-1,0)
        self.down=np.roll(self.center,1,0)
        self.left=np.roll(self.center,-1,1)
        self.right=np.roll(self.center,1,1)

    def zeroedge(self, quantity=None):
        c = self.center if quantity is None else quantity
        c[0,:]=0
        c[-1,:]=0
        c[:,0]=0
        c[:,-1]=0

    def diffuse(self, Kd, IterDiffuse, numexpr):
        self.zeroedge()
        c     = self.center[1:-1,1:-1]
        up    = self.center[ :-2,1:-1]
        down  = self.center[2:  ,1:-1]
        left  = self.center[1:-1, :-2]
        right = self.center[1:-1,2:  ]
        if(numexpr and numexpr_available):
            self.center[1:-1,1:-1] = ne.evaluate('c + Kd * (up + down + left + right - 4.0 * c)')
        else:
            self.center[1:-1,1:-1] = c + (Kd/IterDiffuse) * (up + down + left + right - 4.0 * c)
            print("diffuse: ", Kd)
        self.maxrss = max(getmemsize(), self.maxrss)
        return self.center

    def avalanche(self, delta, iterava, prob, numexpr):
        self.zeroedge()
        #print(self.center)
        
        c     = self.center[1:-1,1:-1]
        up    = self.center[ :-2,1:-1]
        down  = self.center[2:  ,1:-1]
        left  = self.center[1:-1, :-2]
        right = self.center[1:-1,2:  ]
        where = np.where
       
        if(numexpr and numexpr_available):
            self.center[1:-1,1:-1] = ne.evaluate('c + where((up   -c) > delta ,(up   -c -delta)/2, 0) \
                 + where((down -c) > delta ,(down -c -delta)/2, 0)  \
                 + where((left -c) > delta ,(left -c -delta)/2, 0)  \
                 + where((right-c) > delta ,(right-c -delta)/2, 0)  \
                 + where((up   -c) < -delta,(up   -c +delta)/2, 0)  \
                 + where((down -c) < -delta,(down -c +delta)/2, 0)  \
                 + where((left -c) < -delta,(left -c +delta)/2, 0)  \
                 + where((right-c) < -delta,(right-c +delta)/2, 0)')
        else:
            sa = (
            # incoming
                   where((up   -c) > delta ,(up   -c -delta)/2, 0) 
                 + where((down -c) > delta ,(down -c -delta)/2, 0)
                 + where((left -c) > delta ,(left -c -delta)/2, 0)
                 + where((right-c) > delta ,(right-c -delta)/2, 0)
            # outgoing
                 + where((up   -c) < -delta,(up   -c +delta)/2, 0) 
                 + where((down -c) < -delta,(down -c +delta)/2, 0)
                 + where((left -c) < -delta,(left -c +delta)/2, 0)
                 + where((right-c) < -delta,(right-c +delta)/2, 0)
                 )
            randarray = np.random.randint(0,100,sa.shape) *0.01
            sa = where(randarray < prob, sa, 0)
            self.avalanced[1:-1,1:-1] = self.avalanced[1:-1,1:-1] + sa/iterava 
            self.center[1:-1,1:-1] = c + sa/iterava
        
        #print(self.center)
        self.maxrss = max(getmemsize(), self.maxrss)
        return self.center

    def rain(self, amount=1, variance=0, userainmap=False):
        self.water += (1.0 - np.random.random(self.water.shape) * variance) * (amount if ((self.rainmap is None) or (not userainmap)) else self.rainmap * amount) 
        
    def spring(self, amount, px, py, radius): # px, py and radius are all fractions
        nx, ny = self.center.shape
        rx = max(int(nx*radius),1)
        ry = max(int(ny*radius),1)
        px = int(nx*px)
        py = int(ny*py)
        self.water[px-rx:px+rx+1,py-ry:py+ry+1] += amount
        
    def river(self, Kc, Ks, Kdep, Ka, Kev, numexpr):

      zeros = np.zeros
      where = np.where
      min = np.minimum
      max = np.maximum
      abs = np.absolute
      arctan = np.arctan
      sin = np.sin
      
