Welcome to mirror list, hosted at ThFree Co, Russian Federation.

xyz_import.py « io_mesh_atomic - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3cd7185c64df853775712c222adeea5632f4b3b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

import os
import bpy
from math import pi, sqrt
from mathutils import Vector, Matrix

# -----------------------------------------------------------------------------
#                                                  Atom and element data


# This is a list that contains some data of all possible elements. The structure
# is as follows:
#
# 1, "Hydrogen", "H", [0.0,0.0,1.0], 0.32, 0.32, 0.32 , -1 , 1.54   means
#
# No., name, short name, color, radius (used), radius (covalent), radius (atomic),
#
# charge state 1, radius (ionic) 1, charge state 2, radius (ionic) 2, ... all
# charge states for any atom are listed, if existing.
# The list is fixed and cannot be changed ... (see below)

ELEMENTS_DEFAULT = (
( 1,      "Hydrogen",        "H", (  1.0,   1.0,   1.0, 1.0), 0.32, 0.32, 0.79 , -1 , 1.54 ),
( 2,        "Helium",       "He", ( 0.85,   1.0,   1.0, 1.0), 0.93, 0.93, 0.49 ),
( 3,       "Lithium",       "Li", (  0.8,  0.50,   1.0, 1.0), 1.23, 1.23, 2.05 ,  1 , 0.68 ),
( 4,     "Beryllium",       "Be", ( 0.76,   1.0,   0.0, 1.0), 0.90, 0.90, 1.40 ,  1 , 0.44 ,  2 , 0.35 ),
( 5,         "Boron",        "B", (  1.0,  0.70,  0.70, 1.0), 0.82, 0.82, 1.17 ,  1 , 0.35 ,  3 , 0.23 ),
( 6,        "Carbon",        "C", ( 0.56,  0.56,  0.56, 1.0), 0.77, 0.77, 0.91 , -4 , 2.60 ,  4 , 0.16 ),
( 7,      "Nitrogen",        "N", ( 0.18,  0.31,  0.97, 1.0), 0.75, 0.75, 0.75 , -3 , 1.71 ,  1 , 0.25 ,  3 , 0.16 ,  5 , 0.13 ),
( 8,        "Oxygen",        "O", (  1.0,  0.05,  0.05, 1.0), 0.73, 0.73, 0.65 , -2 , 1.32 , -1 , 1.76 ,  1 , 0.22 ,  6 , 0.09 ),
( 9,      "Fluorine",        "F", ( 0.56,  0.87,  0.31, 1.0), 0.72, 0.72, 0.57 , -1 , 1.33 ,  7 , 0.08 ),
(10,          "Neon",       "Ne", ( 0.70,  0.89,  0.96, 1.0), 0.71, 0.71, 0.51 ,  1 , 1.12 ),
(11,        "Sodium",       "Na", ( 0.67,  0.36,  0.94, 1.0), 1.54, 1.54, 2.23 ,  1 , 0.97 ),
(12,     "Magnesium",       "Mg", ( 0.54,   1.0,   0.0, 1.0), 1.36, 1.36, 1.72 ,  1 , 0.82 ,  2 , 0.66 ),
(13,     "Aluminium",       "Al", ( 0.74,  0.65,  0.65, 1.0), 1.18, 1.18, 1.82 ,  3 , 0.51 ),
(14,       "Silicon",       "Si", ( 0.94,  0.78,  0.62, 1.0), 1.11, 1.11, 1.46 , -4 , 2.71 , -1 , 3.84 ,  1 , 0.65 ,  4 , 0.42 ),
(15,    "Phosphorus",        "P", (  1.0,  0.50,   0.0, 1.0), 1.06, 1.06, 1.23 , -3 , 2.12 ,  3 , 0.44 ,  5 , 0.35 ),
(16,        "Sulfur",        "S", (  1.0,   1.0,  0.18, 1.0), 1.02, 1.02, 1.09 , -2 , 1.84 ,  2 , 2.19 ,  4 , 0.37 ,  6 , 0.30 ),
(17,      "Chlorine",       "Cl", ( 0.12,  0.94,  0.12, 1.0), 0.99, 0.99, 0.97 , -1 , 1.81 ,  5 , 0.34 ,  7 , 0.27 ),
(18,         "Argon",       "Ar", ( 0.50,  0.81,  0.89, 1.0), 0.98, 0.98, 0.88 ,  1 , 1.54 ),
(19,     "Potassium",        "K", ( 0.56,  0.25,  0.83, 1.0), 2.03, 2.03, 2.77 ,  1 , 0.81 ),
(20,       "Calcium",       "Ca", ( 0.23,   1.0,   0.0, 1.0), 1.74, 1.74, 2.23 ,  1 , 1.18 ,  2 , 0.99 ),
(21,      "Scandium",       "Sc", ( 0.90,  0.90,  0.90, 1.0), 1.44, 1.44, 2.09 ,  3 , 0.73 ),
(22,      "Titanium",       "Ti", ( 0.74,  0.76,  0.78, 1.0), 1.32, 1.32, 2.00 ,  1 , 0.96 ,  2 , 0.94 ,  3 , 0.76 ,  4 , 0.68 ),
(23,      "Vanadium",        "V", ( 0.65,  0.65,  0.67, 1.0), 1.22, 1.22, 1.92 ,  2 , 0.88 ,  3 , 0.74 ,  4 , 0.63 ,  5 , 0.59 ),
(24,      "Chromium",       "Cr", ( 0.54,   0.6,  0.78, 1.0), 1.18, 1.18, 1.85 ,  1 , 0.81 ,  2 , 0.89 ,  3 , 0.63 ,  6 , 0.52 ),
(25,     "Manganese",       "Mn", ( 0.61,  0.47,  0.78, 1.0), 1.17, 1.17, 1.79 ,  2 , 0.80 ,  3 , 0.66 ,  4 , 0.60 ,  7 , 0.46 ),
(26,          "Iron",       "Fe", ( 0.87,   0.4,   0.2, 1.0), 1.17, 1.17, 1.72 ,  2 , 0.74 ,  3 , 0.64 ),
(27,        "Cobalt",       "Co", ( 0.94,  0.56,  0.62, 1.0), 1.16, 1.16, 1.67 ,  2 , 0.72 ,  3 , 0.63 ),
(28,        "Nickel",       "Ni", ( 0.31,  0.81,  0.31, 1.0), 1.15, 1.15, 1.62 ,  2 , 0.69 ),
