Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_bsurfaces.py - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a6a6d52f64c7708718c427172f108f9030d951fb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; version 2
#  of the License.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####


bl_info = {
    "name": "Bsurfaces GPL Edition",
    "author": "Eclectiel",
    "version": (1, 5),
    "blender": (2, 76, 0),
    "location": "View3D > EditMode > ToolShelf",
    "description": "Modeling and retopology tool.",
    "wiki_url": "http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.64/Bsurfaces_1.5",
    "category": "Mesh",
}


import bpy
import bmesh
import math
import mathutils
import operator

from math import *




class VIEW3D_PT_tools_SURFSK_mesh(bpy.types.Panel):
    bl_space_type = 'VIEW_3D'
    bl_region_type = 'TOOLS'
    bl_category = 'Tools'
    bl_context = "mesh_edit"
    bl_label = "Bsurfaces"

    @classmethod
    def poll(cls, context):
        return context.active_object


    def draw(self, context):
        layout = self.layout

        scn = context.scene
        ob = context.object

        col = layout.column(align=True)
        row = layout.row()
        row.separator()
        col.operator("gpencil.surfsk_add_surface", text="Add Surface")
        col.operator("gpencil.surfsk_edit_strokes", text="Edit Strokes")
        col.prop(scn, "SURFSK_cyclic_cross")
        col.prop(scn, "SURFSK_cyclic_follow")
        col.prop(scn, "SURFSK_loops_on_strokes")
        col.prop(scn, "SURFSK_automatic_join")
        col.prop(scn, "SURFSK_keep_strokes")



class VIEW3D_PT_tools_SURFSK_curve(bpy.types.Panel):
    bl_space_type = 'VIEW_3D'
    bl_region_type = 'TOOLS'
    bl_context = "curve_edit"
    bl_category = 'Tools'
    bl_label = "Bsurfaces"

    @classmethod
    def poll(cls, context):
        return context.active_object


    def draw(self, context):
        layout = self.layout

        scn = context.scene
        ob = context.object

        col = layout.column(align=True)
        row = layout.row()
        row.separator()
        col.operator("curve.surfsk_first_points", text="Set First Points")
        col.operator("curve.switch_direction", text="Switch Direction")
        col.operator("curve.surfsk_reorder_splines", text="Reorder Splines")




#### Returns the type of strokes used.
def get_strokes_type(main_object):
    strokes_type = ""
    strokes_num = 0

    # Check if they are grease pencil
    try:
        #### Get the active grease pencil layer.
        strokes_num = len(main_object.grease_pencil.layers.active.active_frame.strokes)

        if strokes_num > 0:
            strokes_type = "GP_STROKES"
    except:
        pass


    # Check if they are curves, if there aren't grease pencil strokes.
    if strokes_type == "":
        if len(bpy.context.selected_objects) == 2:
            for ob in bpy.context.selected_objects:
                if ob != bpy.context.scene.objects.active and ob.type == "CURVE":
                    strokes_type = "EXTERNAL_CURVE"
                    strokes_num = len(ob.data.splines)

                    # Check if there is any non-bezier spline.
                    for i in range(len(ob.data.splines)):
                        if ob.data.splines[i].type != "BEZIER":
                            strokes_type = "CURVE_WITH_NON_BEZIER_SPLINES"
                            break

                elif ob != bpy.context.scene.objects.active and ob.type != "CURVE":
                    strokes_type = "EXTERNAL_NO_CURVE"
        elif len(bpy.context.selected_objects) > 2:
            strokes_type = "MORE_THAN_ONE_EXTERNAL"


    # Check if there is a single stroke without any selection in the object.
    if strokes_num == 1 and main_object.data.total_vert_sel == 0:
        if strokes_type == "EXTERNAL_CURVE":
            strokes_type = "SINGLE_CURVE_STROKE_NO_SELECTION"
        elif strokes_type == "GP_STROKES":
            strokes_type = "SINGLE_GP_STROKE_NO_SELECTION"

    if strokes_num == 0 and main_object.data.total_vert_sel > 0:
        strokes_type = "SELECTION_ALONE"


    if strokes_type == "":
        strokes_type = "NO_STROKES"



    return strokes_type




# Surface generator operator.
class GPENCIL_OT_SURFSK_add_surface(bpy.types.Operator):
    bl_idname = "gpencil.surfsk_add_surface"
    bl_label = "Bsurfaces add surface"
    bl_description = "Generates surfaces from grease pencil strokes, bezier curves or loose edges"
    bl_options = {'REGISTER', 'UNDO'}


    edges_U = bpy.props.IntProperty(name = "Cross",
                        description = "Number of face-loops crossing the strokes",
                        default = 1,
                        min = 1,
                        max = 200)

    edges_V = bpy.props.IntProperty(name = "Follow",
                        description = "Number of face-loops following the strokes",
                        default = 1,
                        min = 1,
                        max = 200)

    cyclic_cross = bpy.props.BoolProperty(name = "Cyclic Cross",
                        description = "Make cyclic the face-loops crossing the strokes",
                        default = False)

    cyclic_follow = bpy.props.BoolProperty(name = "Cyclic Follow",
                        description = "Make cyclic the face-loops following the strokes",
                        default = False)

    loops_on_strokes = bpy.props.BoolProperty(name = "Loops on strokes",
                        description = "Make the loops match the paths of the strokes",
                        default = False)

    automatic_join = bpy.props.BoolProperty(name = "Automatic join",
                        description = "Join automatically vertices of either surfaces generated by crosshatching, or from the borders of closed shapes",
                        default = False)

    join_stretch_factor = bpy.props.FloatProperty(name = "Stretch",
                        description = "Amount of stretching or shrinking allowed for edges when joining vertices automatically",
                        default = 1,
                        min = 0,
                        max = 3,
                        subtype = 'FACTOR')




    def draw(self, context):
        layout = self.layout

        scn = context.scene
        ob = context.object

        col = layout.column(align=True)
        row = layout.row()

        if not self.is_fill_faces:
            row.separator()
            if not self.is_crosshatch:
                if not self.selection_U_exists:
                    col.prop(self, "edges_U")
                    row.separator()

                if not self.selection_V_exists:
                    col.prop(self, "edges_V")
                    row.separator()

                row.separator()

                if not self.selection_U_exists:
                    if not ((self.selection_V_exists and not self.selection_V_is_closed) or (self.selection_V2_exists and not self.selection_V2_is_closed)):
                        col.prop(self, "cyclic_cross")

                if not self.selection_V_exists:
                    if not ((self.selection_U_exists and not self.selection_U_is_closed) or (self.selection_U2_exists and not self.selection_U2_is_closed)):
                        col.prop(self, "cyclic_follow")


                col.prop(self, "loops_on_strokes")

            col.prop(self, "automatic_join")

            if self.automatic_join:
                row.separator()
                col.separator()
                row.separator()
                col.prop(self, "join_stretch_factor")



    #### Get an ordered list of a chain of vertices.
    def get_ordered_verts(self, ob, all_selected_edges_idx, all_selected_verts_idx, first_vert_idx, middle_vertex_idx, closing_vert_idx):
        # Order selected vertices.
        verts_ordered = []
        if closing_vert_idx != None:
            verts_ordered.append(ob.data.vertices[closing_vert_idx])

        verts_ordered.append(ob.data.vertices[first_vert_idx])
        prev_v = first_vert_idx
        prev_ed = None
        finish_while = False
        while True:
            edges_non_matched = 0
            for i in all_selected_edges_idx:
                if ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[0] == prev_v and ob.data.edges[i].vertices[1] in all_selected_verts_idx:
                    verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[1]])
                    prev_v = ob.data.edges[i].vertices[1]
                    prev_ed = ob.data.edges[i]
                elif ob.data.edges[i] != prev_ed and ob.data.edges[i].vertices[1] == prev_v and ob.data.edges[i].vertices[0] in all_selected_verts_idx:
                    verts_ordered.append(ob.data.vertices[ob.data.edges[i].vertices[0]])
                    prev_v = ob.data.edges[i].vertices[0]
                    prev_ed = ob.data.edges[i]
                else:
                    edges_non_matched += 1

                    if edges_non_matched == len(all_selected_edges_idx):
                        finish_while = True

            if finish_while:
                break

        if closing_vert_idx != None:
            verts_ordered.append(ob.data.vertices[closing_vert_idx])

        if middle_vertex_idx != None:
            verts_ordered.append(ob.data.vertices[middle_vertex_idx])
            verts_ordered.reverse()

        return tuple(verts_ordered)