      center = (slice(   1,   -1,None),slice(   1,  -1,None))
      #print("CentreSlice\n", np.array_str(center,precision=3), file=sys.stderr) 
      up     = (slice(None,   -2,None),slice(   1,  -1,None))
      down   = (slice(   2, None,None),slice(   1,  -1,None))
      left   = (slice(   1,   -1,None),slice(None,  -2,None))
      right  = (slice(   1,   -1,None),slice(   2,None,None))
        
      water = self.water
      rock = self.center
      sediment = self.sediment
      height = rock + water
      sc = where(water>0, sediment/water, 0)  ##!! this gives a runtime warning for division by zero
      sdw = zeros(water[center].shape)
      svdw = zeros(water[center].shape)
      sds = zeros(water[center].shape)
      angle = zeros(water[center].shape)
      #print(water[center])
      for d in (up,down,left,right):
          if(numexpr and numexpr_available):
            hdd = height[d]
            hcc = height[center]
            dw = ne.evaluate('hdd-hcc')
            inflow = ne.evaluate('dw > 0')
            wdd = water[d]
            wcc = water[center]
            dw = ne.evaluate('where(inflow, where(wdd<dw, wdd, dw), where(-wcc>dw, -wcc, dw))/4.0') # nested where() represent min() and max()
            sdw  = ne.evaluate('sdw + dw')
            scd  = sc[d]
            scc  = sc[center]
            rockd= rock[d]
            rockc= rock[center]
            sds  = ne.evaluate('sds + dw * where(inflow, scd, scc)')
            svdw = ne.evaluate('svdw + abs(dw)')
            angle= ne.evaluate('angle + arctan(abs(rockd-rockc))')
          else:
            dw = (height[d]-height[center])
            inflow = dw > 0
            dw = where(inflow, min(water[d], dw), max(-water[center], dw))/4.0
            sdw  = sdw + dw
            sds  = sds + dw * where(inflow, sc[d], sc[center])
            svdw = svdw + abs(dw)
            angle= angle + np.arctan(abs(rock[d]-rock[center]))
          
      if(numexpr and numexpr_available):
          wcc = water[center]
          scc = sediment[center]
          rcc = rock[center]
          water[center] = ne.evaluate('wcc + sdw')
          sediment[center] = ne.evaluate('scc + sds')
          sc = ne.evaluate('where(wcc>0, scc/wcc, 2000*Kc)')
          fKc = ne.evaluate('Kc*sin(Ka*angle)*svdw')
          ds = ne.evaluate('where(sc > fKc, -Kd * scc, Ks * svdw)')
          rock[center] = ne.evaluate('rcc - ds')
          rock[center] = ne.evaluate('where(rcc<0,0,rcc)') # there isn't really a bottom to the rock but negative values look ugly
          sediment[center] = ne.evaluate('scc + ds')
      else:
          wcc = water[center]
          scc = sediment[center]
          rcc = rock[center]
          water[center] = wcc * (1-Kev) + sdw
          sediment[center] = scc + sds
          sc = where(wcc>0, scc/wcc, 2*Kc)
          fKc = Kc*svdw
          #fKc = Kc*np.sin(Ka*angle)*svdw*wcc
          #ds = where(sc > fKc, -Kd * scc, Ks * svdw)
          ds = where(fKc>sc,(fKc-sc)*Ks,(fKc-sc)*Kdep)*wcc
          self.flowrate[center] = svdw
          self.scour[center] = ds
          self.sedimentpct[center] = sc
          self.capacity[center] = fKc
          #rock[center] = rcc - ds
          #rock[center] = where(rcc<0,0,rcc) # there isn't really a bottom to the rock but negative values look ugly
          sediment[center] = scc + ds + sds
          #print("sdw", sdw[10,15])
     
    def flow(self, Kc, Ks, Kz, Ka, numexpr):

      zeros = np.zeros
      where = np.where
      min = np.minimum
      max = np.maximum
      abs = np.absolute
      arctan = np.arctan
      sin = np.sin
      
      center = (slice(   1,   -1,None),slice(   1,  -1,None))
      #print("CentreSlice\n", np.array_str(center,precision=3), file=sys.stderr) 
      #up     = (slice(None,   -2,None),slice(   1,  -1,None))
      #down   = (slice(   2, None,None),slice(   1,  -1,None))
      #left   = (slice(   1,   -1,None),slice(None,  -2,None))
      #right  = (slice(   1,   -1,None),slice(   2,None,None))
        
