Welcome to mirror list, hosted at ThFree Co, Russian Federation.

pdb_import.py « io_mesh_atomic - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 28f75b12f7b445cc34dbc0d798cc391bedf7b486 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

import os
import bpy
import bmesh
from math import pi, cos, sin, sqrt, ceil
from mathutils import Vector, Matrix
from copy import copy

# -----------------------------------------------------------------------------
#                                                  Atom, stick and element data


# This is a list that contains some data of all possible elements. The structure
# is as follows:
#
# 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54   means
#
# No., name, short name, color, radius (used), radius (covalent), radius (atomic),
#
# charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
# charge states for any atom are listed, if existing.
# The list is fixed and cannot be changed ... (see below)

ELEMENTS_DEFAULT = (
( 1,      "Hydrogen",        "H",  (  1.0,   1.0,   1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
( 2,        "Helium",       "He",  ( 0.85,   1.0,   1.0, 1.0), 0.93, 0.93, 0.49 ),
( 3,       "Lithium",       "Li",  (  0.8,  0.50,   1.0, 1.0), 1.23, 1.23, 2.05 ,  1 , 0.68 ),
( 4,     "Beryllium",       "Be",  ( 0.76,   1.0,   0.0, 1.0), 0.90, 0.90, 1.40 ,  1 , 0.44 ,  2 , 0.35 ),
( 5,         "Boron",        "B",  (  1.0,  0.70,  0.70, 1.0), 0.82, 0.82, 1.17 ,  1 , 0.35 ,  3 , 0.23 ),
( 6,        "Carbon",        "C",  ( 0.56,  0.56,  0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 ,  4 , 0.16 ),
( 7,      "Nitrogen",        "N",  ( 0.18,  0.31,  0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 ,  1 , 0.25 ,  3 , 0.16 ,  5 , 0.13 ),
( 8,        "Oxygen",        "O",  (  1.0,  0.05,  0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 ,  1 , 0.22 ,  6 , 0.09 ),
( 9,      "Fluorine",        "F",  ( 0.56,  0.87,  0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 ,  7 , 0.08 ),
(10,          "Neon",       "Ne",  ( 0.70,  0.89,  0.96, 1.0), 0.71, 0.71, 0.51 ,  1 , 1.12 ),
(11,        "Sodium",       "Na",  ( 0.67,  0.36,  0.94, 1.0), 1.54, 1.54, 2.23 ,  1 , 0.97 ),
(12,     "Magnesium",       "Mg",  ( 0.54,   1.0,   0.0, 1.0), 1.36, 1.36, 1.72 ,  1 , 0.82 ,  2 , 0.66 ),
(13,     "Aluminium",       "Al",  ( 0.74,  0.65,  0.65, 1.0), 1.18, 1.18, 1.82 ,  3 , 0.51 ),
(14,       "Silicon",       "Si",  ( 0.94,  0.78,  0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 ,  1 , 0.65 ,  4 , 0.42 ),
(15,    "Phosphorus",        "P",  (  1.0,  0.50,   0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 ,  3 , 0.44 ,  5 , 0.35 ),
(16,        "Sulfur",        "S",  (  1.0,   1.0,  0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 ,  2 , 2.19 ,  4 , 0.37 ,  6 , 0.30 ),
(17,      "Chlorine",       "Cl",  ( 0.12,  0.94,  0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 ,  5 , 0.34 ,  7 , 0.27 ),
(18,         "Argon",       "Ar",  ( 0.50,  0.81,  0.89, 1.0), 0.98, 0.98, 0.88 ,  1 , 1.54 ),
(19,     "Potassium",        "K",  ( 0.56,  0.25,  0.83, 1.0), 2.03, 2.03, 2.77 ,  1 , 0.81 ),
(20,       "Calcium",       "Ca",  ( 0.23,   1.0,   0.0, 1.0), 1.74, 1.74, 2.23 ,  1 , 1.18 ,  2 , 0.99 ),
(21,      "Scandium",       "Sc",  ( 0.90,  0.90,  0.90, 1.0), 1.44, 1.44, 2.09 ,  3 , 0.73 ),
(22,      "Titanium",       "Ti",  ( 0.74,  0.76,  0.78, 1.0), 1.32, 1.32, 2.00 ,  1 , 0.96 ,  2 , 0.94 ,  3 , 0.76 ,  4 , 0.68 ),
(23,      "Vanadium",        "V",  ( 0.65,  0.65,  0.67, 1.0), 1.22, 1.22, 1.92 ,  2 , 0.88 ,  3 , 0.74 ,  4 , 0.63 ,  5 , 0.59 ),
(24,      "Chromium",       "Cr",  ( 0.54,   0.6,  0.78, 1.0), 1.18, 1.18, 1.85 ,  1 , 0.81 ,  2 , 0.89 ,  3 , 0.63 ,  6 , 0.52 ),
(25,     "Manganese",       "Mn",  ( 0.61,  0.47,  0.78, 1.0), 1.17, 1.17, 1.79 ,  2 , 0.80 ,  3 , 0.66 ,  4 , 0.60 ,  7 , 0.46 ),
(26,          "Iron",       "Fe",  ( 0.87,   0.4,   0.2, 1.0), 1.17, 1.17, 1.72 ,  2 , 0.74 ,  3 , 0.64 ),
(27,        "Cobalt",       "Co",  ( 0.94,  0.56,  0.62, 1.0), 1.16, 1.16, 1.67 ,  2 , 0.72 ,  3 , 0.63 ),
(28,        "Nickel",       "Ni",  ( 0.31,  0.81,  0.31, 1.0), 1.15, 1.15, 1.62 ,  2 , 0.69 ),
(29,        "Copper",       "Cu",  ( 0.78,  0.50,   0.2, 1.0), 1.17, 1.17, 1.57 ,  1 , 0.96 ,  2 , 0.72 ),
(30,          "Zinc",       "Zn",  ( 0.49,  0.50,  0.69, 1.0), 1.25, 1.25, 1.53 ,  1 , 0.88 ,  2 , 0.74 ),
(31,       "Gallium",       "Ga",  ( 0.76,  0.56,  0.56, 1.0), 1.26, 1.26, 1.81 ,  1 , 0.81 ,  3 , 0.62 ),
(32,     "Germanium",       "Ge",  (  0.4,  0.56,  0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 ,  2 , 0.73 ,  4 , 0.53 ),
(33,       "Arsenic",       "As",  ( 0.74,  0.50,  0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 ,  3 , 0.58 ,  5 , 0.46 ),
(34,      "Selenium",       "Se",  (  1.0,  0.63,   0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 ,  1 , 0.66 ,  4 , 0.50 ,  6 , 0.42 ),
(35,       "Bromine",       "Br",  ( 0.65,  0.16,  0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 ,  5 , 0.47 ,  7 , 0.39 ),
(36,       "Krypton",       "Kr",  ( 0.36,  0.72,  0.81, 1.0), 1.31, 1.31, 1.24 ),
(37,      "Rubidium",       "Rb",  ( 0.43,  0.18,  0.69, 1.0), 2.16, 2.16, 2.98 ,  1 , 1.47 ),
(38,     "Strontium",       "Sr",  (  0.0,   1.0,   0.0, 1.0), 1.91, 1.91, 2.45 ,  2 , 1.12 ),
(39,       "Yttrium",        "Y",  ( 0.58,   1.0,   1.0, 1.0), 1.62, 1.62, 2.27 ,  3 , 0.89 ),
(40,     "Zirconium",       "Zr",  ( 0.58,  0.87,  0.87, 1.0), 1.45, 1.45, 2.16 ,  1 , 1.09 ,  4 , 0.79 ),
(41,       "Niobium",       "Nb",  ( 0.45,  0.76,  0.78, 1.0), 1.34, 1.34, 2.08 ,  1 , 1.00 ,  4 , 0.74 ,  5 , 0.69 ),
(42,    "Molybdenum",       "Mo",  ( 0.32,  0.70,  0.70, 1.0), 1.30, 1.30, 2.01 ,  1 , 0.93 ,  4 , 0.70 ,  6 , 0.62 ),
(43,    "Technetium",       "Tc",  ( 0.23,  0.61,  0.61, 1.0), 1.27, 1.27, 1.95 ,  7 , 0.97 ),
(44,     "Ruthenium",       "Ru",  ( 0.14,  0.56,  0.56, 1.0), 1.25, 1.25, 1.89 ,  4 , 0.67 ),
(45,       "Rhodium",       "Rh",  ( 0.03,  0.49,  0.54, 1.0), 1.25, 1.25, 1.83 ,  3 , 0.68 ),
(46,     "Palladium",       "Pd",  (  0.0,  0.41,  0.52, 1.0), 1.28, 1.28, 1.79 ,  2 , 0.80 ,  4 , 0.65 ),