    #### Calculates length of a chain of points.
    def get_chain_length(self, object, verts_ordered):
        matrix = object.matrix_world

        edges_lengths = []
        edges_lengths_sum = 0
        for i in range(0, len(verts_ordered)):
            if i == 0:
                prev_v_co = matrix * verts_ordered[i].co
            else:
                v_co = matrix * verts_ordered[i].co

                v_difs = [prev_v_co[0] - v_co[0], prev_v_co[1] - v_co[1], prev_v_co[2] - v_co[2]]
                edge_length = abs(sqrt(v_difs[0] * v_difs[0] + v_difs[1] * v_difs[1] + v_difs[2] * v_difs[2]))

                edges_lengths.append(edge_length)
                edges_lengths_sum += edge_length

                prev_v_co = v_co

        return edges_lengths, edges_lengths_sum


    #### Calculates the proportion of the edges of a chain of edges, relative to the full chain length.
    def get_edges_proportions(self, edges_lengths, edges_lengths_sum, use_boundaries, fixed_edges_num):
        edges_proportions = []
        if use_boundaries:
            verts_count = 1
            for l in edges_lengths:
                edges_proportions.append(l / edges_lengths_sum)
                verts_count += 1
        else:
            verts_count = 1
            for n in range(0, fixed_edges_num):
                edges_proportions.append(1 / fixed_edges_num)
                verts_count += 1

        return edges_proportions


    #### Calculates the angle between two pairs of points in space.
    def orientation_difference(self, points_A_co, points_B_co): # each parameter should be a list with two elements, and each element should be a x,y,z coordinate.
        vec_A = points_A_co[0] - points_A_co[1]
        vec_B = points_B_co[0] - points_B_co[1]

        angle = vec_A.angle(vec_B)

        if angle > 0.5 * math.pi:
            angle = abs(angle - math.pi)

        return angle



    #### Calculate the which vert of verts_idx list is the nearest one to the point_co coordinates, and the distance.
    def shortest_distance(self, object, point_co, verts_idx):
        matrix = object.matrix_world

        for i in range(0, len(verts_idx)):
            dist = (point_co - matrix * object.data.vertices[verts_idx[i]].co).length
            if i == 0:
                prev_dist = dist
                nearest_vert_idx = verts_idx[i]
                shortest_dist = dist

            if dist < prev_dist:
                prev_dist = dist
                nearest_vert_idx = verts_idx[i]
                shortest_dist = dist

        return nearest_vert_idx, shortest_dist


    #### Returns the index of the opposite vert tip in a chain, given a vert tip index as parameter, and a multidimentional list with all pairs of tips.
    def opposite_tip(self, vert_tip_idx, all_chains_tips_idx):
        opposite_vert_tip_idx = None
        for i in range(0, len(all_chains_tips_idx)):
            if vert_tip_idx == all_chains_tips_idx[i][0]:
                opposite_vert_tip_idx = all_chains_tips_idx[i][1]
            if vert_tip_idx == all_chains_tips_idx[i][1]:
                opposite_vert_tip_idx = all_chains_tips_idx[i][0]

        return opposite_vert_tip_idx



    #### Simplifies a spline and returns the new points coordinates.
    def simplify_spline(self, spline_coords, segments_num):
        simplified_spline = []
        points_between_segments = round(len(spline_coords) / segments_num)

        simplified_spline.append(spline_coords[0])
        for i in range(1, segments_num):
            simplified_spline.append(spline_coords[i * points_between_segments])

        simplified_spline.append(spline_coords[len(spline_coords) - 1])

        return simplified_spline



    #### Cleans up the scene and gets it the same it was at the beginning, in case the script is interrupted in the middle of the execution.
    def cleanup_on_interruption(self):
        # If the original strokes curve comes from conversion from grease pencil and wasn't made by hand, delete it.
        if not self.using_external_curves:
            try:
                bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
                bpy.data.objects[self.original_curve.name].select = True
                bpy.context.scene.objects.active = bpy.data.objects[self.original_curve.name]

                bpy.ops.object.delete()
            except:
                pass

            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.main_object.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]
        else:
            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.original_curve.name].select = True
            bpy.data.objects[self.main_object.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]

        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



    #### Returns a list with the coords of the points distributed over the splines passed to this method according to the proportions parameter.
    def distribute_pts(self, surface_splines, proportions):
        # Calculate the length of each final surface spline.
        surface_splines_lengths = []
        surface_splines_parsed = []
        for sp_idx in range(0, len(surface_splines)):
            # Calculate spline length
            surface_splines_lengths.append(0)
            for i in range(0, len(surface_splines[sp_idx].bezier_points)):
                if i == 0:
                    prev_p = surface_splines[sp_idx].bezier_points[i]
                else:
                    p = surface_splines[sp_idx].bezier_points[i]

                    edge_length = (prev_p.co - p.co).length

                    surface_splines_lengths[sp_idx] += edge_length

                    prev_p = p


        # Calculate vertex positions with appropriate edge proportions, and ordered, for each spline.
        for sp_idx in range(0, len(surface_splines)):
            surface_splines_parsed.append([])
            surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[0].co)

            prev_p_co = surface_splines[sp_idx].bezier_points[0].co
            p_idx = 0
            for prop_idx in range(len(proportions) - 1):
                target_length = surface_splines_lengths[sp_idx] * proportions[prop_idx]

                partial_segment_length = 0


                finish_while = False
                while True:
                    p_co = surface_splines[sp_idx].bezier_points[p_idx].co

                    new_dist = (prev_p_co - p_co).length

                    potential_segment_length = partial_segment_length + new_dist # The new distance that could have the partial segment if it is still shorter than the target length.


                    if potential_segment_length < target_length: # If the potential is still shorter, keep adding.
                        partial_segment_length = potential_segment_length

                        p_idx += 1
                        prev_p_co = p_co

                    elif potential_segment_length > target_length: # If the potential is longer than the target, calculate the target (a point between the last two points), and assign.
                        remaining_dist = target_length - partial_segment_length
                        vec = p_co - prev_p_co
                        vec.normalize()
                        intermediate_co = prev_p_co + (vec * remaining_dist)

                        surface_splines_parsed[sp_idx].append(intermediate_co)

                        partial_segment_length += remaining_dist
                        prev_p_co = intermediate_co

                        finish_while = True

                    elif potential_segment_length == target_length: # If the potential is equal to the target, assign.
                        surface_splines_parsed[sp_idx].append(p_co)

                        prev_p_co = p_co

                        finish_while = True

                    if finish_while:
                        break

            # last point of the spline
            surface_splines_parsed[sp_idx].append(surface_splines[sp_idx].bezier_points[len(surface_splines[sp_idx].bezier_points) - 1].co)


        return surface_splines_parsed



    #### Counts the number of faces that belong to each edge.
    def edge_face_count(self, ob):
        ed_keys_count_dict = {}

        for face in ob.data.polygons:
            for ed_keys in face.edge_keys:
                if not ed_keys in ed_keys_count_dict:
                    ed_keys_count_dict[ed_keys] = 1
                else:
                    ed_keys_count_dict[ed_keys] += 1


        edge_face_count = []
        for i in range(len(ob.data.edges)):
            edge_face_count.append(0)

        for i in range(len(ob.data.edges)):
            ed = ob.data.edges[i]

            v1 = ed.vertices[0]
            v2 = ed.vertices[1]

            if (v1, v2) in ed_keys_count_dict:
                edge_face_count[i] = ed_keys_count_dict[(v1, v2)]
            elif (v2, v1) in ed_keys_count_dict:
                edge_face_count[i] = ed_keys_count_dict[(v2, v1)]


        return edge_face_count



    #### Fills with faces all the selected vertices which form empty triangles or quads.
    def fill_with_faces(self, object):
        all_selected_verts_count = self.main_object_selected_verts_count


        bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')

        #### Calculate average length of selected edges.
        all_selected_verts = []
        original_sel_edges_count = 0
        for ed in object.data.edges:
            if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
                coords = []
                coords.append(object.data.vertices[ed.vertices[0]].co)
                coords.append(object.data.vertices[ed.vertices[1]].co)

                original_sel_edges_count += 1

                if not ed.vertices[0] in all_selected_verts:
                    all_selected_verts.append(ed.vertices[0])

                if not ed.vertices[1] in all_selected_verts:
                    all_selected_verts.append(ed.vertices[1])


        tuple(all_selected_verts)


        #### Check if there is any edge selected. If not, interrupt the script.
        if original_sel_edges_count == 0 and all_selected_verts_count > 0:
            return 0



        #### Get all edges connected to selected verts.
        all_edges_around_sel_verts = []
        edges_connected_to_sel_verts = {}
        verts_connected_to_every_vert = {}
        for ed_idx in range(len(object.data.edges)):
            ed = object.data.edges[ed_idx]
            include_edge = False

            if ed.vertices[0] in all_selected_verts:
                if not ed.vertices[0] in edges_connected_to_sel_verts:
                    edges_connected_to_sel_verts[ed.vertices[0]] = []

                edges_connected_to_sel_verts[ed.vertices[0]].append(ed_idx)
                include_edge = True

            if ed.vertices[1] in all_selected_verts:
                if not ed.vertices[1] in edges_connected_to_sel_verts:
                    edges_connected_to_sel_verts[ed.vertices[1]] = []

                edges_connected_to_sel_verts[ed.vertices[1]].append(ed_idx)
                include_edge = True


            if include_edge == True:
                all_edges_around_sel_verts.append(ed_idx)


            # Get all connected verts to each vert.
            if not ed.vertices[0] in verts_connected_to_every_vert:
                verts_connected_to_every_vert[ed.vertices[0]] = []

            if not ed.vertices[1] in verts_connected_to_every_vert:
                verts_connected_to_every_vert[ed.vertices[1]] = []

            verts_connected_to_every_vert[ed.vertices[0]].append(ed.vertices[1])
            verts_connected_to_every_vert[ed.vertices[1]].append(ed.vertices[0])