(29,        "Copper",       "Cu", ( 0.78,  0.50,   0.2, 1.0), 1.17, 1.17, 1.57 ,  1 , 0.96 ,  2 , 0.72 ),
(30,          "Zinc",       "Zn", ( 0.49,  0.50,  0.69, 1.0), 1.25, 1.25, 1.53 ,  1 , 0.88 ,  2 , 0.74 ),
(31,       "Gallium",       "Ga", ( 0.76,  0.56,  0.56, 1.0), 1.26, 1.26, 1.81 ,  1 , 0.81 ,  3 , 0.62 ),
(32,     "Germanium",       "Ge", (  0.4,  0.56,  0.56, 1.0), 1.22, 1.22, 1.52 , -4 , 2.72 ,  2 , 0.73 ,  4 , 0.53 ),
(33,       "Arsenic",       "As", ( 0.74,  0.50,  0.89, 1.0), 1.20, 1.20, 1.33 , -3 , 2.22 ,  3 , 0.58 ,  5 , 0.46 ),
(34,      "Selenium",       "Se", (  1.0,  0.63,   0.0, 1.0), 1.16, 1.16, 1.22 , -2 , 1.91 , -1 , 2.32 ,  1 , 0.66 ,  4 , 0.50 ,  6 , 0.42 ),
(35,       "Bromine",       "Br", ( 0.65,  0.16,  0.16, 1.0), 1.14, 1.14, 1.12 , -1 , 1.96 ,  5 , 0.47 ,  7 , 0.39 ),
(36,       "Krypton",       "Kr", ( 0.36,  0.72,  0.81, 1.0), 1.31, 1.31, 1.24 ),
(37,      "Rubidium",       "Rb", ( 0.43,  0.18,  0.69, 1.0), 2.16, 2.16, 2.98 ,  1 , 1.47 ),
(38,     "Strontium",       "Sr", (  0.0,   1.0,   0.0, 1.0), 1.91, 1.91, 2.45 ,  2 , 1.12 ),
(39,       "Yttrium",        "Y", ( 0.58,   1.0,   1.0, 1.0), 1.62, 1.62, 2.27 ,  3 , 0.89 ),
(40,     "Zirconium",       "Zr", ( 0.58,  0.87,  0.87, 1.0), 1.45, 1.45, 2.16 ,  1 , 1.09 ,  4 , 0.79 ),
(41,       "Niobium",       "Nb", ( 0.45,  0.76,  0.78, 1.0), 1.34, 1.34, 2.08 ,  1 , 1.00 ,  4 , 0.74 ,  5 , 0.69 ),
(42,    "Molybdenum",       "Mo", ( 0.32,  0.70,  0.70, 1.0), 1.30, 1.30, 2.01 ,  1 , 0.93 ,  4 , 0.70 ,  6 , 0.62 ),
(43,    "Technetium",       "Tc", ( 0.23,  0.61,  0.61, 1.0), 1.27, 1.27, 1.95 ,  7 , 0.97 ),
(44,     "Ruthenium",       "Ru", ( 0.14,  0.56,  0.56, 1.0), 1.25, 1.25, 1.89 ,  4 , 0.67 ),
(45,       "Rhodium",       "Rh", ( 0.03,  0.49,  0.54, 1.0), 1.25, 1.25, 1.83 ,  3 , 0.68 ),
(46,     "Palladium",       "Pd", (  0.0,  0.41,  0.52, 1.0), 1.28, 1.28, 1.79 ,  2 , 0.80 ,  4 , 0.65 ),
(47,        "Silver",       "Ag", ( 0.75,  0.75,  0.75, 1.0), 1.34, 1.34, 1.75 ,  1 , 1.26 ,  2 , 0.89 ),
(48,       "Cadmium",       "Cd", (  1.0,  0.85,  0.56, 1.0), 1.48, 1.48, 1.71 ,  1 , 1.14 ,  2 , 0.97 ),
(49,        "Indium",       "In", ( 0.65,  0.45,  0.45, 1.0), 1.44, 1.44, 2.00 ,  3 , 0.81 ),
(50,           "Tin",       "Sn", (  0.4,  0.50,  0.50, 1.0), 1.41, 1.41, 1.72 , -4 , 2.94 , -1 , 3.70 ,  2 , 0.93 ,  4 , 0.71 ),
(51,      "Antimony",       "Sb", ( 0.61,  0.38,  0.70, 1.0), 1.40, 1.40, 1.53 , -3 , 2.45 ,  3 , 0.76 ,  5 , 0.62 ),
(52,     "Tellurium",       "Te", ( 0.83,  0.47,   0.0, 1.0), 1.36, 1.36, 1.42 , -2 , 2.11 , -1 , 2.50 ,  1 , 0.82 ,  4 , 0.70 ,  6 , 0.56 ),
(53,        "Iodine",        "I", ( 0.58,   0.0,  0.58, 1.0), 1.33, 1.33, 1.32 , -1 , 2.20 ,  5 , 0.62 ,  7 , 0.50 ),
(54,         "Xenon",       "Xe", ( 0.25,  0.61,  0.69, 1.0), 1.31, 1.31, 1.24 ),
(55,       "Caesium",       "Cs", ( 0.34,  0.09,  0.56, 1.0), 2.35, 2.35, 3.35 ,  1 , 1.67 ),
(56,        "Barium",       "Ba", (  0.0,  0.78,   0.0, 1.0), 1.98, 1.98, 2.78 ,  1 , 1.53 ,  2 , 1.34 ),
(57,     "Lanthanum",       "La", ( 0.43,  0.83,   1.0, 1.0), 1.69, 1.69, 2.74 ,  1 , 1.39 ,  3 , 1.06 ),
(58,        "Cerium",       "Ce", (  1.0,   1.0,  0.78, 1.0), 1.65, 1.65, 2.70 ,  1 , 1.27 ,  3 , 1.03 ,  4 , 0.92 ),
(59,  "Praseodymium",       "Pr", ( 0.85,   1.0,  0.78, 1.0), 1.65, 1.65, 2.67 ,  3 , 1.01 ,  4 , 0.90 ),
(60,     "Neodymium",       "Nd", ( 0.78,   1.0,  0.78, 1.0), 1.64, 1.64, 2.64 ,  3 , 0.99 ),
(61,    "Promethium",       "Pm", ( 0.63,   1.0,  0.78, 1.0), 1.63, 1.63, 2.62 ,  3 , 0.97 ),
(62,      "Samarium",       "Sm", ( 0.56,   1.0,  0.78, 1.0), 1.62, 1.62, 2.59 ,  3 , 0.96 ),
(63,      "Europium",       "Eu", ( 0.38,   1.0,  0.78, 1.0), 1.85, 1.85, 2.56 ,  2 , 1.09 ,  3 , 0.95 ),
(64,    "Gadolinium",       "Gd", ( 0.27,   1.0,  0.78, 1.0), 1.61, 1.61, 2.54 ,  3 , 0.93 ),
(65,       "Terbium",       "Tb", ( 0.18,   1.0,  0.78, 1.0), 1.59, 1.59, 2.51 ,  3 , 0.92 ,  4 , 0.84 ),