(47,        "Silver",       "Ag",  ( 0.75,  0.75,  0.75, 1.0), 1.34, 1.34, 1.75 ,  1 , 1.26 ,  2 , 0.89 ),
(48,       "Cadmium",       "Cd",  (  1.0,  0.85,  0.56, 1.0), 1.48, 1.48, 1.71 ,  1 , 1.14 ,  2 , 0.97 ),
(49,        "Indium",       "In",  ( 0.65,  0.45,  0.45, 1.0), 1.44, 1.44, 2.00 ,  3 , 0.81 ),
(50,           "Tin",       "Sn",  (  0.4,  0.50,  0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 ,  2 , 0.93 ,  4 , 0.71 ),
(51,      "Antimony",       "Sb",  ( 0.61,  0.38,  0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 ,  3 , 0.76 ,  5 , 0.62 ),
(52,     "Tellurium",       "Te",  ( 0.83,  0.47,   0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 ,  1 , 0.82 ,  4 , 0.70 ,  6 , 0.56 ),
(53,        "Iodine",        "I",  ( 0.58,   0.0,  0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 ,  5 , 0.62 ,  7 , 0.50 ),
(54,         "Xenon",       "Xe",  ( 0.25,  0.61,  0.69, 1.0), 1.31, 1.31, 1.24 ),
(55,       "Caesium",       "Cs",  ( 0.34,  0.09,  0.56, 1.0), 2.35, 2.35, 3.35 ,  1 , 1.67 ),
(56,        "Barium",       "Ba",  (  0.0,  0.78,   0.0, 1.0), 1.98, 1.98, 2.78 ,  1 , 1.53 ,  2 , 1.34 ),
(57,     "Lanthanum",       "La",  ( 0.43,  0.83,   1.0, 1.0), 1.69, 1.69, 2.74 ,  1 , 1.39 ,  3 , 1.06 ),
(58,        "Cerium",       "Ce",  (  1.0,   1.0,  0.78, 1.0), 1.65, 1.65, 2.70 ,  1 , 1.27 ,  3 , 1.03 ,  4 , 0.92 ),
(59,  "Praseodymium",       "Pr",  ( 0.85,   1.0,  0.78, 1.0), 1.65, 1.65, 2.67 ,  3 , 1.01 ,  4 , 0.90 ),
(60,     "Neodymium",       "Nd",  ( 0.78,   1.0,  0.78, 1.0), 1.64, 1.64, 2.64 ,  3 , 0.99 ),
(61,    "Promethium",       "Pm",  ( 0.63,   1.0,  0.78, 1.0), 1.63, 1.63, 2.62 ,  3 , 0.97 ),
(62,      "Samarium",       "Sm",  ( 0.56,   1.0,  0.78, 1.0), 1.62, 1.62, 2.59 ,  3 , 0.96 ),
(63,      "Europium",       "Eu",  ( 0.38,   1.0,  0.78, 1.0), 1.85, 1.85, 2.56 ,  2 , 1.09 ,  3 , 0.95 ),
(64,    "Gadolinium",       "Gd",  ( 0.27,   1.0,  0.78, 1.0), 1.61, 1.61, 2.54 ,  3 , 0.93 ),
(65,       "Terbium",       "Tb",  ( 0.18,   1.0,  0.78, 1.0), 1.59, 1.59, 2.51 ,  3 , 0.92 ,  4 , 0.84 ),
(66,    "Dysprosium",       "Dy",  ( 0.12,   1.0,  0.78, 1.0), 1.59, 1.59, 2.49 ,  3 , 0.90 ),
(67,       "Holmium",       "Ho",  (  0.0,   1.0,  0.61, 1.0), 1.58, 1.58, 2.47 ,  3 , 0.89 ),
(68,        "Erbium",       "Er",  (  0.0,  0.90,  0.45, 1.0), 1.57, 1.57, 2.45 ,  3 , 0.88 ),
(69,       "Thulium",       "Tm",  (  0.0,  0.83,  0.32, 1.0), 1.56, 1.56, 2.42 ,  3 , 0.87 ),
(70,     "Ytterbium",       "Yb",  (  0.0,  0.74,  0.21, 1.0), 1.74, 1.74, 2.40 ,  2 , 0.93 ,  3 , 0.85 ),
(71,      "Lutetium",       "Lu",  (  0.0,  0.67,  0.14, 1.0), 1.56, 1.56, 2.25 ,  3 , 0.85 ),
(72,       "Hafnium",       "Hf",  ( 0.30,  0.76,   1.0, 1.0), 1.44, 1.44, 2.16 ,  4 , 0.78 ),
(73,      "Tantalum",       "Ta",  ( 0.30,  0.65,   1.0, 1.0), 1.34, 1.34, 2.09 ,  5 , 0.68 ),
(74,      "Tungsten",        "W",  ( 0.12,  0.58,  0.83, 1.0), 1.30, 1.30, 2.02 ,  4 , 0.70 ,  6 , 0.62 ),
(75,       "Rhenium",       "Re",  ( 0.14,  0.49,  0.67, 1.0), 1.28, 1.28, 1.97 ,  4 , 0.72 ,  7 , 0.56 ),
(76,        "Osmium",       "Os",  ( 0.14,   0.4,  0.58, 1.0), 1.26, 1.26, 1.92 ,  4 , 0.88 ,  6 , 0.69 ),
(77,       "Iridium",       "Ir",  ( 0.09,  0.32,  0.52, 1.0), 1.27, 1.27, 1.87 ,  4 , 0.68 ),
(78,      "Platinum",       "Pt",  ( 0.81,  0.81,  0.87, 1.0), 1.30, 1.30, 1.83 ,  2 , 0.80 ,  4 , 0.65 ),
(79,          "Gold",       "Au",  (  1.0,  0.81,  0.13, 1.0), 1.34, 1.34, 1.79 ,  1 , 1.37 ,  3 , 0.85 ),
(80,       "Mercury",       "Hg",  ( 0.72,  0.72,  0.81, 1.0), 1.49, 1.49, 1.76 ,  1 , 1.27 ,  2 , 1.10 ),
(81,      "Thallium",       "Tl",  ( 0.65,  0.32,  0.30, 1.0), 1.48, 1.48, 2.08 ,  1 , 1.47 ,  3 , 0.95 ),
(82,          "Lead",       "Pb",  ( 0.34,  0.34,  0.38, 1.0), 1.47, 1.47, 1.81 ,  2 , 1.20 ,  4 , 0.84 ),
(83,       "Bismuth",       "Bi",  ( 0.61,  0.30,  0.70, 1.0), 1.46, 1.46, 1.63 ,  1 , 0.98 ,  3 , 0.96 ,  5 , 0.74 ),
(84,      "Polonium",       "Po",  ( 0.67,  0.36,   0.0, 1.0), 1.46, 1.46, 1.53 ,  6 , 0.67 ),
(85,      "Astatine",       "At",  ( 0.45,  0.30,  0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 ,  3 , 0.85 ,  5 , 0.46 ),
(86,         "Radon",       "Rn",  ( 0.25,  0.50,  0.58, 1.0), 1.00, 1.00, 1.34 ),
(87,      "Francium",       "Fr",  ( 0.25,   0.0,   0.4, 1.0), 1.00, 1.00, 1.00 ,  1 , 1.80 ),
(88,        "Radium",       "Ra",  (  0.0,  0.49,   0.0, 1.0), 1.00, 1.00, 1.00 ,  2 , 1.43 ),
(89,      "Actinium",       "Ac",  ( 0.43,  0.67,  0.98, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.18 ),
(90,       "Thorium",       "Th",  (  0.0,  0.72,   1.0, 1.0), 1.65, 1.65, 1.00 ,  4 , 1.02 ),
(91,  "Protactinium",       "Pa",  (  0.0,  0.63,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.13 ,  4 , 0.98 ,  5 , 0.89 ),
(92,       "Uranium",        "U",  (  0.0,  0.56,   1.0, 1.0), 1.42, 1.42, 1.00 ,  4 , 0.97 ,  6 , 0.80 ),
(93,     "Neptunium",       "Np",  (  0.0,  0.50,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.10 ,  4 , 0.95 ,  7 , 0.71 ),
(94,     "Plutonium",       "Pu",  (  0.0,  0.41,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.08 ,  4 , 0.93 ),
(95,     "Americium",       "Am",  ( 0.32,  0.36,  0.94, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.07 ,  4 , 0.92 ),
(96,        "Curium",       "Cm",  ( 0.47,  0.36,  0.89, 1.0), 1.00, 1.00, 1.00 ),
(97,     "Berkelium",       "Bk",  ( 0.54,  0.30,  0.89, 1.0), 1.00, 1.00, 1.00 ),
(98,   "Californium",       "Cf",  ( 0.63,  0.21,  0.83, 1.0), 1.00, 1.00, 1.00 ),
(99,   "Einsteinium",       "Es",  ( 0.70,  0.12,  0.83, 1.0), 1.00, 1.00, 1.00 ),
(100,       "Fermium",       "Fm", ( 0.70,  0.12,  0.72, 1.0), 1.00, 1.00, 1.00 ),
(101,   "Mendelevium",       "Md", ( 0.70,  0.05,  0.65, 1.0), 1.00, 1.00, 1.00 ),
(102,      "Nobelium",       "No", ( 0.74,  0.05,  0.52, 1.0), 1.00, 1.00, 1.00 ),
(103,    "Lawrencium",       "Lr", ( 0.78,   0.0,   0.4, 1.0), 1.00, 1.00, 1.00 ),
(104,       "Vacancy",      "Vac", (  0.5,   0.5,   0.5, 1.0), 1.00, 1.00, 1.00),
(105,       "Default",  "Default", (  1.0,   1.0,   1.0, 1.0), 1.00, 1.00, 1.00),
(106,         "Stick",    "Stick", (  0.5,   0.5,   0.5, 1.0), 1.00, 1.00, 1.00),
)