        #### Get all verts connected to faces.
        all_verts_part_of_faces = []
        all_edges_faces_count = []
        all_edges_faces_count += self.edge_face_count(object)

        # Get only the selected edges that have faces attached.
        count_faces_of_edges_around_sel_verts = {}
        selected_verts_with_faces = []
        for ed_idx in all_edges_around_sel_verts:
            count_faces_of_edges_around_sel_verts[ed_idx] = all_edges_faces_count[ed_idx]

            if all_edges_faces_count[ed_idx] > 0:
                ed = object.data.edges[ed_idx]

                if not ed.vertices[0] in selected_verts_with_faces:
                    selected_verts_with_faces.append(ed.vertices[0])

                if not ed.vertices[1] in selected_verts_with_faces:
                    selected_verts_with_faces.append(ed.vertices[1])

                all_verts_part_of_faces.append(ed.vertices[0])
                all_verts_part_of_faces.append(ed.vertices[1])

        tuple(selected_verts_with_faces)



        #### Discard unneeded verts from calculations.
        participating_verts = []
        movable_verts = []
        for v_idx in all_selected_verts:
            vert_has_edges_with_one_face = False

            for ed_idx in edges_connected_to_sel_verts[v_idx]: # Check if the actual vert has at least one edge connected to only one face.
                if count_faces_of_edges_around_sel_verts[ed_idx] == 1:
                    vert_has_edges_with_one_face = True

            # If the vert has two or less edges connected and the vert is not part of any face. Or the vert is part of any face and at least one of the connected edges has only one face attached to it.
            if (len(edges_connected_to_sel_verts[v_idx]) == 2 and not v_idx in all_verts_part_of_faces) or len(edges_connected_to_sel_verts[v_idx]) == 1 or (v_idx in all_verts_part_of_faces and vert_has_edges_with_one_face):
                participating_verts.append(v_idx)

                if not v_idx in all_verts_part_of_faces:
                    movable_verts.append(v_idx)



        #### Remove from movable verts list those that are part of closed geometry (ie: triangles, quads)
        for mv_idx in movable_verts:
            freeze_vert = False
            mv_connected_verts = verts_connected_to_every_vert[mv_idx]

            for actual_v_idx in all_selected_verts:
                count_shared_neighbors = 0
                checked_verts = []

                for mv_conn_v_idx in mv_connected_verts:
                    if mv_idx != actual_v_idx:
                        if mv_conn_v_idx in verts_connected_to_every_vert[actual_v_idx] and not mv_conn_v_idx in checked_verts:
                            count_shared_neighbors += 1
                            checked_verts.append(mv_conn_v_idx)


                            if actual_v_idx in mv_connected_verts:
                                freeze_vert = True
                                break

                        if count_shared_neighbors == 2:
                            freeze_vert = True
                            break

                if freeze_vert:
                    break

            if freeze_vert:
                movable_verts.remove(mv_idx)



        #### Calculate merge distance for participating verts.
        shortest_edge_length = None
        for ed in object.data.edges:
            if ed.vertices[0] in movable_verts and ed.vertices[1] in movable_verts:
                v1 = object.data.vertices[ed.vertices[0]]
                v2 = object.data.vertices[ed.vertices[1]]

                length = (v1.co - v2.co).length

                if shortest_edge_length == None:
                    shortest_edge_length = length
                else:
                    if length < shortest_edge_length:
                        shortest_edge_length = length

        if shortest_edge_length != None:
            edges_merge_distance = shortest_edge_length * 0.5
        else:
            edges_merge_distance = 0




        #### Get together the verts near enough. They will be merged later.
        remaining_verts = []
        remaining_verts += participating_verts
        for v1_idx in participating_verts:
            if v1_idx in remaining_verts and v1_idx in movable_verts:
                verts_to_merge = []
                coords_verts_to_merge = {}

                verts_to_merge.append(v1_idx)

                v1_co = object.data.vertices[v1_idx].co
                coords_verts_to_merge[v1_idx] = (v1_co[0], v1_co[1], v1_co[2])


                for v2_idx in remaining_verts:
                    if v1_idx != v2_idx:
                        v2_co = object.data.vertices[v2_idx].co

                        dist = (v1_co - v2_co).length

                        if dist <= edges_merge_distance: # Add the verts which are near enough.
                            verts_to_merge.append(v2_idx)

                            coords_verts_to_merge[v2_idx] = (v2_co[0], v2_co[1], v2_co[2])


                for vm_idx in verts_to_merge:
                    remaining_verts.remove(vm_idx)


                if len(verts_to_merge) > 1:
                    # Calculate middle point of the verts to merge.
                    sum_x_co = 0
                    sum_y_co = 0
                    sum_z_co = 0
                    movable_verts_to_merge_count = 0
                    for i in range(len(verts_to_merge)):
                        if verts_to_merge[i] in movable_verts:
                            v_co = object.data.vertices[verts_to_merge[i]].co

                            sum_x_co += v_co[0]
                            sum_y_co += v_co[1]
                            sum_z_co += v_co[2]

                            movable_verts_to_merge_count += 1

                    middle_point_co = [sum_x_co / movable_verts_to_merge_count, sum_y_co / movable_verts_to_merge_count, sum_z_co / movable_verts_to_merge_count]


                    # Check if any vert to be merged is not movable.
                    shortest_dist = None
                    are_verts_not_movable = False
                    verts_not_movable = []
                    for v_merge_idx in verts_to_merge:
                        if v_merge_idx in participating_verts and not v_merge_idx in movable_verts:
                            are_verts_not_movable = True
                            verts_not_movable.append(v_merge_idx)

                    if are_verts_not_movable:
                        # Get the vert connected to faces, that is nearest to the middle point of the movable verts.
                        shortest_dist = None
                        for vcf_idx in verts_not_movable:
                                dist = abs((object.data.vertices[vcf_idx].co - mathutils.Vector(middle_point_co)).length)

                                if shortest_dist == None:
                                    shortest_dist = dist
                                    nearest_vert_idx = vcf_idx
                                else:
                                    if dist < shortest_dist:
                                        shortest_dist = dist
                                        nearest_vert_idx = vcf_idx

                        coords = object.data.vertices[nearest_vert_idx].co
                        target_point_co = [coords[0], coords[1], coords[2]]
                    else:
                         target_point_co = middle_point_co


                    # Move verts to merge to the middle position.
                    for v_merge_idx in verts_to_merge:
                        if v_merge_idx in movable_verts: # Only move the verts that are not part of faces.
                            object.data.vertices[v_merge_idx].co[0] = target_point_co[0]
                            object.data.vertices[v_merge_idx].co[1] = target_point_co[1]
                            object.data.vertices[v_merge_idx].co[2] = target_point_co[2]



        #### Perform "Remove Doubles" to weld all the disconnected verts
        bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
        bpy.ops.mesh.remove_doubles(threshold=0.0001)

        bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')


        #### Get all the definitive selected edges, after weldding.
        selected_edges = []
        edges_per_vert = {} # Number of faces of each selected edge.
        for ed in object.data.edges:
            if object.data.vertices[ed.vertices[0]].select and object.data.vertices[ed.vertices[1]].select:
                selected_edges.append(ed.index)

                # Save all the edges that belong to each vertex.
                if not ed.vertices[0] in edges_per_vert:
                    edges_per_vert[ed.vertices[0]] = []

                if not ed.vertices[1] in edges_per_vert:
                    edges_per_vert[ed.vertices[1]] = []

                edges_per_vert[ed.vertices[0]].append(ed.index)
                edges_per_vert[ed.vertices[1]].append(ed.index)

        # Check if all the edges connected to each vert have two faces attached to them. To discard them later and make calculations faster.
        a = []
        a += self.edge_face_count(object)
        tuple(a)
        verts_surrounded_by_faces = {}
        for v_idx in edges_per_vert:
            edges = edges_per_vert[v_idx]

            edges_with_two_faces_count = 0
            for ed_idx in edges_per_vert[v_idx]:
                if a[ed_idx] == 2:
                    edges_with_two_faces_count += 1

            if edges_with_two_faces_count == len(edges_per_vert[v_idx]):
                verts_surrounded_by_faces[v_idx] = True
            else:
                verts_surrounded_by_faces[v_idx] = False


        #### Get all the selected vertices.
        selected_verts_idx = []
        for v in object.data.vertices:
            if v.select:
                selected_verts_idx.append(v.index)


        #### Get all the faces of the object.
        all_object_faces_verts_idx = []
        for face in object.data.polygons:
            face_verts = []
            face_verts.append(face.vertices[0])
            face_verts.append(face.vertices[1])
            face_verts.append(face.vertices[2])

            if len(face.vertices) == 4:
                face_verts.append(face.vertices[3])

            all_object_faces_verts_idx.append(face_verts)


        #### Deselect all vertices.
        bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
        bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')