      #water = self.water
      rock = self.center
      #sediment = self.sediment
      #height = rock + water
      #sc = where(water>0, sediment/water, 0)  ##!! this gives a runtime warning for division by zero
      #sdw = zeros(water[center].shape)
      #svdw = zeros(water[center].shape)
      #sds = zeros(water[center].shape)
      #angle = zeros(water[center].shape)
      #print(height[center])
      #print(water[center])
      #for d in (up,down,left,right):
          #if(numexpr and numexpr_available):
            #hdd = height[d]
            #hcc = height[center]
            #dw = ne.evaluate('hdd-hcc')
            #inflow = ne.evaluate('dw > 0')
            #wdd = water[d]
            #wcc = water[center]
            #dw = ne.evaluate('where(inflow, where(wdd<dw, wdd, dw), where(-wcc>dw, -wcc, dw))/4.0') # nested where() represent min() and max()
            #sdw  = ne.evaluate('sdw + dw')
            #scd  = sc[d]
            #scc  = sc[center]
            #rockd= rock[d]
            #rockc= rock[center]
            #sds  = ne.evaluate('sds + dw * where(inflow, scd, scc)')
            #svdw = ne.evaluate('svdw + abs(dw)')
            #angle= ne.evaluate('angle + arctan(abs(rockd-rockc))')
          #else:
            #dw = (height[d]-height[center])
            #inflow = dw > 0
            #dw = where(inflow, min(water[d], dw), max(-water[center], dw))/4.0
            #sdw  = sdw + dw
            #sds  = sds + dw * where(inflow, sc[d], sc[center])
            #svdw = svdw + abs(dw)
            #angle= angle + np.arctan(abs(rock[d]-rock[center]))
          
      #if(numexpr and numexpr_available):
          #wcc = water[center]
          #scc = sediment[center]
          #rcc = rock[center]
          #water[center] = ne.evaluate('wcc + sdw')
          #sediment[center] = ne.evaluate('scc + sds')
          #sc = ne.evaluate('where(wcc>0, scc/wcc, 2000*Kc)')
          #fKc = ne.evaluate('Kc*sin(Ka*angle)*svdw')
          #ds = ne.evaluate('where(sc > fKc, -Kd * scc, Ks * svdw)')
          #rock[center] = ne.evaluate('rcc - ds')
          #rock[center] = ne.evaluate('where(rcc<0,0,rcc)') # there isn't really a bottom to the rock but negative values look ugly
          #sediment[center] = ne.evaluate('scc + ds')
      #else:
          #wcc = water[center]
          #scc = sediment[center]
      ds = self.scour[center]    
      rcc = rock[center]
          #water[center] = wcc + sdw
          #sediment[center] = scc + sds
          #sc = where(wcc>0, scc/wcc, 2*Kc)
          #fKc = Kc*np.sin(Ka*angle)*svdw
          #ds = where(sc > fKc, -Kd * scc, Ks * svdw)
      rock[center] = rcc - ds * Kz
      rock[center] = where(rcc<0,0,rcc) # there isn't really a bottom to the rock but negative values look ugly
          #sediment[center] = scc + ds

    def rivergeneration(self, rainamount, rainvariance, userainmap, Kc, Ks, Kdep, Ka, Kev, Kspring, Kspringx, Kspringy, Kspringr, numexpr):
        self.init_water_and_sediment()
        self.rain(rainamount, rainvariance, userainmap)
        self.zeroedge(self.water)
        self.zeroedge(self.sediment)
        #self.spring(Kspring, Kspringx, Kspringy, Kspringr)
        self.river(Kc, Ks, Kdep, Ka, Kev, numexpr)
        self.watermax = np.max(self.water)