# This list here contains all data of the elements and will be used during
# runtime. It is a list of classes.
# During executing Atomic Blender, the list will be initialized with the fixed
# data from above via the class structure below (ElementProp). We
# have then one fixed list (above), which will never be changed, and a list of
# classes with same data. The latter can be modified via loading a separate
# custom data file.
ELEMENTS = []

# This is the class, which stores the properties for one element.
class ElementProp(object):
    __slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
    def __init__(self, number, name, short_name, color, radii, radii_ionic):
        self.number = number
        self.name = name
        self.short_name = short_name
        self.color = color
        self.radii = radii
        self.radii_ionic = radii_ionic

# This is the class, which stores the properties of one atom.
class AtomProp(object):
    __slots__ = ('element', 'name', 'location', 'radius', 'color', 'material')
    def __init__(self, element, name, location, radius, color, material):
        self.element = element
        self.name = name
        self.location = location
        self.radius = radius
        self.color = color
        self.material = material

# This is the class, which stores the two atoms of one stick.
class StickProp(object):
    __slots__ = ('atom1', 'atom2', 'number', 'dist')
    def __init__(self, atom1, atom2, number, dist):
        self.atom1 = atom1
        self.atom2 = atom2
        self.number = number
        self.dist = dist

# -----------------------------------------------------------------------------
#                                                           Some basic routines


# The function, which reads all necessary properties of the elements.
def read_elements():

    del ELEMENTS[:]

    for item in ELEMENTS_DEFAULT:

        # All three radii into a list
        radii = [item[4],item[5],item[6]]
        # The handling of the ionic radii will be done later. So far, it is an
        # empty list.
        radii_ionic = []

        li = ElementProp(item[0],item[1],item[2],item[3],
                                     radii,radii_ionic)
        ELEMENTS.append(li)


# The function, which reads the x,y,z positions of all atoms in a PDB
# file.
#
# filepath_pdb: path to pdb file
# radiustype  : '0' default
#               '1' atomic radii
#               '2' van der Waals
def read_pdb_file(filepath_pdb, radiustype):

    # The list of all atoms as read from the PDB file.
    all_atoms  = []

    # Open the pdb file ...
    filepath_pdb_p = open(filepath_pdb, "r")

    #Go to the line, in which "ATOM" or "HETATM" appears.
    for line in filepath_pdb_p:
        split_list = line.split(' ')
        if "ATOM" in split_list[0]:
            break
        if "HETATM" in split_list[0]:
            break

    j = 0
    # This is in fact an endless 'while loop', ...
    while j > -1:

        # ... the loop is broken here (EOF) ...
        if line == "":
            break

        # If there is a "TER" we need to put empty entries into the lists
        # in order to not destroy the order of atom numbers and same numbers
        # used for sticks. "TER? What is that?" TER indicates the end of a
        # list of ATOM/HETATM records for a chain.
        if "TER" in line:
            short_name = "TER"
            name = "TER"
            radius = 0.0
            # 2019-03-14, New
            color = [0,0,0, 0]
            location = Vector((0,0,0))
            # Append the TER into the list. Material remains empty so far.
            all_atoms.append(AtomProp(short_name,
                                      name,
                                      location,
                                      radius,
                                      color,[]))

        # If 'ATOM or 'HETATM' appears in the line then do ...
        elif "ATOM" in line or "HETATM" in line:

            # What follows is due to deviations which appear from PDB to
            # PDB file. It is very special!
            #
            # PLEASE, DO NOT CHANGE! ............................... from here
            if line[12:13] == " " or line[12:13].isdigit() == True:
                short_name = line[13:14]
                if line[14:15].islower() == True:
                    short_name = short_name + line[14:15]
            elif line[12:13].isupper() == True:
                short_name = line[12:13]
                if line[13:14].isalpha() == True:
                    short_name = short_name + line[13:14]
            else:
                print("Atomic Blender: Strange error in PDB file.\n"
                      "Look for element names at positions 13-16 and 78-79.\n")
                return -1

            if len(line) >= 78:

                if line[76:77] == " ":
                    short_name2 = line[76:77]
                else:
                    short_name2 = line[76:78]

                if short_name2.isalpha() == True:
                    FOUND = False
                    for element in ELEMENTS:
                        if str.upper(short_name2) == str.upper(element.short_name):
                            FOUND = True
                            break
                    if FOUND == False:
                        short_name = short_name2

            # ....................................................... to here.

            # Go through all elements and find the element of the current atom.
            FLAG_FOUND = False
            for element in ELEMENTS:
                if str.upper(short_name) == str.upper(element.short_name):
                    # Give the atom its proper names, color and radius:
                    short_name = str.upper(element.short_name)
                    name = element.name
                    # int(radiustype) => type of radius:
                    # pre-defined (0), atomic (1) or van der Waals (2)
                    radius = float(element.radii[int(radiustype)])
                    color = element.color
                    FLAG_FOUND = True
                    break

            # Is it a vacancy or an 'unknown atom' ?
            if FLAG_FOUND == False:
                # Give this atom also a name. If it is an 'X' then it is a
                # vacancy. Otherwise ...
                if "X" in short_name:
                    short_name = "VAC"
                    name = "Vacancy"
                    radius = float(ELEMENTS[-3].radii[int(radiustype)])
                    color = ELEMENTS[-3].color
                # ... take what is written in the PDB file. These are somewhat
                # unknown atoms. This should never happen, the element list is
                # almost complete. However, we do this due to security reasons.
                else:
                    short_name = str.upper(short_name)
                    name = str.upper(short_name)
                    radius = float(ELEMENTS[-2].radii[int(radiustype)])
                    color = ELEMENTS[-2].color

            # x,y and z are at fixed positions in the PDB file.
            x = float(line[30:38].rsplit()[0])
            y = float(line[38:46].rsplit()[0])
            z = float(line[46:55].rsplit()[0])

            location = Vector((x,y,z))

            j += 1

            # Append the atom to the list. Material remains empty so far.
            all_atoms.append(AtomProp(short_name,
                                      name,
                                      location,
                                      radius,
                                      color,[]))

        line = filepath_pdb_p.readline()
        line = line[:-1]

    filepath_pdb_p.close()
    # From above it can be clearly seen that j is now the number of all atoms.
    Number_of_total_atoms = j

    return (Number_of_total_atoms, all_atoms)


# The function, which reads the sticks in a PDB file.
def read_pdb_file_sticks(filepath_pdb, use_sticks_bonds, all_atoms):

    # The list of all sticks.
    all_sticks = []

    # Open the PDB file.
    filepath_pdb_p = open(filepath_pdb, "r")

    line = filepath_pdb_p.readline()
    split_list = line.split(' ')

    # Go to the first entry
    # DO NOT CHANGE 'CONECT', read below.
    if "CONECT" not in split_list[0]:
        for line in filepath_pdb_p:
            split_list = line.split(' ')
            if "CONECT" in split_list[0]:
                break

    Number_of_sticks = 0
    sticks_double = 0
    j = 0
    # This is in fact an endless while loop, ...
    while j > -1:

        # ... which is broken here (EOF) ...
        if line == "":
            break
        # ... or here, when no 'CONECT' appears anymore.
        if "CONECT" not in line:
            break

        # Note 2019-03-16: in a PDB file the identifier for sticks is called
        # 'CONECT' and NOT 'CONNECT'! Please leave this as is, otherwise the
        # sticks are NOT correctly imported.