        #### Make a dictionary with the verts related to each vert.
        related_key_verts = {}
        for ed_idx in selected_edges:
            ed = object.data.edges[ed_idx]

            if not verts_surrounded_by_faces[ed.vertices[0]]:
                if not ed.vertices[0] in related_key_verts:
                    related_key_verts[ed.vertices[0]] = []

                if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
                    related_key_verts[ed.vertices[0]].append(ed.vertices[1])

            if not verts_surrounded_by_faces[ed.vertices[1]]:
                if not ed.vertices[1] in related_key_verts:
                    related_key_verts[ed.vertices[1]] = []

                if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
                    related_key_verts[ed.vertices[1]].append(ed.vertices[0])



        #### Get groups of verts forming each face.
        faces_verts_idx = []
        for v1 in related_key_verts: # verts-1 ....
            for v2 in related_key_verts: # verts-2
                if v1 != v2:
                    related_verts_in_common = []
                    v2_in_rel_v1 = False
                    v1_in_rel_v2 = False
                    for rel_v1 in related_key_verts[v1]:
                        if rel_v1 in related_key_verts[v2]: # Check if related verts of verts-1 are related verts of verts-2.
                            related_verts_in_common.append(rel_v1)

                    if v2 in related_key_verts[v1]:
                        v2_in_rel_v1 = True

                    if v1 in related_key_verts[v2]:
                        v1_in_rel_v2 = True


                    repeated_face = False
                    # If two verts have two related verts in common, they form a quad.
                    if len(related_verts_in_common) == 2:
                        # Check if the face is already saved.
                        all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx


                        for f_verts in all_faces_to_check_idx:
                            repeated_verts = 0

                            if len(f_verts) == 4:
                                if v1 in f_verts: repeated_verts += 1
                                if v2 in f_verts: repeated_verts += 1
                                if related_verts_in_common[0] in f_verts: repeated_verts += 1
                                if related_verts_in_common[1] in f_verts: repeated_verts += 1

                                if repeated_verts == len(f_verts):
                                    repeated_face = True
                                    break

                        if not repeated_face:
                            faces_verts_idx.append([v1, related_verts_in_common[0], v2, related_verts_in_common[1]])

                    elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1: # If Two verts have one related vert in common and they are related to each other, they form a triangle.
                        # Check if the face is already saved.
                        all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx

                        for f_verts in all_faces_to_check_idx:
                            repeated_verts = 0

                            if len(f_verts) == 3:
                                if v1 in f_verts: repeated_verts += 1
                                if v2 in f_verts: repeated_verts += 1
                                if related_verts_in_common[0] in f_verts: repeated_verts += 1

                                if repeated_verts == len(f_verts):
                                    repeated_face = True
                                    break

                        if not repeated_face:
                            faces_verts_idx.append([v1, related_verts_in_common[0], v2])


        #### Keep only the faces that don't overlap by ignoring quads that overlap with two adjacent triangles.
        faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate.
        all_faces_to_check_idx = faces_verts_idx + all_object_faces_verts_idx
        for i in range(len(faces_verts_idx)):
            for t in range(len(all_faces_to_check_idx)):
                if i != t:
                    verts_in_common = 0

                    if len(faces_verts_idx[i]) == 4 and len(all_faces_to_check_idx[t]) == 3:
                        for v_idx in all_faces_to_check_idx[t]:
                            if v_idx in faces_verts_idx[i]:
                                verts_in_common += 1

                        if verts_in_common == 3: # If it doesn't have all it's vertices repeated in the other face.
                            if not i in faces_to_not_include_idx:
                                faces_to_not_include_idx.append(i)


        #### Build faces discarding the ones in faces_to_not_include.
        me = object.data
        bm = bmesh.new()
        bm.from_mesh(me)

        num_faces_created = 0
        for i in range(len(faces_verts_idx)):
            if not i in faces_to_not_include_idx:
                bm.faces.new([ bm.verts[v] for v in faces_verts_idx[i] ])

                num_faces_created += 1

        bm.to_mesh(me)
        bm.free()



        for v_idx in selected_verts_idx:
            self.main_object.data.vertices[v_idx].select = True


        bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='EDIT')
        bpy.ops.mesh.normals_make_consistent(inside=False)
        bpy.ops.object.mode_set('INVOKE_REGION_WIN', mode='OBJECT')


        return num_faces_created



    #### Crosshatch skinning.
    def crosshatch_surface_invoke(self, ob_original_splines):
        self.is_crosshatch = False
        self.crosshatch_merge_distance = 0


        objects_to_delete = [] # duplicated strokes to be deleted.

        # If the main object uses modifiers deactivate them temporarily until the surface is joined. (without this the surface verts merging with the main object doesn't work well)
        self.modifiers_prev_viewport_state = []
        if len(self.main_object.modifiers) > 0:
            for m_idx in range(len(self.main_object.modifiers)):
                self.modifiers_prev_viewport_state.append(self.main_object.modifiers[m_idx].show_viewport)

                self.main_object.modifiers[m_idx].show_viewport = False


        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[ob_original_splines.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[ob_original_splines.name]


        if len(ob_original_splines.data.splines) >= 2:
            bpy.ops.object.duplicate('INVOKE_REGION_WIN')
            ob_splines = bpy.context.object
            ob_splines.name = "SURFSKIO_NE_STR"


            #### Get estimative merge distance (sum up the distances from the first point to all other points, then average them and then divide them).
            first_point_dist_sum = 0
            first_dist = 0
            second_dist = 0
            coords_first_pt = ob_splines.data.splines[0].bezier_points[0].co
            for i in range(len(ob_splines.data.splines)):
                sp = ob_splines.data.splines[i]

                if coords_first_pt != sp.bezier_points[0].co:
                    first_dist = (coords_first_pt - sp.bezier_points[0].co).length

                if coords_first_pt != sp.bezier_points[len(sp.bezier_points) - 1].co:
                    second_dist = (coords_first_pt - sp.bezier_points[len(sp.bezier_points) - 1].co).length

                first_point_dist_sum += first_dist + second_dist


                if i == 0:
                    if first_dist != 0:
                        shortest_dist = first_dist
                    elif second_dist != 0:
                        shortest_dist = second_dist


                if shortest_dist > first_dist and first_dist != 0:
                    shortest_dist = first_dist

                if shortest_dist > second_dist and second_dist != 0:
                    shortest_dist = second_dist


            self.crosshatch_merge_distance = shortest_dist / 20



            #### Recalculation of merge distance.

            bpy.ops.object.duplicate('INVOKE_REGION_WIN')

            ob_calc_merge_dist = bpy.context.object
            ob_calc_merge_dist.name = "SURFSKIO_CALC_TMP"

            objects_to_delete.append(ob_calc_merge_dist)



            #### Smooth out strokes a little to improve crosshatch detection.
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')

            for i in range(4):
                bpy.ops.curve.smooth('INVOKE_REGION_WIN')

            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



            #### Convert curves into mesh.
            ob_calc_merge_dist.data.resolution_u = 12
            bpy.ops.object.convert(target='MESH', keep_original=False)

            # Find "intersection-nodes".
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
            bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=self.crosshatch_merge_distance)
            bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            # Remove verts with less than three edges.
            verts_edges_count = {}
            for ed in ob_calc_merge_dist.data.edges:
                v = ed.vertices

                if v[0] not in verts_edges_count:
                    verts_edges_count[v[0]] = 0

                if v[1] not in verts_edges_count:
                    verts_edges_count[v[1]] = 0

                verts_edges_count[v[0]] += 1
                verts_edges_count[v[1]] += 1

            nodes_verts_coords = []
            for v_idx in verts_edges_count:
                v = ob_calc_merge_dist.data.vertices[v_idx]

                if verts_edges_count[v_idx] < 3:
                    v.select = True


            # Remove them.
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT')
            bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')

            # Remove doubles to discard very near verts from calculations of distance.
            bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=self.crosshatch_merge_distance * 4.0)
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            # Get all coords of the resulting nodes.
            nodes_verts_coords = [(v.co[0], v.co[1], v.co[2]) for v in ob_calc_merge_dist.data.vertices]

            #### Check if the strokes are a crosshatch.
            if len(nodes_verts_coords) >= 3:
                self.is_crosshatch = True

                shortest_dist = None
                for co_1 in nodes_verts_coords:
                    for co_2 in nodes_verts_coords:
                        if co_1 != co_2:
                            dist = (mathutils.Vector(co_1) - mathutils.Vector(co_2)).length

                            if shortest_dist != None:
                                if dist < shortest_dist:
                                    shortest_dist = dist
                            else:
                                shortest_dist = dist

                self.crosshatch_merge_distance = shortest_dist / 3


            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[ob_splines.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[ob_splines.name]

            #### Deselect all points.
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



            #### Smooth splines in a localized way, to eliminate "saw-teeth" like shapes when there are many points.
            for sp in ob_splines.data.splines:
                angle_sum = 0

                angle_limit = 2 # Degrees
                for t in range(len(sp.bezier_points)):
                    if t <= len(sp.bezier_points) - 3: # Because on each iteration it checks the "next two points" of the actual. This way it doesn't go out of range.
                        p1 = sp.bezier_points[t]
                        p2 = sp.bezier_points[t + 1]
                        p3 = sp.bezier_points[t + 2]

                        vec_1 = p1.co - p2.co
                        vec_2 = p2.co - p3.co

                        if p2.co != p1.co and p2.co != p3.co:
                            angle = vec_1.angle(vec_2)
                            angle_sum += degrees(angle)