(66,    "Dysprosium",       "Dy", ( 0.12,   1.0,  0.78, 1.0), 1.59, 1.59, 2.49 ,  3 , 0.90 ),
(67,       "Holmium",       "Ho", (  0.0,   1.0,  0.61, 1.0), 1.58, 1.58, 2.47 ,  3 , 0.89 ),
(68,        "Erbium",       "Er", (  0.0,  0.90,  0.45, 1.0), 1.57, 1.57, 2.45 ,  3 , 0.88 ),
(69,       "Thulium",       "Tm", (  0.0,  0.83,  0.32, 1.0), 1.56, 1.56, 2.42 ,  3 , 0.87 ),
(70,     "Ytterbium",       "Yb", (  0.0,  0.74,  0.21, 1.0), 1.74, 1.74, 2.40 ,  2 , 0.93 ,  3 , 0.85 ),
(71,      "Lutetium",       "Lu", (  0.0,  0.67,  0.14, 1.0), 1.56, 1.56, 2.25 ,  3 , 0.85 ),
(72,       "Hafnium",       "Hf", ( 0.30,  0.76,   1.0, 1.0), 1.44, 1.44, 2.16 ,  4 , 0.78 ),
(73,      "Tantalum",       "Ta", ( 0.30,  0.65,   1.0, 1.0), 1.34, 1.34, 2.09 ,  5 , 0.68 ),
(74,      "Tungsten",        "W", ( 0.12,  0.58,  0.83, 1.0), 1.30, 1.30, 2.02 ,  4 , 0.70 ,  6 , 0.62 ),
(75,       "Rhenium",       "Re", ( 0.14,  0.49,  0.67, 1.0), 1.28, 1.28, 1.97 ,  4 , 0.72 ,  7 , 0.56 ),
(76,        "Osmium",       "Os", ( 0.14,   0.4,  0.58, 1.0), 1.26, 1.26, 1.92 ,  4 , 0.88 ,  6 , 0.69 ),
(77,       "Iridium",       "Ir", ( 0.09,  0.32,  0.52, 1.0), 1.27, 1.27, 1.87 ,  4 , 0.68 ),
(78,      "Platinum",       "Pt", ( 0.81,  0.81,  0.87, 1.0), 1.30, 1.30, 1.83 ,  2 , 0.80 ,  4 , 0.65 ),
(79,          "Gold",       "Au", (  1.0,  0.81,  0.13, 1.0), 1.34, 1.34, 1.79 ,  1 , 1.37 ,  3 , 0.85 ),
(80,       "Mercury",       "Hg", ( 0.72,  0.72,  0.81, 1.0), 1.49, 1.49, 1.76 ,  1 , 1.27 ,  2 , 1.10 ),
(81,      "Thallium",       "Tl", ( 0.65,  0.32,  0.30, 1.0), 1.48, 1.48, 2.08 ,  1 , 1.47 ,  3 , 0.95 ),
(82,          "Lead",       "Pb", ( 0.34,  0.34,  0.38, 1.0), 1.47, 1.47, 1.81 ,  2 , 1.20 ,  4 , 0.84 ),
(83,       "Bismuth",       "Bi", ( 0.61,  0.30,  0.70, 1.0), 1.46, 1.46, 1.63 ,  1 , 0.98 ,  3 , 0.96 ,  5 , 0.74 ),
(84,      "Polonium",       "Po", ( 0.67,  0.36,   0.0, 1.0), 1.46, 1.46, 1.53 ,  6 , 0.67 ),
(85,      "Astatine",       "At", ( 0.45,  0.30,  0.27, 1.0), 1.45, 1.45, 1.43 , -3 , 2.22 ,  3 , 0.85 ,  5 , 0.46 ),
(86,         "Radon",       "Rn", ( 0.25,  0.50,  0.58, 1.0), 1.00, 1.00, 1.34 ),
(87,      "Francium",       "Fr", ( 0.25,   0.0,   0.4, 1.0), 1.00, 1.00, 1.00 ,  1 , 1.80 ),
(88,        "Radium",       "Ra", (  0.0,  0.49,   0.0, 1.0), 1.00, 1.00, 1.00 ,  2 , 1.43 ),
(89,      "Actinium",       "Ac", ( 0.43,  0.67,  0.98, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.18 ),
(90,       "Thorium",       "Th", (  0.0,  0.72,   1.0, 1.0), 1.65, 1.65, 1.00 ,  4 , 1.02 ),
(91,  "Protactinium",       "Pa", (  0.0,  0.63,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.13 ,  4 , 0.98 ,  5 , 0.89 ),
(92,       "Uranium",        "U", (  0.0,  0.56,   1.0, 1.0), 1.42, 1.42, 1.00 ,  4 , 0.97 ,  6 , 0.80 ),
(93,     "Neptunium",       "Np", (  0.0,  0.50,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.10 ,  4 , 0.95 ,  7 , 0.71 ),
(94,     "Plutonium",       "Pu", (  0.0,  0.41,   1.0, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.08 ,  4 , 0.93 ),
(95,     "Americium",       "Am", ( 0.32,  0.36,  0.94, 1.0), 1.00, 1.00, 1.00 ,  3 , 1.07 ,  4 , 0.92 ),
(96,        "Curium",       "Cm", ( 0.47,  0.36,  0.89, 1.0), 1.00, 1.00, 1.00 ),
(97,     "Berkelium",       "Bk", ( 0.54,  0.30,  0.89, 1.0), 1.00, 1.00, 1.00 ),
(98,   "Californium",       "Cf", ( 0.63,  0.21,  0.83, 1.0), 1.00, 1.00, 1.00 ),
(99,   "Einsteinium",       "Es", ( 0.70,  0.12,  0.83, 1.0), 1.00, 1.00, 1.00 ),
(100,       "Fermium",       "Fm", ( 0.70,  0.12, 0.72, 1.0), 1.00, 1.00, 1.00 ),
(101,   "Mendelevium",       "Md", ( 0.70,  0.05, 0.65, 1.0), 1.00, 1.00, 1.00 ),
(102,      "Nobelium",       "No", ( 0.74,  0.05, 0.52, 1.0), 1.00, 1.00, 1.00 ),
(103,    "Lawrencium",       "Lr", ( 0.78,   0.0,  0.4, 1.0), 1.00, 1.00, 1.00 ),
(104,       "Vacancy",      "Vac", (  0.5,   0.5,  0.5, 1.0), 1.00, 1.00, 1.00),
(105,       "Default",  "Default", (  1.0,   1.0,  1.0, 1.0), 1.00, 1.00, 1.00),
(106,         "Stick",    "Stick", (  0.5,   0.5,  0.5, 1.0), 1.00, 1.00, 1.00),
)