        # The strings of the atom numbers do have a clear position in the file
        # (From 7 to 12, from 13 to 18 and so on.) and one needs to consider
        # this. One could also use the split function but then one gets into
        # trouble if there are lots of atoms: For instance, it may happen that
        # one has
        #                   CONECT 11111  22244444
        #
        # In Fact it means that atom No. 11111 has a connection with atom
        # No. 222 but also with atom No. 44444. The split function would give
        # me only two numbers (11111 and 22244444), which is wrong.

        # Cut spaces from the right and 'CONECT' at the beginning
        line = line.rstrip()
        line = line[6:]
        # Amount of loops
        length = len(line)
        loops  = int(length/5)

        # List of atoms
        atom_list = []
        for i in range(loops):
            number = line[5*i:5*(i+1)].rsplit()
            if number != []:
                if number[0].isdigit() == True:
                    atom_number = int(number[0])
                    atom_list.append(atom_number)

        # The first atom is connected with all the others in the list.
        atom1 = atom_list[0]

        # For all the other atoms in the list do:
        for atom2 in atom_list[1:]:

            if use_sticks_bonds == True:
                number = atom_list[1:].count(atom2)

                if number == 2 or number == 3:
                    basis_list = list(set(atom_list[1:]))

                    if len(basis_list) > 1:
                        basis1 = (all_atoms[atom1-1].location
                                - all_atoms[basis_list[0]-1].location)
                        basis2 = (all_atoms[atom1-1].location
                                - all_atoms[basis_list[1]-1].location)
                        plane_n = basis1.cross(basis2)

                        dist_n = (all_atoms[atom1-1].location
                                - all_atoms[atom2-1].location)
                        dist_n = dist_n.cross(plane_n)
                        dist_n = dist_n / dist_n.length
                    else:
                        dist_n = (all_atoms[atom1-1].location
                                - all_atoms[atom2-1].location)
                        dist_n = Vector((dist_n[1],-dist_n[0],0))
                        dist_n = dist_n / dist_n.length

                elif number > 3:
                    number = 1
                    dist_n = None
                else:
                    dist_n = None
            else:
                number = 1
                dist_n = None

            # Note that in a PDB file, sticks of one atom pair can appear a
            # couple of times. (Only god knows why ...)
            # So, does a stick between the considered atoms already exist?
            FLAG_BAR = False
            for k in range(Number_of_sticks):
                if ((all_sticks[k].atom1 == atom1 and all_sticks[k].atom2 == atom2) or
                    (all_sticks[k].atom2 == atom1 and all_sticks[k].atom1 == atom2)):
                    sticks_double += 1
                    # If yes, then FLAG on 'True'.
                    FLAG_BAR       = True
                    break

            # If the stick is not yet registered (FLAG_BAR == False), then
            # register it!
            if FLAG_BAR == False:
                all_sticks.append(StickProp(atom1,atom2,number,dist_n))
                Number_of_sticks += 1
                j += 1

        line = filepath_pdb_p.readline()
        line = line.rstrip()

    filepath_pdb_p.close()

    return all_sticks


# Function, which produces a cylinder. All is somewhat easy to understand.
def build_stick(radius, length, sectors, element_name):

    dphi = 2.0 * pi/(float(sectors)-1)

    # Vertices
    vertices_top    = [Vector((0,0,length / 2.0))]
    vertices_bottom = [Vector((0,0,-length / 2.0))]
    vertices = []
    for i in range(sectors-1):
        x = radius * cos( dphi * i )
        y = radius * sin( dphi * i )
        z =  length / 2.0
        vertex = Vector((x,y,z))
        vertices_top.append(vertex)
        z = -length / 2.0
        vertex = Vector((x,y,z))
        vertices_bottom.append(vertex)
    vertices = vertices_top + vertices_bottom

    # Side facets (Cylinder)
    faces1 = []
    for i in range(sectors-1):
        if i == sectors-2:
            faces1.append(  [i+1, 1, 1+sectors, i+1+sectors] )
        else:
            faces1.append(  [i+1, i+2, i+2+sectors, i+1+sectors] )

    # Top facets
    faces2 = []
    for i in range(sectors-1):
        if i == sectors-2:
            face_top = [0,sectors-1,1]
            face_bottom = [sectors,2*sectors-1,sectors+1]
        else:
            face_top    = [0]
            face_bottom = [sectors]
            for j in range(2):
                face_top.append(i+j+1)
                face_bottom.append(i+j+1+sectors)
        faces2.append(face_top)
        faces2.append(face_bottom)

    # Build the mesh, Cylinder
    cylinder = bpy.data.meshes.new(element_name+"_sticks_cylinder")
    cylinder.from_pydata(vertices, [], faces1)
    cylinder.update()
    new_cylinder = bpy.data.objects.new(element_name+"_sticks_cylinder", cylinder)
    # Attention: the linking will be done a few moments later, after this
    # is done definition.

    # Build the mesh, Cups
    cups = bpy.data.meshes.new(element_name+"_sticks_cup")
    cups.from_pydata(vertices, [], faces2)
    cups.update()
    new_cups = bpy.data.objects.new(element_name+"_sticks_cup", cups)
    # Attention: the linking will be done a few moments later, after this
    # is done definition.

    return (new_cylinder, new_cups)


# Rotate an object.
def rotate_object(rot_mat, obj):

    bpy.ops.object.select_all(action='DESELECT')
    obj.select_set(True)

    # Decompose world_matrix's components, and from them assemble 4x4 matrices.
    orig_loc, orig_rot, orig_scale = obj.matrix_world.decompose()

    orig_loc_mat   = Matrix.Translation(orig_loc)
    orig_rot_mat   = orig_rot.to_matrix().to_4x4()
    orig_scale_mat = (Matrix.Scale(orig_scale[0],4,(1,0,0)) @
                      Matrix.Scale(orig_scale[1],4,(0,1,0)) @
                      Matrix.Scale(orig_scale[2],4,(0,0,1)))

    # Assemble the new matrix.
    obj.matrix_world = orig_loc_mat @ rot_mat @ orig_rot_mat @ orig_scale_mat


# Function, which puts a camera and light source into the 3D scene
def camera_light_source(use_camera,
                        use_light,
                        object_center_vec,
                        object_size):

    camera_factor = 15.0

    # If chosen a camera is put into the scene.
    if use_camera == True:

        # Assume that the object is put into the global origin. Then, the
        # camera is moved in x and z direction, not in y. The object has its
        # size at distance sqrt(object_size) from the origin. So, move the
        # camera by this distance times a factor of camera_factor in x and z.
        # Then add x, y and z of the origin of the object.
        object_camera_vec = Vector((sqrt(object_size) * camera_factor,
                                    0.0,
                                    sqrt(object_size) * camera_factor))
        camera_xyz_vec = object_center_vec + object_camera_vec

        # Create the camera
        camera_data = bpy.data.cameras.new("A_camera")
        camera_data.lens = 45
        camera_data.clip_end = 500.0
        camera = bpy.data.objects.new("A_camera", camera_data)
        camera.location = camera_xyz_vec
        bpy.context.collection.objects.link(camera)

        # Here the camera is rotated such it looks towards the center of
        # the object. The [0.0, 0.0, 1.0] vector along the z axis
        z_axis_vec             = Vector((0.0, 0.0, 1.0))
        # The angle between the last two vectors
        angle                  = object_camera_vec.angle(z_axis_vec, 0)
        # The cross-product of z_axis_vec and object_camera_vec
        axis_vec               = z_axis_vec.cross(object_camera_vec)
        # Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
        # 4 is the size of the matrix.
        camera.rotation_euler  = Matrix.Rotation(angle, 4, axis_vec).to_euler()

        # Rotate the camera around its axis by 90° such that we have a nice
        # camera position and view onto the object.
        bpy.ops.object.select_all(action='DESELECT')
        camera.select_set(True)

        # Rotate the camera around its axis 'object_camera_vec' by 90° such
        # that we have a nice camera view onto the object.
        matrix_rotation = Matrix.Rotation(90/360*2*pi, 4, object_camera_vec)
        rotate_object(matrix_rotation, camera)