    def fluvial_erosion(self, rainamount, rainvariance, userainmap, Kc, Ks, Kdep, Ka, Kspring, Kspringx, Kspringy, Kspringr, numexpr):
        #self.init_water_and_sediment()
        #self.rain(rainamount, rainvariance, userainmap)
        #self.zeroedge(self.water)
        #self.zeroedge(self.sediment)
        #self.spring(Kspring, Kspringx, Kspringy, Kspringr)
        self.flow(Kc, Ks, Kdep, Ka, numexpr)
        self.flowratemax = np.max(self.flowrate)
        self.scourmax = np.max(self.scour)
        self.scourmin = np.min(self.scour)
        self.sedmax = np.max(self.sediment)
        print("DSMinMax", np.min(self.scour), np.max(self.scour))
       
    def analyze(self):
      self.neighborgrid()
      # just looking at up and left to avoid needless doubel calculations
      slopes=np.concatenate((np.abs(self.left - self.center),np.abs(self.up - self.center)))
      return '\n'.join(["%-15s: %.3f"%t for t in [
        ('height average', np.average(self.center)),
        ('height median', np.median(self.center)),
        ('height max', np.max(self.center)),
        ('height min', np.min(self.center)),
        ('height std', np.std(self.center)),
        ('slope average', np.average(slopes)),
        ('slope median', np.median(slopes)),
        ('slope max', np.max(slopes)),
        ('slope min', np.min(slopes)),
        ('slope std', np.std(slopes))
        ]]
      )

class TestGrid(unittest.TestCase):

  def test_diffuse(self):
    g=Grid(5)
    g.peak(1)
    self.assertEqual(g.center[2,2],1.0)
    g.diffuse(0.1, numexpr=False)
    for n in [(2,1),(2,3),(1,2),(3,2)]:
      self.assertAlmostEqual(g.center[n],0.1)
    self.assertAlmostEqual(g.center[2,2],0.6)

  def test_diffuse_numexpr(self):
    g=Grid(5)
    g.peak(1)
    g.diffuse(0.1, numexpr=False)
    h=Grid(5)
    h.peak(1)
    h.diffuse(0.1, numexpr=True)
    self.assertEqual(list(g.center.flat),list(h.center.flat))

  def test_avalanche_numexpr(self):
    g=Grid(5)
    g.peak(1)
    g.avalanche(0.1, numexpr=False)
    h=Grid(5)
    h.peak(1)
    h.avalanche(0.1, numexpr=True)
    print(g)
    print(h)
    np.testing.assert_almost_equal(g.center,h.center)

if __name__ == "__main__":