                            if angle_sum >= angle_limit: # If sum of angles is grater than the limit.
                                if (p1.co - p2.co).length <= self.crosshatch_merge_distance:
                                    p1.select_control_point = True; p1.select_left_handle = True; p1.select_right_handle = True
                                    p2.select_control_point = True; p2.select_left_handle = True; p2.select_right_handle = True

                                if (p1.co - p2.co).length <= self.crosshatch_merge_distance:
                                    p3.select_control_point = True; p3.select_left_handle = True; p3.select_right_handle = True

                                angle_sum = 0

                sp.bezier_points[0].select_control_point = False
                sp.bezier_points[0].select_left_handle = False
                sp.bezier_points[0].select_right_handle = False

                sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = False
                sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = False
                sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle  = False



            #### Smooth out strokes a little to improve crosshatch detection.
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            for i in range(15):
                bpy.ops.curve.smooth('INVOKE_REGION_WIN')

            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')




            #### Simplify the splines.
            for sp in ob_splines.data.splines:
                angle_sum = 0

                sp.bezier_points[0].select_control_point = True
                sp.bezier_points[0].select_left_handle = True
                sp.bezier_points[0].select_right_handle = True

                sp.bezier_points[len(sp.bezier_points) - 1].select_control_point = True
                sp.bezier_points[len(sp.bezier_points) - 1].select_left_handle = True
                sp.bezier_points[len(sp.bezier_points) - 1].select_right_handle  = True


                angle_limit = 15 # Degrees
                for t in range(len(sp.bezier_points)):
                    if t <= len(sp.bezier_points) - 3: # Because on each iteration it checks the "next two points" of the actual. This way it doesn't go out of range.
                        p1 = sp.bezier_points[t]
                        p2 = sp.bezier_points[t + 1]
                        p3 = sp.bezier_points[t + 2]

                        vec_1 = p1.co - p2.co
                        vec_2 = p2.co - p3.co

                        if p2.co != p1.co and p2.co != p3.co:
                            angle = vec_1.angle(vec_2)
                            angle_sum += degrees(angle)

                            if angle_sum >= angle_limit: # If sum of angles is grater than the limit.
                                p1.select_control_point = True; p1.select_left_handle = True; p1.select_right_handle = True
                                p2.select_control_point = True; p2.select_left_handle = True; p2.select_right_handle = True
                                p3.select_control_point = True; p3.select_left_handle = True; p3.select_right_handle = True

                                angle_sum = 0



            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            bpy.ops.curve.select_all(action = 'INVERT')

            bpy.ops.curve.delete(type='VERT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



            objects_to_delete.append(ob_splines)


            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


            #### Check if the strokes are a crosshatch.
            if self.is_crosshatch:
                all_points_coords = []
                for i in range(len(ob_splines.data.splines)):
                    all_points_coords.append([])

                    all_points_coords[i] = [mathutils.Vector((x, y, z)) for x, y, z in [bp.co for bp in ob_splines.data.splines[i].bezier_points]]


                all_intersections = []
                checked_splines = []
                for i in range(len(all_points_coords)):

                    for t in range(len(all_points_coords[i]) - 1):
                        bp1_co = all_points_coords[i][t]
                        bp2_co = all_points_coords[i][t + 1]

                        for i2 in range(len(all_points_coords)):
                            if i != i2 and not i2 in checked_splines:
                                for t2 in range(len(all_points_coords[i2]) - 1):
                                    bp3_co = all_points_coords[i2][t2]
                                    bp4_co = all_points_coords[i2][t2 + 1]


                                    intersec_coords = mathutils.geometry.intersect_line_line(bp1_co, bp2_co, bp3_co, bp4_co)

                                    if intersec_coords != None:
                                        dist = (intersec_coords[0] - intersec_coords[1]).length

                                        if dist <= self.crosshatch_merge_distance * 1.5:
                                            temp_co, percent1 = mathutils.geometry.intersect_point_line(intersec_coords[0], bp1_co, bp2_co)

                                            if (percent1 >= -0.02 and percent1 <= 1.02):
                                                temp_co, percent2 = mathutils.geometry.intersect_point_line(intersec_coords[1], bp3_co, bp4_co)
                                                if (percent2 >= -0.02 and percent2 <= 1.02):
                                                    all_intersections.append((i, t, percent1, ob_splines.matrix_world * intersec_coords[0])) # Format: spline index, first point index from corresponding segment, percentage from first point of actual segment, coords of intersection point.
                                                    all_intersections.append((i2, t2, percent2, ob_splines.matrix_world * intersec_coords[1]))



                        checked_splines.append(i)


                all_intersections.sort(key = operator.itemgetter(0,1,2)) # Sort list by spline, then by corresponding first point index of segment, and then by percentage from first point of segment: elements 0 and 1 respectively.



                self.crosshatch_strokes_coords = {}
                for i in range(len(all_intersections)):
                    if not all_intersections[i][0] in self.crosshatch_strokes_coords:
                        self.crosshatch_strokes_coords[all_intersections[i][0]] = []

                    self.crosshatch_strokes_coords[all_intersections[i][0]].append(all_intersections[i][3]) # Save intersection coords.

            else:
                self.is_crosshatch = False


        #### Delete all duplicates.
        for o in objects_to_delete:
            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[o.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[o.name]
            bpy.ops.object.delete()


        #### If the main object has modifiers, turn their "viewport view status" to what it was before the forced deactivation above.
        if len(self.main_object.modifiers) > 0:
            for m_idx in range(len(self.main_object.modifiers)):
                self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx]



        return



    #### Part of the Crosshatch process that is repeated when the operator is tweaked.
    def crosshatch_surface_execute(self):
        # If the main object uses modifiers deactivate them temporarily until the surface is joined. (without this the surface verts merging with the main object doesn't work well)
        self.modifiers_prev_viewport_state = []
        if len(self.main_object.modifiers) > 0:
            for m_idx in range(len(self.main_object.modifiers)):
                self.modifiers_prev_viewport_state.append(self.main_object.modifiers[m_idx].show_viewport)

                self.main_object.modifiers[m_idx].show_viewport = False


        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



        me_name = "SURFSKIO_STK_TMP"
        me = bpy.data.meshes.new(me_name)

        all_verts_coords = []
        all_edges = []
        for st_idx in self.crosshatch_strokes_coords:
            for co_idx in range(len(self.crosshatch_strokes_coords[st_idx])):
                coords = self.crosshatch_strokes_coords[st_idx][co_idx]

                all_verts_coords.append(coords)

                if co_idx > 0:
                    all_edges.append((len(all_verts_coords) - 2, len(all_verts_coords) - 1))


        me.from_pydata(all_verts_coords, all_edges, [])

        me.update()

        ob = bpy.data.objects.new(me_name, me)
        ob.data = me
        bpy.context.scene.objects.link(ob)


        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[ob.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[ob.name]


        #### Get together each vert and its nearest, to the middle position.
        verts = ob.data.vertices
        checked_verts = []
        for i in range(len(verts)):
            shortest_dist = None

            if not i in checked_verts:
                for t in range(len(verts)):
                    if i != t and not t in checked_verts:
                        dist = (verts[i].co - verts[t].co).length

                        if shortest_dist != None:
                            if dist < shortest_dist:
                                shortest_dist = dist
                                nearest_vert = t
                        else:
                            shortest_dist = dist
                            nearest_vert = t

                middle_location = (verts[i].co + verts[nearest_vert].co) / 2

                verts[i].co = middle_location
                verts[nearest_vert].co = middle_location

                checked_verts.append(i)
                checked_verts.append(nearest_vert)




        #### Calculate average length between all the generated edges.
        ob = bpy.context.object
        lengths_sum = 0
        for ed in ob.data.edges:
            v1 = ob.data.vertices[ed.vertices[0]]
            v2 = ob.data.vertices[ed.vertices[1]]

            lengths_sum += (v1.co - v2.co).length

        edges_count = len(ob.data.edges)

        average_edge_length = lengths_sum / edges_count


        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='SELECT')
        bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=average_edge_length / 15.0)
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

        final_points_ob = bpy.context.scene.objects.active


        #### Make a dictionary with the verts related to each vert.
        related_key_verts = {}
        for ed in final_points_ob.data.edges:
            if not ed.vertices[0] in related_key_verts:
                related_key_verts[ed.vertices[0]] = []

            if not ed.vertices[1] in related_key_verts:
                related_key_verts[ed.vertices[1]] = []


            if not ed.vertices[1] in related_key_verts[ed.vertices[0]]:
                related_key_verts[ed.vertices[0]].append(ed.vertices[1])

            if not ed.vertices[0] in related_key_verts[ed.vertices[1]]:
                related_key_verts[ed.vertices[1]].append(ed.vertices[0])