    # Here a lamp is put into the scene, if chosen.
    if use_light == True:

        # This is the distance from the object measured in terms of %
        # of the camera distance. It is set onto 50% (1/2) distance.
        lamp_dl = sqrt(object_size) * 15 * 0.5
        # This is a factor to which extend the lamp shall go to the right
        # (from the camera  point of view).
        lamp_dy_right = lamp_dl * (3.0/4.0)

        # Create x, y and z for the lamp.
        object_lamp_vec = Vector((lamp_dl,lamp_dy_right,lamp_dl))
        lamp_xyz_vec = object_center_vec + object_lamp_vec

        # As a lamp we use a ball.
        bpy.ops.mesh.primitive_uv_sphere_add(
                        segments=64,
                        ring_count=64,
                        align='WORLD',
                        enter_editmode=False,
                        location=lamp_xyz_vec,
                        rotation=(0, 0, 0))
        lamp = bpy.context.view_layer.objects.active
        # We put an 'A_' just that the lamp appears first in the outliner
        # tree
        lamp.name = "A_lamp"

        # We now determine the emission strength of the lamp. Note that the
        # intensity depends on 1/r^2. For this we use a value of 5000.0 at a
        # distance of 58 (58x58 = 3364.0). This value was determined only once
        # in the Blender viewport
        length = lamp_xyz_vec.length
        strength = 5000.0 * ( (length * length) / (58.0 * 58.0) )

        # Now, we create the material
        lamp_material = bpy.data.materials.new(lamp.name)
        lamp_material.use_nodes = True
        # Create the emission Node.
        material_output = lamp_material.node_tree.nodes.get('Material Output')
        emission = lamp_material.node_tree.nodes.new('ShaderNodeEmission')
        # Emission and strength values
        emission.inputs['Strength'].default_value = strength
        emission.inputs['Color'].default_value = (1.0, 1.0, 1.0, 1.0)
        # The new material into the tree and link the material of the object
        # with the new material.
        lamp_material.node_tree.links.new(material_output.inputs[0], emission.outputs[0])
        lamp.active_material = lamp_material

        # Some settings for the World: a bit ambient occlusion
        bpy.context.scene.world.light_settings.use_ambient_occlusion = True
        bpy.context.scene.world.light_settings.ao_factor = 0.1



# Function, which draws the atoms of one type (balls). This is one
# dupliverts structure then.
# Return: the dupliverts structure
def draw_atoms_one_type(draw_all_atoms_type,
                        Ball_type,
                        Ball_azimuth,
                        Ball_zenith,
                        Ball_radius_factor,
                        object_center_vec,
                        collection_molecule):

    # Create the vertices composed of the coordinates of all atoms of one type
    atom_vertices = []
    for atom in draw_all_atoms_type:
        # In fact, the object is created in the World's origin.
        # This is why 'object_center_vec' is subtracted. At the end
        # the whole object is translated back to 'object_center_vec'.
        atom_vertices.append(atom[2] - object_center_vec)

    # IMPORTANT: First, we create a collection of the element, which contains
    # the atoms (balls + mesh) AND the sticks! The definition dealing with the
    # sticks will put the sticks inside this collection later on.
    coll_element_name = atom[0] # the element name
    # Create the new collection and ...
    coll_element = bpy.data.collections.new(coll_element_name)
    # ... link it to the collection, which contains all parts of the
    # molecule.
    collection_molecule.children.link(coll_element)

    # Now, create a collection for the atoms, which includes the representative
    # ball and the mesh.
    coll_atom_name = atom[0] + "_atom"
    # Create the new collection and ...
    coll_atom = bpy.data.collections.new(coll_atom_name)
    # ... link it to the collection, which contains all parts of the
    # element (ball and mesh).
    coll_element.children.link(coll_atom)

    # Build the mesh
    atom_mesh = bpy.data.meshes.new("Mesh_"+atom[0])
    atom_mesh.from_pydata(atom_vertices, [], [])
    atom_mesh.update()
    new_atom_mesh = bpy.data.objects.new(atom[0] + "_mesh", atom_mesh)

    # Link active object to the new collection
    coll_atom.objects.link(new_atom_mesh)

    # Now, build a representative sphere (atom).
    if atom[0] == "Vacancy":
        bpy.ops.mesh.primitive_cube_add(
                        align='WORLD', enter_editmode=False,
                        location=(0.0, 0.0, 0.0),
                        rotation=(0.0, 0.0, 0.0))
    else:
        # NURBS balls
        if Ball_type == "0":
            bpy.ops.surface.primitive_nurbs_surface_sphere_add(
                        align='WORLD', enter_editmode=False,
                        location=(0,0,0), rotation=(0.0, 0.0, 0.0))
        # UV balls
        elif Ball_type == "1":
            bpy.ops.mesh.primitive_uv_sphere_add(
                        segments=Ball_azimuth, ring_count=Ball_zenith,
                        align='WORLD', enter_editmode=False,
                        location=(0,0,0), rotation=(0, 0, 0))
        # Meta balls
        elif Ball_type == "2":
            bpy.ops.object.metaball_add(type='BALL', align='WORLD',
                        enter_editmode=False, location=(0, 0, 0),
                        rotation=(0, 0, 0))

    ball = bpy.context.view_layer.objects.active
    # Hide this ball because its appearance has no meaning. It is just the
    # representative ball. The ball is visible at the vertices of the mesh.
    # Rememmber, this is a dupliverts construct!
    # However, hiding does not work with meta balls!
    if Ball_type == "0" or Ball_type == "1":
        ball.hide_set(True)
    # Scale up/down the ball radius.
    ball.scale  = (atom[3]*Ball_radius_factor,) * 3

    if atom[0] == "Vacancy":
        ball.name = atom[0] + "_cube"
    else:
        ball.name = atom[0] + "_ball"

    ball.active_material = atom[1]
    ball.parent = new_atom_mesh
    new_atom_mesh.instance_type = 'VERTS'
    # The object is back translated to 'object_center_vec'.
    new_atom_mesh.location = object_center_vec

    # Note the collection where the ball was placed into.
    coll_all = ball.users_collection
    if len(coll_all) > 0:
        coll_past = coll_all[0]
    else:
        coll_past = bpy.context.scene.collection

    # Put the atom into the new collection 'atom' and ...
    coll_atom.objects.link(ball)
    # ... unlink the atom from the other collection.
    coll_past.objects.unlink(ball)

    return new_atom_mesh, coll_element


# Function, which draws the sticks with help of the dupliverts technique.
# Return: list of dupliverts structures.
def draw_sticks_dupliverts(all_atoms,
                           atom_all_types_list,
                           center,
                           all_sticks,
                           Stick_diameter,
                           Stick_sectors,
                           Stick_unit,
                           Stick_dist,
                           use_sticks_smooth,
                           use_sticks_color,
                           list_coll_elements):

    dl = Stick_unit

    if use_sticks_color == False:
        stick_material = bpy.data.materials.new(ELEMENTS[-1].name)
        stick_material.use_nodes = True
        mat_P_BSDF = stick_material.node_tree.nodes['Principled BSDF']
        mat_P_BSDF.inputs['Base Color'].default_value = ELEMENTS[-1].color

    # Sort the sticks and put them into a new list such that ...
    sticks_all_lists = []
    if use_sticks_color == True:
        for atom_type in atom_all_types_list:
            if atom_type[0] == "TER":
                continue
            sticks_list = []
            for stick in all_sticks:
                for repeat in range(stick.number):

                    atom1 = copy(all_atoms[stick.atom1-1].location)-center
                    atom2 = copy(all_atoms[stick.atom2-1].location)-center

                    dist =  Stick_diameter * Stick_dist

                    if stick.number == 2:
                        if repeat == 0:
                            atom1 += (stick.dist * dist)
                            atom2 += (stick.dist * dist)
                        if repeat == 1:
                            atom1 -= (stick.dist * dist)
                            atom2 -= (stick.dist * dist)

                    if stick.number == 3:
                        if repeat == 0:
                            atom1 += (stick.dist * dist)
                            atom2 += (stick.dist * dist)
                        if repeat == 2:
                            atom1 -= (stick.dist * dist)
                            atom2 -= (stick.dist * dist)

                    dv = atom1 - atom2
                    n  = dv / dv.length
                    if atom_type[0] == all_atoms[stick.atom1-1].name:
                        location = atom1
                        name     = "_" + all_atoms[stick.atom1-1].name
                        material = all_atoms[stick.atom1-1].material
                        sticks_list.append([name, location, dv, material])
                    if atom_type[0] == all_atoms[stick.atom2-1].name:
                        location = atom1 - n * dl * int(ceil(dv.length / (2.0 * dl)))
                        name     = "_" + all_atoms[stick.atom2-1].name
                        material = all_atoms[stick.atom2-1].material
                        sticks_list.append([name, location, dv, material])