# This list here contains all data of the elements and will be used during
# runtime. It is a list of classes.
# During executing Atomic Blender, the list will be initialized with the fixed
# data from above via the class structure below (ElementProp). We
# have then one fixed list (above), which will never be changed, and a list of
# classes with same data. The latter can be modified via loading a separate
# custom data file for instance.
ELEMENTS = []

# This is the list, which contains all atoms of all frames! Each item is a
# list which contains the atoms of a single frame. It is a list of
# 'AtomProp'.
ALL_FRAMES = []

# A list of ALL balls which are put into the scene
STRUCTURE = []


# This is the class, which stores the properties for one element.
class ElementProp(object):
    __slots__ = ('number', 'name', 'short_name', 'color', 'radii', 'radii_ionic')
    def __init__(self, number, name, short_name, color, radii, radii_ionic):
        self.number = number
        self.name = name
        self.short_name = short_name
        self.color = color
        self.radii = radii
        self.radii_ionic = radii_ionic

# This is the class, which stores the properties of one atom.
class AtomProp(object):
    __slots__ = ('element', 'name', 'location', 'radius', 'color', 'material')
    def __init__(self, element, name, location, radius, color, material):
        self.element = element
        self.name = name
        self.location = location
        self.radius = radius
        self.color = color
        self.material = material


# -----------------------------------------------------------------------------
#                                                           Some basic routines

def read_elements():

    del ELEMENTS[:]

    for item in ELEMENTS_DEFAULT:

        # All three radii into a list
        radii = [item[4],item[5],item[6]]
        # The handling of the ionic radii will be done later. So far, it is an
        # empty list.
        radii_ionic = []

        li = ElementProp(item[0],item[1],item[2],item[3],
                                     radii,radii_ionic)
        ELEMENTS.append(li)


# filepath_pdb: path to pdb file
# radiustype  : '0' default
#               '1' atomic radii
#               '2' van der Waals
def read_xyz_file(filepath_xyz,radiustype):

    number_frames = 0
    total_number_atoms = 0

    # Open the file ...
    filepath_xyz_p = open(filepath_xyz, "r")

    #Go through the whole file.
    FLAG = False
    for line in filepath_xyz_p:

        # ... the loop is broken here (EOF) ...
        if line == "":
            continue

        split_list = line.rsplit()

        if len(split_list) == 1:
            number_atoms = int(split_list[0])
            FLAG = True

        if FLAG == True:

            line = filepath_xyz_p.readline()
            line = line.rstrip()

            all_atoms= []
            for i in range(number_atoms):


                # This is a guarantee that only the total number of atoms of the
                # first frame is used. Condition is, so far, that the number of
                # atoms in a xyz file is constant. However, sometimes the number
                # may increase (or decrease). If it decreases, the addon crashes.
                # If it increases, only the tot number of atoms of the first frame
                # is used.
                # By time, I will allow varying atom numbers ... but this takes
                # some time ...
                if number_frames != 0:
                    if i >= total_number_atoms:
                        break


                line = filepath_xyz_p.readline()
                line = line.rstrip()
                split_list = line.rsplit()
                short_name = str(split_list[0])

                # Go through all elements and find the element of the current atom.
                FLAG_FOUND = False
                for element in ELEMENTS:
                    if str.upper(short_name) == str.upper(element.short_name):
                        # Give the atom its proper name, color and radius:
                        name = element.name
                        # int(radiustype) => type of radius:
                        # pre-defined (0), atomic (1) or van der Waals (2)
                        radius = float(element.radii[int(radiustype)])
                        color = element.color
                        FLAG_FOUND = True
                        break

                # Is it a vacancy or an 'unknown atom' ?
                if FLAG_FOUND == False:
                    # Give this atom also a name. If it is an 'X' then it is a
                    # vacancy. Otherwise ...
                    if "X" in short_name:
                        short_name = "VAC"
                        name = "Vacancy"
                        radius = float(ELEMENTS[-3].radii[int(radiustype)])
                        color = ELEMENTS[-3].color
                    # ... take what is written in the xyz file. These are somewhat
                    # unknown atoms. This should never happen, the element list is
                    # almost complete. However, we do this due to security reasons.
                    else:
                        name = str.upper(short_name)
                        radius = float(ELEMENTS[-2].radii[int(radiustype)])
                        color = ELEMENTS[-2].color

                x = float(split_list[1])
                y = float(split_list[2])
                z = float(split_list[3])

                location = Vector((x,y,z))

                all_atoms.append([short_name, name, location, radius, color])

            # We note here all elements. This needs to be done only once.
            if number_frames == 0:

                # This is a guarantee that only the total number of atoms of the
                # first frame is used. Condition is, so far, that the number of
                # atoms in a xyz file is constant. However, sometimes the number
                # may increase (or decrease). If it decreases, the addon crashes.
                # If it increases, only the tot number of atoms of the first frame
                # is used.
                # By time, I will allow varying atom numbers ... but this takes
                # some time ...
                total_number_atoms = number_atoms


                elements = []
                for atom in all_atoms:
                    FLAG_FOUND = False
                    for element in elements:
                        # If the atom name is already in the list,
                        # FLAG on 'True'.
                        if element == atom[1]:
                            FLAG_FOUND = True
                            break
                    # No name in the current list has been found? => New entry.
                    if FLAG_FOUND == False:
                        # Stored are: Atom label (e.g. 'Na'), the corresponding
                        # atom name (e.g. 'Sodium') and its color.
                        elements.append(atom[1])

            # Sort the atoms: create lists of atoms of one type
            structure = []
            for element in elements:
                atoms_one_type = []
                for atom in all_atoms:
                    if atom[1] == element:
                        atoms_one_type.append(AtomProp(atom[0],
                                                       atom[1],
                                                       atom[2],
                                                       atom[3],
                                                       atom[4],[]))
                structure.append(atoms_one_type)

            ALL_FRAMES.append(structure)
            number_frames += 1
            FLAG = False

    filepath_xyz_p.close()

    return total_number_atoms


# Rotate an object.
def rotate_object(rot_mat, obj):

    bpy.ops.object.select_all(action='DESELECT')
    obj.select_set(True)

    # Decompose world_matrix's components, and from them assemble 4x4 matrices.
    orig_loc, orig_rot, orig_scale = obj.matrix_world.decompose()

    orig_loc_mat   = Matrix.Translation(orig_loc)
    orig_rot_mat   = orig_rot.to_matrix().to_4x4()
    orig_scale_mat = (Matrix.Scale(orig_scale[0],4,(1,0,0)) @
                      Matrix.Scale(orig_scale[1],4,(0,1,0)) @
                      Matrix.Scale(orig_scale[2],4,(0,0,1)))