        #### Get groups of verts forming each face.
        faces_verts_idx = []
        for v1 in related_key_verts: # verts-1 ....
            for v2 in related_key_verts: # verts-2
                if v1 != v2:
                    related_verts_in_common = []
                    v2_in_rel_v1 = False
                    v1_in_rel_v2 = False
                    for rel_v1 in related_key_verts[v1]:
                        if rel_v1 in related_key_verts[v2]: # Check if related verts of verts-1 are related verts of verts-2.
                            related_verts_in_common.append(rel_v1)

                    if v2 in related_key_verts[v1]:
                        v2_in_rel_v1 = True

                    if v1 in related_key_verts[v2]:
                        v1_in_rel_v2 = True


                    repeated_face = False
                    # If two verts have two related verts in common, they form a quad.
                    if len(related_verts_in_common) == 2:
                        # Check if the face is already saved.
                        for f_verts in faces_verts_idx:
                            repeated_verts = 0

                            if len(f_verts) == 4:
                                if v1 in f_verts: repeated_verts += 1
                                if v2 in f_verts: repeated_verts += 1
                                if related_verts_in_common[0] in f_verts: repeated_verts += 1
                                if related_verts_in_common[1] in f_verts: repeated_verts += 1

                                if repeated_verts == len(f_verts):
                                    repeated_face = True
                                    break

                        if not repeated_face:
                            faces_verts_idx.append([v1, related_verts_in_common[0], v2, related_verts_in_common[1]])

                    elif v2_in_rel_v1 and v1_in_rel_v2 and len(related_verts_in_common) == 1: # If Two verts have one related vert in common and they are related to each other, they form a triangle.
                        # Check if the face is already saved.
                        for f_verts in faces_verts_idx:
                            repeated_verts = 0

                            if len(f_verts) == 3:
                                if v1 in f_verts: repeated_verts += 1
                                if v2 in f_verts: repeated_verts += 1
                                if related_verts_in_common[0] in f_verts: repeated_verts += 1

                                if repeated_verts == len(f_verts):
                                    repeated_face = True
                                    break

                        if not repeated_face:
                            faces_verts_idx.append([v1, related_verts_in_common[0], v2])


        #### Keep only the faces that don't overlap by ignoring quads that overlap with two adjacent triangles.
        faces_to_not_include_idx = [] # Indices of faces_verts_idx to eliminate.
        for i in range(len(faces_verts_idx)):
            for t in range(len(faces_verts_idx)):
                if i != t:
                    verts_in_common = 0

                    if len(faces_verts_idx[i]) == 4 and len(faces_verts_idx[t]) == 3:
                        for v_idx in faces_verts_idx[t]:
                            if v_idx in faces_verts_idx[i]:
                                verts_in_common += 1

                        if verts_in_common == 3: # If it doesn't have all it's vertices repeated in the other face.
                            if not i in faces_to_not_include_idx:
                                faces_to_not_include_idx.append(i)


        #### Build surface.
        all_surface_verts_co = []
        verts_idx_translation = {}
        for i in range(len(final_points_ob.data.vertices)):
            coords = final_points_ob.data.vertices[i].co
            all_surface_verts_co.append([coords[0], coords[1], coords[2]])

        # Verts of each face.
        all_surface_faces = []
        for i in range(len(faces_verts_idx)):
            if not i in faces_to_not_include_idx:
                face = []
                for v_idx in faces_verts_idx[i]:
                    face.append(v_idx)

                all_surface_faces.append(face)

        # Build the mesh.
        surf_me_name = "SURFSKIO_surface"
        me_surf = bpy.data.meshes.new(surf_me_name)

        me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces)

        me_surf.update()

        ob_surface = bpy.data.objects.new(surf_me_name, me_surf)
        bpy.context.scene.objects.link(ob_surface)

        # Delete final points temporal object
        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[final_points_ob.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[final_points_ob.name]

        bpy.ops.object.delete()


        # Delete isolated verts if there are any.
        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[ob_surface.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[ob_surface.name]

        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.mesh.select_all(action='DESELECT')
        bpy.ops.mesh.select_face_by_sides(type='NOTEQUAL')
        bpy.ops.mesh.delete()
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



        #### Join crosshatch results with original mesh.

        # Calculate a distance to merge the verts of the crosshatch surface to the main object.
        edges_length_sum = 0
        for ed in ob_surface.data.edges:
            edges_length_sum += (ob_surface.data.vertices[ed.vertices[0]].co - ob_surface.data.vertices[ed.vertices[1]].co).length

        if len(ob_surface.data.edges) > 0:
            average_surface_edges_length = edges_length_sum / len(ob_surface.data.edges)
        else:
            average_surface_edges_length = 0.0001

        # Make dictionary with all the verts connected to each vert, on the new surface object.
        surface_connected_verts = {}
        for ed in ob_surface.data.edges:
            if not ed.vertices[0] in surface_connected_verts:
                surface_connected_verts[ed.vertices[0]] = []

            surface_connected_verts[ed.vertices[0]].append(ed.vertices[1])


            if not ed.vertices[1] in surface_connected_verts:
                surface_connected_verts[ed.vertices[1]] = []

            surface_connected_verts[ed.vertices[1]].append(ed.vertices[0])



        # Duplicate the new surface object, and use shrinkwrap to calculate later the nearest verts to the main object.
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

        bpy.ops.object.duplicate('INVOKE_REGION_WIN')

        final_ob_duplicate = bpy.context.scene.objects.active

        bpy.ops.object.modifier_add('INVOKE_REGION_WIN', type='SHRINKWRAP')
        final_ob_duplicate.modifiers["Shrinkwrap"].wrap_method = "NEAREST_VERTEX"
        final_ob_duplicate.modifiers["Shrinkwrap"].target = self.main_object

        bpy.ops.object.modifier_apply('INVOKE_REGION_WIN', apply_as='DATA', modifier='Shrinkwrap')


        # Make list with verts of original mesh as index and coords as value.
        main_object_verts_coords = []
        for v in self.main_object.data.vertices:
            coords = self.main_object.matrix_world * v.co

            for c in range(len(coords)): # To avoid problems when taking "-0.00" as a different value as "0.00".
                if "%.3f" % coords[c] == "-0.00":
                    coords[c] = 0

            main_object_verts_coords.append(["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]])

        tuple(main_object_verts_coords)


        # Determine which verts will be merged, snap them to the nearest verts on the original verts, and get them selected.
        crosshatch_verts_to_merge = []
        if self.automatic_join:
            for i in range(len(ob_surface.data.vertices)):
                # Calculate the distance from each of the connected verts to the actual vert, and compare it with the distance they would have if joined. If they don't change much, that vert can be joined.
                merge_actual_vert = True
                if len(surface_connected_verts[i]) < 4:
                    for c_v_idx in surface_connected_verts[i]:
                        points_original = []
                        points_original.append(ob_surface.data.vertices[c_v_idx].co)
                        points_original.append(ob_surface.data.vertices[i].co)

                        points_target = []
                        points_target.append(ob_surface.data.vertices[c_v_idx].co)
                        points_target.append(final_ob_duplicate.data.vertices[i].co)

                        vec_A = points_original[0] - points_original[1]
                        vec_B = points_target[0] - points_target[1]

                        dist_A = (points_original[0] - points_original[1]).length
                        dist_B = (points_target[0] - points_target[1]).length


                        if not (points_original[0] == points_original[1] or points_target[0] == points_target[1]): # If any vector's length is zero.
                            angle = vec_A.angle(vec_B) / math.pi
                        else:
                            angle= 0


                        if dist_B > dist_A * 1.7 * self.join_stretch_factor or dist_B < dist_A / 2 / self.join_stretch_factor or angle >= 0.15 * self.join_stretch_factor: # Set a range of acceptable variation in the connected edges.
                            merge_actual_vert = False
                            break
                else:
                    merge_actual_vert = False


                if merge_actual_vert:
                    coords = final_ob_duplicate.data.vertices[i].co

                    for c in range(len(coords)): # To avoid problems when taking "-0.000" as a different value as "0.00".
                        if "%.3f" % coords[c] == "-0.00":
                            coords[c] = 0

                    comparison_coords = ["%.3f" % coords[0], "%.3f" % coords[1], "%.3f" % coords[2]]


                    if comparison_coords in main_object_verts_coords:
                        main_object_related_vert_idx = main_object_verts_coords.index(comparison_coords) # Get the index of the vert with those coords in the main object.