            if sticks_list != []:
                sticks_all_lists.append(sticks_list)
    else:
        sticks_list = []
        for stick in all_sticks:

            if stick.number > 3:
                stick.number = 1

            for repeat in range(stick.number):

                atom1 = copy(all_atoms[stick.atom1-1].location)-center
                atom2 = copy(all_atoms[stick.atom2-1].location)-center

                dist =  Stick_diameter * Stick_dist

                if stick.number == 2:
                    if repeat == 0:
                        atom1 += (stick.dist * dist)
                        atom2 += (stick.dist * dist)
                    if repeat == 1:
                        atom1 -= (stick.dist * dist)
                        atom2 -= (stick.dist * dist)
                if stick.number == 3:
                    if repeat == 0:
                        atom1 += (stick.dist * dist)
                        atom2 += (stick.dist * dist)
                    if repeat == 2:
                        atom1 -= (stick.dist * dist)
                        atom2 -= (stick.dist * dist)

                dv = atom1 - atom2
                n  = dv / dv.length
                location = atom1
                material = stick_material
                sticks_list.append(["", location, dv, material])

        sticks_all_lists.append(sticks_list)

    atom_object_list = []
    # ... the sticks in the list can be drawn:
    for stick_list in sticks_all_lists:
        vertices = []
        faces    = []
        i = 0

        # What follows is school mathematics! :-)
        for stick in stick_list:

            dv = stick[2]
            v1 = stick[1]
            n  = dv / dv.length
            gamma = -n.dot(v1)
            b     = v1 + gamma * n
            n_b   = b / b.length

            if use_sticks_color == True:
                loops = int(ceil(dv.length / (2.0 * dl)))
            else:
                loops = int(ceil(dv.length / dl))

            for j in range(loops):

                g  = v1 - n * dl / 2.0 - n * dl * j
                p1 = g + n_b * Stick_diameter
                p2 = g - n_b * Stick_diameter
                p3 = g - n_b.cross(n) * Stick_diameter
                p4 = g + n_b.cross(n) * Stick_diameter

                vertices.append(p1)
                vertices.append(p2)
                vertices.append(p3)
                vertices.append(p4)
                faces.append((i*4+0,i*4+2,i*4+1,i*4+3))
                i += 1

        # Create a collection for the sticks, which includes the representative
        # cylinders, cups and the mesh.
        coll_name = stick[0][1:] + "_sticks"
        # Create the collection and ...
        coll = bpy.data.collections.new(coll_name)
        # ... link it to the collection, which contains all parts of the
        # element. 'stick[0][1:]' contains the name of the element!
        for coll_element_from_list in list_coll_elements:
            if stick[0][1:] in coll_element_from_list.name:
                break
        coll_element_from_list.children.link(coll)

        # Build the mesh.
        mesh = bpy.data.meshes.new("Sticks_"+stick[0][1:])
        mesh.from_pydata(vertices, [], faces)
        mesh.update()
        new_mesh = bpy.data.objects.new(stick[0][1:]+"_sticks_mesh", mesh)
        # Link active object to the new collection
        coll.objects.link(new_mesh)

        # Build the object.
        # Get the cylinder from the 'build_stick' function.
        object_stick = build_stick(Stick_diameter,
                                   dl,
                                   Stick_sectors,
                                   stick[0][1:])
        # Link active object to the new collection
        coll.objects.link(object_stick[0])
        coll.objects.link(object_stick[1])

        # Hide these objects because their appearance has no meaning. They are
        # just the representative objects. The cylinder and cups are visible at
        # the vertices of the mesh. Rememmber, this is a dupliverts construct!
        object_stick[0].hide_set(True)
        object_stick[1].hide_set(True)

        stick_cylinder = object_stick[0]
        stick_cylinder.active_material = stick[3]
        stick_cups = object_stick[1]
        stick_cups.active_material = stick[3]

        # Smooth the cylinders.
        if use_sticks_smooth == True:
            bpy.ops.object.select_all(action='DESELECT')
            stick_cylinder.select_set(True)
            stick_cups.select_set(True)
            bpy.ops.object.shade_smooth()

        # Parenting the mesh to the cylinder.
        stick_cylinder.parent = new_mesh
        stick_cups.parent = new_mesh
        new_mesh.instance_type = 'FACES'
        new_mesh.location = center
        atom_object_list.append(new_mesh)

    # Return the list of dupliverts structures.
    return atom_object_list


# Function, which draws the sticks with help of the skin and subdivision
# modifiers.
def draw_sticks_skin(all_atoms,
                     all_sticks,
                     Stick_diameter,
                     use_sticks_smooth,
                     sticks_subdiv_view,
                     sticks_subdiv_render,
                     coll_molecule):

    # These counters are for the edges, in the shape [i,i+1].
    i = 0

    # This is the list of vertices, containing the atom position
    # (vectors)).
    stick_vertices = []
    # This is the 'same' list, which contains not vector position of
    # the atoms but their numbers. It is used to handle the edges.
    stick_vertices_nr = []
    # This is the list of edges.
    stick_edges = []

    # Go through the list of all sticks. For each stick do:
    for stick in all_sticks:

        # Each stick has two atoms = two vertices.

        """
        [ 0,1 ,  3,4 ,  0,8 ,  7,3]
        [[0,1], [2,3], [4,5], [6,7]]

        [ 0,1 ,  3,4 ,  x,8 ,   7,x]    x:deleted
        [[0,1], [2,3], [0,5], [6,2]]
        """

        # Check, if the vertex (atom) is already in the vertex list.
        # edge: [s1,s2]
        FLAG_s1 = False
        s1 = 0
        for stick2 in stick_vertices_nr:
            if stick2 == stick.atom1-1:
                FLAG_s1 = True
                break
            s1 += 1
        FLAG_s2 = False
        s2 = 0
        for stick2 in stick_vertices_nr:
            if stick2 == stick.atom2-1:
                FLAG_s2 = True
                break
            s2 += 1

        # If the vertex (atom) is not yet in the vertex list:
        # append the number of atom and the vertex to the two lists.
        # For the first atom:
        if FLAG_s1 == False:
            atom1 = copy(all_atoms[stick.atom1-1].location)
            stick_vertices.append(atom1)
            stick_vertices_nr.append(stick.atom1-1)
        # For the second atom:
        if FLAG_s2 == False:
            atom2 = copy(all_atoms[stick.atom2-1].location)
            stick_vertices.append(atom2)
            stick_vertices_nr.append(stick.atom2-1)

        # Build the edges:

        # If both vertices (atoms) were not in the lists, then
        # the edge is simply [i,i+1]. These are two new vertices
        # (atoms), so increase i by 2.
        if FLAG_s1 == False and FLAG_s2 == False:
            stick_edges.append([i,i+1])
            i += 2
        # Both vertices (atoms) were already in the list, so then
        # use the vertices (atoms), which already exist. They are
        # at positions s1 and s2.
        if FLAG_s1 == True and FLAG_s2 == True:
            stick_edges.append([s1,s2])
        # The following two if cases describe the situation that
        # only one vertex (atom) was in the list. Since only ONE
        # new vertex was added, increase i by one.
        if FLAG_s1 == True and FLAG_s2 == False:
            stick_edges.append([s1,i])
            i += 1
        if FLAG_s1 == False and FLAG_s2 == True:
            stick_edges.append([i,s2])
            i += 1

    # Build the mesh of the sticks
    stick_mesh = bpy.data.meshes.new("Mesh_sticks")
    stick_mesh.from_pydata(stick_vertices, stick_edges, [])
    stick_mesh.update()
    new_stick_mesh = bpy.data.objects.new("Sticks", stick_mesh)
    # Link the active mesh to the molecule collection
    coll_molecule.objects.link(new_stick_mesh)

    # Apply the skin modifier.
    new_stick_mesh.modifiers.new(name="Sticks_skin", type='SKIN')
    # Smooth the skin surface if this option has been chosen.
    new_stick_mesh.modifiers[0].use_smooth_shade = use_sticks_smooth
    # Apply the Subdivision modifier.
    new_stick_mesh.modifiers.new(name="Sticks_subsurf", type='SUBSURF')
    # Options: choose the levels
    new_stick_mesh.modifiers[1].levels = sticks_subdiv_view
    new_stick_mesh.modifiers[1].render_levels = sticks_subdiv_render

    stick_material = bpy.data.materials.new(ELEMENTS[-1].name)
    stick_material.use_nodes = True
    mat_P_BSDF = stick_material.node_tree.nodes['Principled BSDF']
    mat_P_BSDF.inputs['Base Color'].default_value = ELEMENTS[-1].color
    new_stick_mesh.active_material = stick_material