  import argparse

  parser = argparse.ArgumentParser(description='Erode a terrain while assuming zero boundary conditions.')
  parser.add_argument('-I', dest='iterations', type=int, default=1, help='the number of iterations')
  parser.add_argument('-Kd', dest='Kd', type=float, default=0.01, help='Diffusion constant')
  parser.add_argument('-Kh', dest='Kh', type=float, default=6, help='Maximum stable cliff height')
  parser.add_argument('-Kp', dest='Kp', type=float, default=0.1, help='Avalanche probability for unstable cliffs')
  parser.add_argument('-Kr', dest='Kr', type=float, default=0.1, help='Average amount of rain per iteration')
  parser.add_argument('-Kspring', dest='Kspring', type=float, default=0.0, help='Average amount of wellwater per iteration')
  parser.add_argument('-Kspringx', dest='Kspringx', type=float, default=0.5, help='relative x position of spring')
  parser.add_argument('-Kspringy', dest='Kspringy', type=float, default=0.5, help='relative y position of spring')
  parser.add_argument('-Kspringr', dest='Kspringr', type=float, default=0.02, help='radius of spring')
  parser.add_argument('-Kdep', dest='Kdep', type=float, default=0.1, help='Sediment deposition constant')
  parser.add_argument('-Ks', dest='Ks', type=float, default=0.1, help='Soil softness constant')
  parser.add_argument('-Kc', dest='Kc', type=float, default=1.0, help='Sediment capacity')
  parser.add_argument('-Ka', dest='Ka', type=float, default=2.0, help='Slope dependency of erosion')
  parser.add_argument('-ri', action='store_true', dest='rawin', default=False, help='use Blender raw format for input')
  parser.add_argument('-ro', action='store_true', dest='rawout', default=False, help='use Blender raw format for output')
  parser.add_argument('-i',  action='store_true', dest='useinputfile', default=False, help='use an inputfile (instead of just a synthesized grid)')
  parser.add_argument('-t',  action='store_true', dest='timingonly', default=False, help='do not write anything to an output file')
  parser.add_argument('-infile', type=str, default="-", help='input filename')
  parser.add_argument('-outfile', type=str, default="-", help='output filename')
  parser.add_argument('-Gn', dest='gridsize', type=int, default=20, help='Gridsize (always square)')
  parser.add_argument('-Gp', dest='gridpeak', type=float, default=0, help='Add peak with given height')
  parser.add_argument('-Gs', dest='gridshelf', type=float, default=0, help='Add shelve with given height')
  parser.add_argument('-Gm', dest='gridmesa', type=float, default=0, help='Add mesa with given height')
  parser.add_argument('-Gr', dest='gridrandom', type=float, default=0, help='Add random values between 0 and given value')
  parser.add_argument('-m', dest='threads', type=int, default=1, help='number of threads to use')
  parser.add_argument('-u', action='store_true', dest='unittest', default=False, help='perfom unittests')
  parser.add_argument('-a', action='store_true', dest='analyze', default=False, help='show some statistics of input and output meshes')
  parser.add_argument('-d', action='store_true', dest='dump', default=False, help='show sediment and water meshes at end of run')
  parser.add_argument('-n', action='store_true', dest='usenumexpr', default=False, help='use numexpr optimizations')

  args = parser.parse_args()
  print("\nInput arguments:")
  print("\n".join("%-15s: %s"%t for t in sorted(vars(args).items())), file=sys.stderr)

  if args.unittest:
    unittest.main(argv=[sys.argv[0]])
    sys.exit(0)
  
  if args.useinputfile:
    if args.rawin:
      grid = Grid.fromRaw(args.infile)
    else:
      grid = Grid.fromFile(args.infile)
  else:
    grid = Grid(args.gridsize)

  if args.gridpeak   > 0 : grid.peak(args.gridpeak)
  if args.gridmesa   > 0 : grid.mesa(args.gridmesa)
  if args.gridshelf  > 0 : grid.shelf(args.gridshelf)
  if args.gridrandom > 0 : grid.random(args.gridrandom)

  if args.analyze:
    print('\nstatistics of the input grid:\n\n', grid.analyze(), file=sys.stderr, sep='' )
  t = getptime()
  for g in range(args.iterations):
    if args.Kd > 0:
      grid.diffuse(args.Kd, args.usenumexpr)
    if args.Kh > 0 and args.Kp > rand():
      grid.avalanche(args.Kh, args.usenumexpr)
    if args.Kr > 0 or args.Kspring > 0:
      grid.fluvial_erosion(args.Kr, args.Kc, args.Ks, args.Kdep, args.Ka, args.Kspring, args.Kspringx, args.Kspringy, args.Kspringr, args.usenumexpr)
  t = getptime() - t
  print("\nElapsed time: %.1f seconds, max memory %.1f Mb.\n"%(t,grid.maxrss), file=sys.stderr)
  if args.analyze:
    print('\nstatistics of the output grid:\n\n', grid.analyze(), file=sys.stderr, sep='')

  if not args.timingonly:
    if args.rawout:
      grid.toRaw(args.outfile, vars(args))
    else:
      grid.toFile(args.outfile)

  if args.dump:
    print("sediment\n", np.array_str(grid.sediment,precision=3), file=sys.stderr)
    print("water\n", np.array_str(grid.water,precision=3), file=sys.stderr)
    print("sediment concentration\n", np.array_str(grid.sediment/grid.water,precision=3), file=sys.stderr)