                        if self.main_object.data.vertices[main_object_related_vert_idx].select == True or self.main_object_selected_verts_count == 0:
                            ob_surface.data.vertices[i].co = final_ob_duplicate.data.vertices[i].co
                            ob_surface.data.vertices[i].select = True
                            crosshatch_verts_to_merge.append(i)

                            # Make sure the vert in the main object is selected, in case it wasn't selected and the "join crosshatch" option is active.
                            self.main_object.data.vertices[main_object_related_vert_idx].select = True




        # Delete duplicated object.
        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[final_ob_duplicate.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[final_ob_duplicate.name]
        bpy.ops.object.delete()


        # Join crosshatched surface and main object.
        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[ob_surface.name].select = True
        bpy.data.objects[self.main_object.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]

        bpy.ops.object.join('INVOKE_REGION_WIN')

        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        # Perform Remove doubles to merge verts.
        if not (self.automatic_join == False and self.main_object_selected_verts_count == 0):
            bpy.ops.mesh.remove_doubles(threshold=0.0001)

        bpy.ops.mesh.select_all(action='DESELECT')


        #### If the main object has modifiers, turn their "viewport view status" to what it was before the forced deactivation above.
        if len(self.main_object.modifiers) > 0:
            for m_idx in range(len(self.main_object.modifiers)):
                self.main_object.modifiers[m_idx].show_viewport = self.modifiers_prev_viewport_state[m_idx]



        return{'FINISHED'}



    def rectangular_surface(self):
        #### Selected edges.
        all_selected_edges_idx = []
        all_selected_verts = []
        all_verts_idx = []
        for ed in self.main_object.data.edges:
            if ed.select:
                all_selected_edges_idx.append(ed.index)

                # Selected vertices.
                if not ed.vertices[0] in all_selected_verts:
                    all_selected_verts.append(self.main_object.data.vertices[ed.vertices[0]])
                if not ed.vertices[1] in all_selected_verts:
                    all_selected_verts.append(self.main_object.data.vertices[ed.vertices[1]])

                # All verts (both from each edge) to determine later which are at the tips (those not repeated twice).
                all_verts_idx.append(ed.vertices[0])
                all_verts_idx.append(ed.vertices[1])



        #### Identify the tips and "middle-vertex" that separates U from V, if there is one.
        all_chains_tips_idx = []
        for v_idx in all_verts_idx:
            if all_verts_idx.count(v_idx) < 2:
                all_chains_tips_idx.append(v_idx)



        edges_connected_to_tips = []
        for ed in self.main_object.data.edges:
            if (ed.vertices[0] in all_chains_tips_idx or ed.vertices[1] in all_chains_tips_idx) and not (ed.vertices[0] in all_verts_idx and ed.vertices[1] in all_verts_idx):
                edges_connected_to_tips.append(ed)


        #### Check closed selections.
        single_unselected_verts_and_neighbors = [] # List with groups of three verts, where the first element of the pair is the unselected vert of a closed selection and the other two elements are the selected neighbor verts (it will be useful to determine which selection chain the unselected vert belongs to, and determine the "middle-vertex")

        # To identify a "closed" selection (a selection that is a closed chain except for one vertex) find the vertex in common that have the edges connected to tips. If there is a vertex in common, that one is the unselected vert that closes the selection or is a "middle-vertex".
        single_unselected_verts = []
        for ed in edges_connected_to_tips:
            for ed_b in edges_connected_to_tips:
                if ed != ed_b:
                    if ed.vertices[0] == ed_b.vertices[0] and not self.main_object.data.vertices[ed.vertices[0]].select and ed.vertices[0] not in single_unselected_verts:
                        single_unselected_verts_and_neighbors.append([ed.vertices[0], ed.vertices[1], ed_b.vertices[1]]) # The second element is one of the tips of the selected vertices of the closed selection.
                        single_unselected_verts.append(ed.vertices[0])
                        break
                    elif ed.vertices[0] == ed_b.vertices[1] and not self.main_object.data.vertices[ed.vertices[0]].select and ed.vertices[0] not in single_unselected_verts:
                        single_unselected_verts_and_neighbors.append([ed.vertices[0], ed.vertices[1], ed_b.vertices[0]])
                        single_unselected_verts.append(ed.vertices[0])
                        break
                    elif ed.vertices[1] == ed_b.vertices[0] and not self.main_object.data.vertices[ed.vertices[1]].select and ed.vertices[1] not in single_unselected_verts:
                        single_unselected_verts_and_neighbors.append([ed.vertices[1], ed.vertices[0], ed_b.vertices[1]])
                        single_unselected_verts.append(ed.vertices[1])
                        break
                    elif ed.vertices[1] == ed_b.vertices[1] and not self.main_object.data.vertices[ed.vertices[1]].select and ed.vertices[1] not in single_unselected_verts:
                        single_unselected_verts_and_neighbors.append([ed.vertices[1], ed.vertices[0], ed_b.vertices[0]])
                        single_unselected_verts.append(ed.vertices[1])
                        break


        middle_vertex_idx = None
        tips_to_discard_idx = []
        # Check if there is a "middle-vertex", and get its index.
        for i in range(0, len(single_unselected_verts_and_neighbors)):
            actual_chain_verts = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, single_unselected_verts_and_neighbors[i][1], None, None)

            if single_unselected_verts_and_neighbors[i][2] != actual_chain_verts[len(actual_chain_verts) - 1].index:
                middle_vertex_idx = single_unselected_verts_and_neighbors[i][0]
                tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][1])
                tips_to_discard_idx.append(single_unselected_verts_and_neighbors[i][2])


        #### List with pairs of verts that belong to the tips of each selection chain (row).
        verts_tips_same_chain_idx = []
        if len(all_chains_tips_idx) >= 2:
            checked_v = []
            for i in range(0, len(all_chains_tips_idx)):
                if all_chains_tips_idx[i] not in checked_v:
                    v_chain = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, all_chains_tips_idx[i], middle_vertex_idx, None)

                    verts_tips_same_chain_idx.append([v_chain[0].index, v_chain[len(v_chain) - 1].index])

                    checked_v.append(v_chain[0].index)
                    checked_v.append(v_chain[len(v_chain) - 1].index)


        #### Selection tips (vertices).
        verts_tips_parsed_idx = []
        if len(all_chains_tips_idx) >= 2:
            for spec_v_idx in all_chains_tips_idx:
                if (spec_v_idx not in tips_to_discard_idx):
                    verts_tips_parsed_idx.append(spec_v_idx)


        #### Identify the type of selection made by the user.
        if middle_vertex_idx != None:
            if len(all_chains_tips_idx) == 4 and len(single_unselected_verts_and_neighbors) == 1: # If there are 4 tips (two selection chains), and there is only one single unselected vert (the middle vert).
                selection_type = "TWO_CONNECTED"
            else:
                # The type of the selection was not identified, the script stops.
                self.report({'WARNING'}, "The selection isn't valid.")
                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
                self.cleanup_on_interruption()
                self.stopping_errors = True

                return{'CANCELLED'}
        else:
            if len(all_chains_tips_idx) == 2: # If there are 2 tips
                selection_type = "SINGLE"
            elif len(all_chains_tips_idx) == 4: # If there are 4 tips
                selection_type = "TWO_NOT_CONNECTED"
            elif len(all_chains_tips_idx) == 0:
                if len(self.main_splines.data.splines) > 1:
                    selection_type = "NO_SELECTION"
                else:
                    # If the selection was not identified and there is only one stroke, there's no possibility to build a surface, so the script is interrupted.
                    self.report({'WARNING'}, "The selection isn't valid.")
                    bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
                    self.cleanup_on_interruption()
                    self.stopping_errors = True

                    return{'CANCELLED'}
            else:
                # The type of the selection was not identified, the script stops.
                self.report({'WARNING'}, "The selection isn't valid.")

                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
                self.cleanup_on_interruption()

                self.stopping_errors = True

                return{'CANCELLED'}



        #### If the selection type is TWO_NOT_CONNECTED and there is only one stroke, stop the script.
        if selection_type == "TWO_NOT_CONNECTED" and len(self.main_splines.data.splines) == 1:
            self.report({'WARNING'}, "At least two strokes are needed when there are two not connected selections.")
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            self.cleanup_on_interruption()
            self.stopping_errors = True

            return{'CANCELLED'}



        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[self.main_splines.name].select = True
        bpy.context.scene.objects.active = bpy.context.scene.objects[self.main_splines.name]


        #### Enter editmode for the new curve (converted from grease pencil strokes), to smooth it out.
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.curve.smooth('INVOKE_REGION_WIN')
        bpy.ops.curve.smooth('INVOKE_REGION_WIN')
        bpy.ops.curve.smooth('INVOKE_REGION_WIN')
        bpy.ops.curve.smooth('INVOKE_REGION_WIN')
        bpy.ops.curve.smooth('INVOKE_REGION_WIN')
        bpy.ops.curve.smooth('INVOKE_REGION_WIN')
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


        self.selection_U_exists = False
        self.selection_U2_exists = False
        self.selection_V_exists = False
        self.selection_V2_exists = False

        self.selection_U_is_closed = False
        self.selection_U2_is_closed = False
        self.selection_V_is_closed = False
        self.selection_V2_is_closed = False

        #### Define what vertices are at the tips of each selection and are not the middle-vertex.
        if selection_type == "TWO_CONNECTED":
            self.selection_U_exists = True
            self.selection_V_exists = True

            closing_vert_U_idx = None
            closing_vert_V_idx = None
            closing_vert_U2_idx = None
            closing_vert_V2_idx = None