    # This is for putting the radius of the sticks onto
    # the desired value 'Stick_diameter'
    bpy.context.view_layer.objects.active = new_stick_mesh
    # EDIT mode
    bpy.ops.object.mode_set(mode='EDIT', toggle=False)
    bm = bmesh.from_edit_mesh(new_stick_mesh.data)
    bpy.ops.mesh.select_all(action='DESELECT')

    # Select all vertices
    for v in bm.verts:
        v.select = True

    # This is somewhat a factor for the radius.
    r_f = 4.0
    # Apply operator 'skin_resize'.
    bpy.ops.transform.skin_resize(
        value=(
            Stick_diameter * r_f,
            Stick_diameter * r_f,
            Stick_diameter * r_f,
        ),
        constraint_axis=(False, False, False),
        orient_type='GLOBAL',
        mirror=False,
        use_proportional_edit=False,
        snap=False,
        snap_target='CLOSEST',
        snap_point=(0, 0, 0),
        snap_align=False,
        snap_normal=(0, 0, 0),
        release_confirm=False,
    )
    # Back to the OBJECT mode.
    bpy.ops.object.mode_set(mode='OBJECT', toggle=False)

    return new_stick_mesh


# Draw the sticks the normal way: connect the atoms by simple cylinders.
# Two options: 1. single cylinders parented to an empty
#              2. one single mesh object
def draw_sticks_normal(all_atoms,
                       all_sticks,
                       center,
                       Stick_diameter,
                       Stick_sectors,
                       use_sticks_smooth,
                       use_sticks_one_object,
                       use_sticks_one_object_nr,
                       coll_molecule):

    stick_material = bpy.data.materials.new(ELEMENTS[-1].name)
    stick_material.use_nodes = True
    mat_P_BSDF = stick_material.node_tree.nodes['Principled BSDF']
    mat_P_BSDF.inputs['Base Color'].default_value = ELEMENTS[-1].color

    up_axis = Vector([0.0, 0.0, 1.0])

    # For all sticks, do ...
    list_group = []
    list_group_sub = []
    counter = 0
    for stick in all_sticks:

        # The vectors of the two atoms
        atom1 = all_atoms[stick.atom1-1].location-center
        atom2 = all_atoms[stick.atom2-1].location-center
        # Location
        location = (atom1 + atom2) * 0.5
        # The difference of both vectors
        v = (atom2 - atom1)
        # Angle with respect to the z-axis
        angle = v.angle(up_axis, 0)
        # Cross-product between v and the z-axis vector. It is the
        # vector of rotation.
        axis = up_axis.cross(v)
        # Calculate Euler angles
        euler = Matrix.Rotation(angle, 4, axis).to_euler()
        # Create stick
        stick = bpy.ops.mesh.primitive_cylinder_add(vertices=Stick_sectors,
                                                    radius=Stick_diameter,
                                                    depth=v.length,
                                                    end_fill_type='NGON',
                                                    align='WORLD',
                                                    enter_editmode=False,
                                                    location=location,
                                                    rotation=(0, 0, 0))
        # Put the stick into the scene ...
        stick = bpy.context.view_layer.objects.active
        # ... and rotate the stick.
        stick.rotation_euler = euler
        # ... and name
        stick.name = "Stick_Cylinder"
        counter += 1

        # Smooth the cylinder.
        if use_sticks_smooth == True:
            bpy.ops.object.select_all(action='DESELECT')
            stick.select_set(True)
            bpy.ops.object.shade_smooth()

        list_group_sub.append(stick)

        if use_sticks_one_object == True:
            if counter == use_sticks_one_object_nr:
                bpy.ops.object.select_all(action='DESELECT')
                for stick in list_group_sub:
                    stick.select_set(True)
                bpy.ops.object.join()
                list_group.append(bpy.context.view_layer.objects.active)
                bpy.ops.object.select_all(action='DESELECT')
                list_group_sub = []
                counter = 0
        else:
            # Material ...
            stick.active_material = stick_material

    if use_sticks_one_object == True:
        bpy.ops.object.select_all(action='DESELECT')
        for stick in list_group_sub:
            stick.select_set(True)
        bpy.ops.object.join()
        list_group.append(bpy.context.view_layer.objects.active)
        bpy.ops.object.select_all(action='DESELECT')

        for group in list_group:
            group.select_set(True)
        bpy.ops.object.join()
        bpy.ops.object.origin_set(type='ORIGIN_GEOMETRY',
                                   center='MEDIAN')
        sticks = bpy.context.view_layer.objects.active
        sticks.active_material = stick_material

        sticks.location += center

        # Collections
        # ===========
        # Note the collection where the sticks were placed into.
        coll_all = sticks.users_collection
        if len(coll_all) > 0:
            coll_past = coll_all[0]
        else:
            coll_past = bpy.context.scene.collection

        # Link the sticks with the collection of the molecule ...
        coll_molecule.objects.link(sticks)
        # ... and unlink them from the collection it has been before.
        coll_past.objects.unlink(sticks)

        return sticks
    else:
        # Here we use an empty ...
        bpy.ops.object.empty_add(type='ARROWS',
                                  align='WORLD',
                                  location=(0, 0, 0),
                                  rotation=(0, 0, 0))
        sticks_empty = bpy.context.view_layer.objects.active
        sticks_empty.name = "A_sticks_empty"
        # ... that is parent to all sticks. With this, we can better move
        # all sticks if necessary.
        for stick in list_group_sub:
            stick.parent = sticks_empty

        sticks_empty.location += center

        # Collections
        # ===========
        # Create a collection that will contain all sticks + the empty and ...
        coll = bpy.data.collections.new("Sticks")
        # ... link it to the collection, which contains all parts of the
        # molecule.
        coll_molecule.children.link(coll)
        # Now, create a collection that only contains the sticks and ...
        coll_cylinder = bpy.data.collections.new("Sticks_cylinders")
        # ... link it to the collection, which contains the sticks and empty.
        coll.children.link(coll_cylinder)

        # Note the collection where the empty was placed into, ...
        coll_all = sticks_empty.users_collection
        if len(coll_all) > 0:
            coll_past = coll_all[0]
        else:
            coll_past = bpy.context.scene.collection
        # ... link the empty with the new collection  ...
        coll.objects.link(sticks_empty)
        # ... and unlink it from the old collection where it has been before.
        coll_past.objects.unlink(sticks_empty)

        # Note the collection where the cylinders were placed into, ...
        coll_all = list_group_sub[0].users_collection
        if len(coll_all) > 0:
            coll_past = coll_all[0]
        else:
            coll_past = bpy.context.scene.collection

        for stick in list_group_sub:
            # ... link each stick with the new collection  ...
            coll_cylinder.objects.link(stick)
            # ... and unlink it from the old collection.
            coll_past.objects.unlink(stick)

        return sticks_empty


# -----------------------------------------------------------------------------
#                                                            The main routine

def import_pdb(Ball_type,
               Ball_azimuth,
               Ball_zenith,
               Ball_radius_factor,
               radiustype,
               Ball_distance_factor,
               use_sticks,
               use_sticks_type,
               sticks_subdiv_view,
               sticks_subdiv_render,
               use_sticks_color,
               use_sticks_smooth,
               use_sticks_bonds,
               use_sticks_one_object,
               use_sticks_one_object_nr,
               Stick_unit, Stick_dist,
               Stick_sectors,
               Stick_diameter,
               put_to_center,
               use_camera,
               use_light,
               filepath_pdb):

    # List of materials
    atom_material_list = []

    # A list of ALL objects which are loaded (needed for selecting the loaded
    # structure.
    atom_object_list = []

    # ------------------------------------------------------------------------
    # INITIALIZE THE ELEMENT LIST

    read_elements()

    # ------------------------------------------------------------------------
    # READING DATA OF ATOMS

    (Number_of_total_atoms, all_atoms) = read_pdb_file(filepath_pdb, radiustype)

    # ------------------------------------------------------------------------
    # MATERIAL PROPERTIES FOR ATOMS

    # The list that contains info about all types of atoms is created
    # here. It is used for building the material properties for
    # instance (see below).
    atom_all_types_list = []

    for atom in all_atoms:
        FLAG_FOUND = False
        for atom_type in atom_all_types_list:
            # If the atom name is already in the list, FLAG on 'True'.
            if atom_type[0] == atom.name:
                FLAG_FOUND = True
                break
        # No name in the current list has been found? => New entry.
        if FLAG_FOUND == False:
            # Stored are: Atom label (e.g. 'Na'), the corresponding atom
            # name (e.g. 'Sodium') and its color.
            atom_all_types_list.append([atom.name, atom.element, atom.color])

    # The list of materials is built.
    # Note that all atoms of one type (e.g. all hydrogens) get only ONE
    # material! This is good because then, by activating one atom in the
    # Blender scene and changing the color of this atom, one changes the color
    # of ALL atoms of the same type at the same time.