    # Assemble the new matrix.
    obj.matrix_world = orig_loc_mat @ rot_mat @ orig_rot_mat @ orig_scale_mat


# Function, which puts a camera and light source into the 3D scene
def camera_light_source(use_camera,
                        use_light,
                        object_center_vec,
                        object_size):

    camera_factor = 15.0

    # If chosen a camera is put into the scene.
    if use_camera == True:

        # Assume that the object is put into the global origin. Then, the
        # camera is moved in x and z direction, not in y. The object has its
        # size at distance sqrt(object_size) from the origin. So, move the
        # camera by this distance times a factor of camera_factor in x and z.
        # Then add x, y and z of the origin of the object.
        object_camera_vec = Vector((sqrt(object_size) * camera_factor,
                                    0.0,
                                    sqrt(object_size) * camera_factor))
        camera_xyz_vec = object_center_vec + object_camera_vec

        # Create the camera
        camera_data = bpy.data.cameras.new("A_camera")
        camera_data.lens = 45
        camera_data.clip_end = 500.0
        camera = bpy.data.objects.new("A_camera", camera_data)
        camera.location = camera_xyz_vec
        bpy.context.collection.objects.link(camera)

        # Here the camera is rotated such it looks towards the center of
        # the object. The [0.0, 0.0, 1.0] vector along the z axis
        z_axis_vec             = Vector((0.0, 0.0, 1.0))
        # The angle between the last two vectors
        angle                  = object_camera_vec.angle(z_axis_vec, 0)
        # The cross-product of z_axis_vec and object_camera_vec
        axis_vec               = z_axis_vec.cross(object_camera_vec)
        # Rotate 'axis_vec' by 'angle' and convert this to euler parameters.
        # 4 is the size of the matrix.
        camera.rotation_euler  = Matrix.Rotation(angle, 4, axis_vec).to_euler()

        # Rotate the camera around its axis by 90° such that we have a nice
        # camera position and view onto the object.
        bpy.ops.object.select_all(action='DESELECT')
        camera.select_set(True)

        # Rotate the camera around its axis 'object_camera_vec' by 90° such
        # that we have a nice camera view onto the object.
        matrix_rotation = Matrix.Rotation(90/360*2*pi, 4, object_camera_vec)
        rotate_object(matrix_rotation, camera)

    # Here a lamp is put into the scene, if chosen.
    if use_light == True:

        # This is the distance from the object measured in terms of %
        # of the camera distance. It is set onto 50% (1/2) distance.
        lamp_dl = sqrt(object_size) * 15 * 0.5
        # This is a factor to which extend the lamp shall go to the right
        # (from the camera  point of view).
        lamp_dy_right = lamp_dl * (3.0/4.0)

        # Create x, y and z for the lamp.
        object_lamp_vec = Vector((lamp_dl,lamp_dy_right,lamp_dl))
        lamp_xyz_vec = object_center_vec + object_lamp_vec
        length = lamp_xyz_vec.length

        # As a lamp we use a point source.
        lamp_data = bpy.data.lights.new(name="A_lamp", type="POINT")
        # We now determine the emission strength of the lamp. Note that the
        # intensity depends on 1/r^2. For this we use a value of 100000.0 at a
        # distance of 58. This value was determined manually inside Blender.
        lamp_data.energy = 500000.0 * ( (length * length) / (58.0 * 58.0) )
        lamp = bpy.data.objects.new("A_lamp", lamp_data)
        lamp.location = lamp_xyz_vec
        bpy.context.collection.objects.link(lamp)

        # Some settings for the World: a bit ambient occlusion
        bpy.context.scene.world.light_settings.use_ambient_occlusion = True
        bpy.context.scene.world.light_settings.ao_factor = 0.1

# -----------------------------------------------------------------------------
#                                                            The main routine

def import_xyz(Ball_type,
               Ball_azimuth,
               Ball_zenith,
               Ball_radius_factor,
               radiustype,
               Ball_distance_factor,
               put_to_center,
               put_to_center_all,
               use_camera,
               use_light,
               filepath_xyz):

    # List of materials
    atom_material_list = []

    # ------------------------------------------------------------------------
    # INITIALIZE THE ELEMENT LIST

    read_elements()

    # ------------------------------------------------------------------------
    # READING DATA OF ATOMS

    Number_of_total_atoms = read_xyz_file(filepath_xyz, radiustype)

    # We show the atoms of the first frame.
    first_frame = ALL_FRAMES[0]

    # ------------------------------------------------------------------------
    # MATERIAL PROPERTIES FOR ATOMS

    # Create first a new list of materials for each type of atom
    # (e.g. hydrogen)
    for atoms_of_one_type in first_frame:
        # Take the first atom
        atom = atoms_of_one_type[0]
        material = bpy.data.materials.new(atom.name)
        material.use_nodes = True
        mat_P_BSDF = material.node_tree.nodes['Principled BSDF']
        mat_P_BSDF.inputs['Base Color'].default_value = atom.color
        material.name = atom.name
        atom_material_list.append(material)

    # Now, we go through all atoms and give them a material. For all atoms ...
    for atoms_of_one_type in first_frame:
        for atom in atoms_of_one_type:
            # ... and all materials ...
            for material in atom_material_list:
                # ... select the correct material for the current atom via
                # comparison of names ...
                if atom.name in material.name:
                    # ... and give the atom its material properties.
                    # However, before we check if it is a vacancy
                    # The vacancy is represented by a transparent cube.
                    if atom.name == "Vacancy":
                        # For cycles and eevee.
                        material.use_nodes = True
                        mat_P_BSDF = material.node_tree.nodes['Principled BSDF']
                        mat_P_BSDF.inputs['Metallic'].default_value = 0.1
                        mat_P_BSDF.inputs['Specular'].default_value = 0.15
                        mat_P_BSDF.inputs['Roughness'].default_value = 0.05
                        mat_P_BSDF.inputs['Clearcoat Roughness'].default_value = 0.37
                        mat_P_BSDF.inputs['IOR'].default_value = 0.8
                        mat_P_BSDF.inputs['Transmission'].default_value = 0.6
                        mat_P_BSDF.inputs['Transmission Roughness'].default_value = 0.0
                        mat_P_BSDF.inputs['Alpha'].default_value = 0.5
                        # Some additional stuff for eevee.
                        material.blend_method = 'HASHED'
                        material.shadow_method = 'HASHED'
                        material.use_backface_culling = False
                    # The atom gets its properties.
                    atom.material = material

    # ------------------------------------------------------------------------
    # TRANSLATION OF THE STRUCTURE TO THE ORIGIN

    # It may happen that the structure in a XYZ file already has an offset


    # If chosen, the structure is put into the center of the scene
    # (only the first frame).
    if put_to_center == True and put_to_center_all == False:

        sum_vec = Vector((0.0,0.0,0.0))

        # Sum of all atom coordinates
        for atoms_of_one_type in first_frame:
            sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)

        # Then the average is taken
        sum_vec = sum_vec / Number_of_total_atoms

        # After, for each atom the center of gravity is substracted
        for atoms_of_one_type in first_frame:
            for atom in atoms_of_one_type:
                atom.location -= sum_vec

    # If chosen, the structure is put into the center of the scene
    # (all frames).
    if put_to_center_all == True:

        # For all frames
        for frame in ALL_FRAMES:

            sum_vec = Vector((0.0,0.0,0.0))

            # Sum of all atom coordinates
            for (i, atoms_of_one_type) in enumerate(frame):

                # This is a guarantee that only the total number of atoms of the
                # first frame is used. Condition is, so far, that the number of
                # atoms in a xyz file is constant. However, sometimes the number
                # may increase (or decrease). If it decreases, the addon crashes.
                # If it increases, only the tot number of atoms of the first frame
                # is used.
                # By time, I will allow varying atom numbers ... but this takes
                # some time ...
                if i >= Number_of_total_atoms:
                    break

                sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)

            # Then the average is taken
            sum_vec = sum_vec / Number_of_total_atoms

            # After, for each atom the center of gravity is substracted
            for atoms_of_one_type in frame:
                for atom in atoms_of_one_type:
                    atom.location -= sum_vec


    # ------------------------------------------------------------------------
    # SCALING

    # Take all atoms and adjust their radii and scale the distances.
    for atoms_of_one_type in first_frame:
        for atom in atoms_of_one_type:
            atom.location *= Ball_distance_factor

    # ------------------------------------------------------------------------
    # DETERMINATION OF SOME GEOMETRIC PROPERTIES

    # In the following, some geometric properties of the whole object are
    # determined: center, size, etc.
    sum_vec = Vector((0.0,0.0,0.0))

    # First the center is determined. All coordinates are summed up ...
    for atoms_of_one_type in first_frame:
        sum_vec = sum([atom.location for atom in atoms_of_one_type], sum_vec)

    # ... and the average is taken. This gives the center of the object.
    object_center_vec = sum_vec / Number_of_total_atoms

    # Now, we determine the size.The farthest atom from the object center is
    # taken as a measure. The size is used to place well the camera and light
    # into the scene.

    object_size_vec = []
    for atoms_of_one_type in first_frame:
        object_size_vec += [atom.location - object_center_vec for atom in atoms_of_one_type]

    object_size = 0.0
    object_size = max(object_size_vec).length

    # ------------------------------------------------------------------------
    # COLLECTION

    # Before we start to draw the atoms, we first create a collection for the
    # atomic structure. All atoms (balls) are put into this collection.
    coll_structure_name = os.path.basename(filepath_xyz)
    scene = bpy.context.scene
    coll_structure = bpy.data.collections.new(coll_structure_name)
    scene.collection.children.link(coll_structure)

    # ------------------------------------------------------------------------
    # DRAWING THE ATOMS

    bpy.ops.object.select_all(action='DESELECT')

    # For each list of atoms of ONE type (e.g. Hydrogen)
    for atoms_of_one_type in first_frame:

        # Create first the vertices composed of the coordinates of all
        # atoms of one type
        atom_vertices = []
        for atom in atoms_of_one_type:
            # In fact, the object is created in the World's origin.
            # This is why 'object_center_vec' is substracted. At the end
            # the whole object is translated back to 'object_center_vec'.
            atom_vertices.append( atom.location - object_center_vec )

        # First, we create a collection of the element, which
        # contains the atoms (balls + mesh)!
        coll_element_name = atom.name # the element name
        # Create the new collection and ...
        coll_element = bpy.data.collections.new(coll_element_name)
        # ... link it to the collection, which contains all parts of the
        # structure.
        coll_structure.children.link(coll_element)

        # Now, create a collection for the atoms, which includes the
        # representative ball and the mesh.
        coll_atom_name = atom.name + "_atom"
        # Create the new collection and ...
        coll_atom = bpy.data.collections.new(coll_atom_name)
        # ... link it to the collection, which contains all parts of the
        # element (ball and mesh).
        coll_element.children.link(coll_atom)