    # Create first a new list of materials for each type of atom
    # (e.g. hydrogen)
    for atom_type in atom_all_types_list:
        material = bpy.data.materials.new(atom_type[1])
        material.use_nodes = True
        mat_P_BSDF = material.node_tree.nodes['Principled BSDF']
        mat_P_BSDF.inputs['Base Color'].default_value = atom_type[2]
        material.name = atom_type[0]
        atom_material_list.append(material)

    # Now, we go through all atoms and give them a material. For all atoms ...
    for atom in all_atoms:
        # ... and all materials ...
        for material in atom_material_list:
            # ... select the correct material for the current atom via
            # comparison of names ...
            if atom.name in material.name:
                # ... and give the atom its material properties.
                # However, before we check, if it is a vacancy, because then it
                # gets some additional preparation. The vacancy is represented
                # by a transparent cube.
                if atom.name == "Vacancy":
                    # Some properties for eevee.
                    material.metallic = 0.8
                    material.specular_intensity = 0.5
                    material.roughness = 0.3
                    material.blend_method = 'OPAQUE'
                    material.show_transparent_back = False
                    # Some properties for cycles
                    material.use_nodes = True
                    mat_P_BSDF = material.node_tree.nodes['Principled BSDF']
                    mat_P_BSDF.inputs['Metallic'].default_value = 0.1
                    mat_P_BSDF.inputs['Roughness'].default_value = 0.2
                    mat_P_BSDF.inputs['Transmission'].default_value = 0.97
                    mat_P_BSDF.inputs['IOR'].default_value = 0.8
                # The atom gets its properties.
                atom.material = material

    # ------------------------------------------------------------------------
    # READING DATA OF STICKS

    all_sticks = read_pdb_file_sticks(filepath_pdb,
                                      use_sticks_bonds,
                                      all_atoms)
    #
    # So far, all atoms, sticks and materials have been registered.
    #

    # ------------------------------------------------------------------------
    # TRANSLATION OF THE STRUCTURE TO THE ORIGIN

    # It may happen that the structure in a PDB file already has an offset
    # If chosen, the structure is first put into the center of the scene
    # (the offset is subtracted).

    if put_to_center == True:
        sum_vec = Vector((0.0,0.0,0.0))
        # Sum of all atom coordinates
        sum_vec = sum([atom.location for atom in all_atoms], sum_vec)
        # Then the average is taken
        sum_vec = sum_vec / Number_of_total_atoms
        # After, for each atom the center of gravity is subtracted
        for atom in all_atoms:
            atom.location -= sum_vec

    # ------------------------------------------------------------------------
    # SCALING

    # Take all atoms and adjust their radii and scale the distances.
    for atom in all_atoms:
        atom.location *= Ball_distance_factor

    # ------------------------------------------------------------------------
    # DETERMINATION OF SOME GEOMETRIC PROPERTIES

    # In the following, some geometric properties of the whole object are
    # determined: center, size, etc.
    sum_vec = Vector((0.0,0.0,0.0))

    # First the center is determined. All coordinates are summed up ...
    sum_vec = sum([atom.location for atom in all_atoms], sum_vec)

    # ... and the average is taken. This gives the center of the object.
    object_center_vec = sum_vec / Number_of_total_atoms

    # Now, we determine the size.The farthest atom from the object center is
    # taken as a measure. The size is used to place well the camera and light
    # into the scene.
    object_size_vec = [atom.location - object_center_vec for atom in all_atoms]
    object_size = max(object_size_vec).length

    # ------------------------------------------------------------------------
    # SORTING THE ATOMS

    # Lists of atoms of one type are created. Example:
    # draw_all_atoms = [ data_hydrogen,data_carbon,data_nitrogen ]
    # data_hydrogen = [["Hydrogen", Material_Hydrogen, Vector((x,y,z)), 109], ...]

    # Go through the list which contains all types of atoms. It is the list,
    # which has been created on the top during reading the PDB file.
    # Example: atom_all_types_list = ["hydrogen", "carbon", ...]
    draw_all_atoms = []
    for atom_type in atom_all_types_list:

        # Don't draw 'TER atoms'.
        if atom_type[0] == "TER":
            continue

        # This is the draw list, which contains all atoms of one type (e.g.
        # all hydrogens) ...
        draw_all_atoms_type = []

        # Go through all atoms ...
        for atom in all_atoms:
            # ... select the atoms of the considered type via comparison ...
            if atom.name == atom_type[0]:
                # ... and append them to the list 'draw_all_atoms_type'.
                draw_all_atoms_type.append([atom.name,
                                            atom.material,
                                            atom.location,
                                            atom.radius])

        # Now append the atom list to the list of all types of atoms
        draw_all_atoms.append(draw_all_atoms_type)

    # ------------------------------------------------------------------------
    # COLLECTION

    # Before we start to draw the atoms and sticks, we first create a
    # collection for the molecule. All atoms (balls) and sticks (cylinders)
    # are put into this collection.
    coll_molecule_name = os.path.basename(filepath_pdb)
    scene = bpy.context.scene
    coll_molecule = bpy.data.collections.new(coll_molecule_name)
    scene.collection.children.link(coll_molecule)

    # ------------------------------------------------------------------------
    # DRAWING THE ATOMS

    bpy.ops.object.select_all(action='DESELECT')

    list_coll_elements = []
    # For each list of atoms of ONE type (e.g. Hydrogen)
    for draw_all_atoms_type in draw_all_atoms:

        atom_mesh, coll_element = draw_atoms_one_type(draw_all_atoms_type,
                                                      Ball_type,
                                                      Ball_azimuth,
                                                      Ball_zenith,
                                                      Ball_radius_factor,
                                                      object_center_vec,
                                                      coll_molecule)
        atom_object_list.append(atom_mesh)
        list_coll_elements.append(coll_element)

    # ------------------------------------------------------------------------
    # DRAWING THE STICKS: cylinders in a dupliverts structure

    if use_sticks == True and use_sticks_type == '0' and all_sticks != []:

        sticks = draw_sticks_dupliverts(all_atoms,
                                        atom_all_types_list,
                                        object_center_vec,
                                        all_sticks,
                                        Stick_diameter,
                                        Stick_sectors,
                                        Stick_unit,
                                        Stick_dist,
                                        use_sticks_smooth,
                                        use_sticks_color,
                                        list_coll_elements)
        for stick in sticks:
            atom_object_list.append(stick)

    # ------------------------------------------------------------------------
    # DRAWING THE STICKS: skin and subdivision modifier

    if use_sticks == True and use_sticks_type == '1' and all_sticks != []:

        sticks = draw_sticks_skin(all_atoms,
                                  all_sticks,
                                  Stick_diameter,
                                  use_sticks_smooth,
                                  sticks_subdiv_view,
                                  sticks_subdiv_render,
                                  coll_molecule)
        atom_object_list.append(sticks)

    # ------------------------------------------------------------------------
    # DRAWING THE STICKS: normal cylinders

    if use_sticks == True and use_sticks_type == '2' and all_sticks != []:

        sticks = draw_sticks_normal(all_atoms,
                                    all_sticks,
                                    object_center_vec,
                                    Stick_diameter,
                                    Stick_sectors,
                                    use_sticks_smooth,
                                    use_sticks_one_object,
                                    use_sticks_one_object_nr,
                                    coll_molecule)
        atom_object_list.append(sticks)

    # ------------------------------------------------------------------------
    # CAMERA and LIGHT SOURCES

    camera_light_source(use_camera,
                        use_light,
                        object_center_vec,
                        object_size)

    # ------------------------------------------------------------------------
    # SELECT ALL LOADED OBJECTS
    bpy.ops.object.select_all(action='DESELECT')
    obj = None
    for obj in atom_object_list:
        obj.select_set(True)

    # activate the last selected object
    if obj:
        bpy.context.view_layer.objects.active = obj