        # Build the mesh
        atom_mesh = bpy.data.meshes.new("Mesh_"+atom.name)
        atom_mesh.from_pydata(atom_vertices, [], [])
        atom_mesh.update()
        new_atom_mesh = bpy.data.objects.new(atom.name + "_mesh", atom_mesh)

        # Link active object to the new collection
        coll_atom.objects.link(new_atom_mesh)

        # Now, build a representative sphere (atom)
        if atom.name == "Vacancy":
            bpy.ops.mesh.primitive_cube_add(
                            align='WORLD', enter_editmode=False,
                            location=(0.0, 0.0, 0.0),
                            rotation=(0.0, 0.0, 0.0))
        else:
            # NURBS balls
            if Ball_type == "0":
                bpy.ops.surface.primitive_nurbs_surface_sphere_add(
                            align='WORLD', enter_editmode=False,
                            location=(0,0,0), rotation=(0.0, 0.0, 0.0))
            # UV balls
            elif Ball_type == "1":
                bpy.ops.mesh.primitive_uv_sphere_add(
                            segments=Ball_azimuth, ring_count=Ball_zenith,
                            align='WORLD', enter_editmode=False,
                            location=(0,0,0), rotation=(0, 0, 0))
            # Meta balls
            elif Ball_type == "2":
                bpy.ops.object.metaball_add(type='BALL', align='WORLD',
                            enter_editmode=False, location=(0, 0, 0),
                            rotation=(0, 0, 0))

        ball = bpy.context.view_layer.objects.active
        # Hide this ball because its appearance has no meaning. It is just the
        # representative ball. The ball is visible at the vertices of the mesh.
        # Rememmber, this is a dupliverts construct!
        # However, hiding does not work with meta balls!
        if Ball_type == "0" or Ball_type == "1":
            ball.hide_set(True)
        # Scale up/down the ball radius.
        ball.scale  = (atom.radius*Ball_radius_factor,) * 3

        if atom.name == "Vacancy":
            ball.name = atom.name + "_cube"
        else:
            ball.name = atom.name + "_ball"
        ball.active_material = atom.material
        ball.parent = new_atom_mesh
        new_atom_mesh.instance_type = 'VERTS'
        # The object is back translated to 'object_center_vec'.
        new_atom_mesh.location = object_center_vec
        STRUCTURE.append(new_atom_mesh)

        # Note the collection where the ball was placed into.
        coll_all = ball.users_collection
        if len(coll_all) > 0:
            coll_past = coll_all[0]
        else:
            coll_past = bpy.context.scene.collection

        # Put the atom into the new collection 'atom' and ...
        coll_atom.objects.link(ball)
        # ... unlink the atom from the other collection.
        coll_past.objects.unlink(ball)

    # ------------------------------------------------------------------------
    # CAMERA and LIGHT SOURCES

    camera_light_source(use_camera,
                        use_light,
                        object_center_vec,
                        object_size)

    # ------------------------------------------------------------------------
    # SELECT ALL LOADED OBJECTS

    bpy.ops.object.select_all(action='DESELECT')
    obj = None
    for obj in STRUCTURE:
        obj.select_set(True)
    # activate the last selected object (perhaps another should be active?)
    if obj:
        bpy.context.view_layer.objects.active = obj



def build_frames(frame_delta, frame_skip):

    scn = bpy.context.scene

    # Introduce the basis for all elements that appear in the structure.
    for element in STRUCTURE:

        bpy.ops.object.select_all(action='DESELECT')
        bpy.context.view_layer.objects.active = element
        element.select_set(True)
        bpy.ops.object.shape_key_add(True)

    frame_skip += 1

    # Introduce the keys and reference the atom positions for each key.
    i = 0
    for j, frame in enumerate(ALL_FRAMES):

        if j % frame_skip == 0:

            for elements_frame, elements_structure in zip(frame,STRUCTURE):

                key = elements_structure.shape_key_add()

                for atom_frame, atom_structure in zip(elements_frame, key.data):

                    atom_structure.co = (atom_frame.location
                                       - elements_structure.location)

                key.name = atom_frame.name + "_frame_" + str(i)

            i += 1

    num_frames = i

    scn.frame_start = 0
    scn.frame_end = frame_delta * num_frames

    # Manage the values of the keys
    for element in STRUCTURE:

        scn.frame_current = 0

        element.data.shape_keys.key_blocks[1].value = 1.0
        element.data.shape_keys.key_blocks[2].value = 0.0
        element.data.shape_keys.key_blocks[1].keyframe_insert("value")
        element.data.shape_keys.key_blocks[2].keyframe_insert("value")

        scn.frame_current += frame_delta

        number = 0

        for number in range(num_frames)[2:]:#-1]:

            element.data.shape_keys.key_blocks[number-1].value = 0.0
            element.data.shape_keys.key_blocks[number].value = 1.0
            element.data.shape_keys.key_blocks[number+1].value = 0.0
            element.data.shape_keys.key_blocks[number-1].keyframe_insert("value")
            element.data.shape_keys.key_blocks[number].keyframe_insert("value")
            element.data.shape_keys.key_blocks[number+1].keyframe_insert("value")

            scn.frame_current += frame_delta

        number += 1

        element.data.shape_keys.key_blocks[number].value = 1.0
        element.data.shape_keys.key_blocks[number-1].value = 0.0
        element.data.shape_keys.key_blocks[number].keyframe_insert("value")
        element.data.shape_keys.key_blocks[number-1].keyframe_insert("value")