            # Determine which selection is Selection-U and which is Selection-V.
            points_A = []
            points_B = []
            points_first_stroke_tips = []

            points_A.append(self.main_object.matrix_world * self.main_object.data.vertices[verts_tips_parsed_idx[0]].co)
            points_A.append(self.main_object.matrix_world * self.main_object.data.vertices[middle_vertex_idx].co)

            points_B.append(self.main_object.matrix_world * self.main_object.data.vertices[verts_tips_parsed_idx[1]].co)
            points_B.append(self.main_object.matrix_world * self.main_object.data.vertices[middle_vertex_idx].co)

            points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
            points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co)

            angle_A = self.orientation_difference(points_A, points_first_stroke_tips)
            angle_B = self.orientation_difference(points_B, points_first_stroke_tips)

            if angle_A < angle_B:
                first_vert_U_idx = verts_tips_parsed_idx[0]
                first_vert_V_idx = verts_tips_parsed_idx[1]
            else:
                first_vert_U_idx = verts_tips_parsed_idx[1]
                first_vert_V_idx = verts_tips_parsed_idx[0]

        elif selection_type == "SINGLE" or selection_type == "TWO_NOT_CONNECTED":
            first_sketched_point_first_stroke_co = self.main_splines.data.splines[0].bezier_points[0].co
            last_sketched_point_first_stroke_co = self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co
            first_sketched_point_last_stroke_co = self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[0].co
            if len(self.main_splines.data.splines) > 1:
                first_sketched_point_second_stroke_co = self.main_splines.data.splines[1].bezier_points[0].co
                last_sketched_point_second_stroke_co = self.main_splines.data.splines[1].bezier_points[len(self.main_splines.data.splines[1].bezier_points) - 1].co


            single_unselected_neighbors = [] # Only the neighbors of the single unselected verts.
            for verts_neig_idx in single_unselected_verts_and_neighbors:
                single_unselected_neighbors.append(verts_neig_idx[1])
                single_unselected_neighbors.append(verts_neig_idx[2])


            all_chains_tips_and_middle_vert = []
            for v_idx in all_chains_tips_idx:
                if v_idx not in single_unselected_neighbors:
                    all_chains_tips_and_middle_vert.append(v_idx)


            all_chains_tips_and_middle_vert += single_unselected_verts

            all_participating_verts = all_chains_tips_and_middle_vert + all_verts_idx

            # The tip of the selected vertices nearest to the first point of the first sketched stroke.
            nearest_tip_to_first_st_first_pt_idx, shortest_distance_to_first_stroke = self.shortest_distance(self.main_object, first_sketched_point_first_stroke_co, all_chains_tips_and_middle_vert)
            # If the nearest tip is not from a closed selection, get the opposite tip vertex index.
            if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx:
                nearest_tip_to_first_st_first_pt_opposite_idx = self.opposite_tip(nearest_tip_to_first_st_first_pt_idx, verts_tips_same_chain_idx)

            # The tip of the selected vertices nearest to the last point of the first sketched stroke.
            nearest_tip_to_first_st_last_pt_idx, temp_dist = self.shortest_distance(self.main_object, last_sketched_point_first_stroke_co, all_chains_tips_and_middle_vert)

            # The tip of the selected vertices nearest to the first point of the last sketched stroke.
            nearest_tip_to_last_st_first_pt_idx, shortest_distance_to_last_stroke = self.shortest_distance(self.main_object, first_sketched_point_last_stroke_co, all_chains_tips_and_middle_vert)

            if len(self.main_splines.data.splines) > 1:
                # The selected vertex nearest to the first point of the second sketched stroke. (This will be useful to determine the direction of the closed selection V when extruding along strokes)
                nearest_vert_to_second_st_first_pt_idx, temp_dist = self.shortest_distance(self.main_object, first_sketched_point_second_stroke_co, all_verts_idx)

                # The selected vertex nearest to the first point of the second sketched stroke. (This will be useful to determine the direction of the closed selection V2 when extruding along strokes)
                nearest_vert_to_second_st_last_pt_idx, temp_dist = self.shortest_distance(self.main_object, last_sketched_point_second_stroke_co, all_verts_idx)



            # Determine if the single selection will be treated as U or as V.
            edges_sum = 0
            for i in all_selected_edges_idx:
                edges_sum += ((self.main_object.matrix_world * self.main_object.data.vertices[self.main_object.data.edges[i].vertices[0]].co) - (self.main_object.matrix_world * self.main_object.data.vertices[self.main_object.data.edges[i].vertices[1]].co)).length

            average_edge_length = edges_sum / len(all_selected_edges_idx)


            # Get shortest distance from the first point of the last stroke to any participating vertex.
            temp_idx, shortest_distance_to_last_stroke = self.shortest_distance(self.main_object, first_sketched_point_last_stroke_co, all_participating_verts)


            if shortest_distance_to_first_stroke < average_edge_length / 4 and shortest_distance_to_last_stroke < average_edge_length and len(self.main_splines.data.splines) > 1: # If the beginning of the first stroke is near enough, and its orientation difference with the first edge of the nearest selection chain is not too high, interpret things as an "extrude along strokes" instead of "extrude through strokes"
                self.selection_U_exists = False
                self.selection_V_exists = True
                if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: # If the first selection is not closed.
                    self.selection_V_is_closed = False
                    first_neighbor_V_idx = None
                    closing_vert_U_idx = None
                    closing_vert_U2_idx = None
                    closing_vert_V_idx = None
                    closing_vert_V2_idx = None

                    first_vert_V_idx = nearest_tip_to_first_st_first_pt_idx

                    if selection_type == "TWO_NOT_CONNECTED":
                        self.selection_V2_exists = True

                        first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx
                else:
                    self.selection_V_is_closed = True
                    closing_vert_V_idx = nearest_tip_to_first_st_first_pt_idx

                    # Get the neighbors of the first (unselected) vert of the closed selection U.
                    vert_neighbors = []
                    for verts in single_unselected_verts_and_neighbors:
                        if verts[0] == nearest_tip_to_first_st_first_pt_idx:
                            vert_neighbors.append(verts[1])
                            vert_neighbors.append(verts[2])
                            break

                    verts_V = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, vert_neighbors[0], middle_vertex_idx, None)

                    for i in range(0, len(verts_V)):
                        if verts_V[i].index == nearest_vert_to_second_st_first_pt_idx:
                            if i >= len(verts_V) / 2: # If the vertex nearest to the first point of the second stroke is in the first half of the selected verts.
                                first_vert_V_idx = vert_neighbors[1]
                                break
                            else:
                                first_vert_V_idx = vert_neighbors[0]
                                break



                if selection_type == "TWO_NOT_CONNECTED":
                    self.selection_V2_exists = True

                    if nearest_tip_to_first_st_last_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_last_pt_idx == middle_vertex_idx: # If the second selection is not closed.
                        self.selection_V2_is_closed = False
                        first_neighbor_V2_idx = None
                        closing_vert_V2_idx = None

                        first_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx

                    else:
                        self.selection_V2_is_closed = True
                        closing_vert_V2_idx = nearest_tip_to_first_st_last_pt_idx

                        # Get the neighbors of the first (unselected) vert of the closed selection U.
                        vert_neighbors = []
                        for verts in single_unselected_verts_and_neighbors:
                            if verts[0] == nearest_tip_to_first_st_last_pt_idx:
                                vert_neighbors.append(verts[1])
                                vert_neighbors.append(verts[2])
                                break


                        verts_V2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, vert_neighbors[0], middle_vertex_idx, None)

                        for i in range(0, len(verts_V2)):
                            if verts_V2[i].index == nearest_vert_to_second_st_last_pt_idx:
                                if i >= len(verts_V2) / 2: # If the vertex nearest to the first point of the second stroke is in the first half of the selected verts.
                                    first_vert_V2_idx = vert_neighbors[1]
                                    break
                                else:
                                    first_vert_V2_idx = vert_neighbors[0]
                                    break

                else:
                    self.selection_V2_exists = False

            else:
                self.selection_U_exists = True
                self.selection_V_exists = False
                if nearest_tip_to_first_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_first_st_first_pt_idx == middle_vertex_idx: # If the first selection is not closed.
                    self.selection_U_is_closed = False
                    first_neighbor_U_idx = None
                    closing_vert_U_idx = None

                    points_tips = []
                    points_tips.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co)
                    points_tips.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_opposite_idx].co)

                    points_first_stroke_tips = []
                    points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
                    points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[len(self.main_splines.data.splines[0].bezier_points) - 1].co)

                    vec_A = points_tips[0] - points_tips[1]
                    vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]

                    # Compare the direction of the selection and the first grease pencil stroke to determine which is the "first" vertex of the selection.
                    if vec_A.dot(vec_B) < 0:
                        first_vert_U_idx = nearest_tip_to_first_st_first_pt_opposite_idx
                    else:
                        first_vert_U_idx = nearest_tip_to_first_st_first_pt_idx

                else:
                    self.selection_U_is_closed = True
                    closing_vert_U_idx = nearest_tip_to_first_st_first_pt_idx

                    # Get the neighbors of the first (unselected) vert of the closed selection U.
                    vert_neighbors = []
                    for verts in single_unselected_verts_and_neighbors:
                        if verts[0] == nearest_tip_to_first_st_first_pt_idx:
                            vert_neighbors.append(verts[1])
                            vert_neighbors.append(verts[2])
                            break

                    points_first_and_neighbor = []
                    points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_first_st_first_pt_idx].co)
                    points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[vert_neighbors[0]].co)

                    points_first_stroke_tips = []
                    points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[0].co)
                    points_first_stroke_tips.append(self.main_splines.data.splines[0].bezier_points[1].co)

                    vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1]
                    vec_B = points_first_stroke_tips[0] - points_first_stroke_tips[1]

                    # Compare the direction of the selection and the first grease pencil stroke to determine which is the vertex neighbor to the first vertex (unselected) of the closed selection. This will determine the direction of the closed selection.
                    if vec_A.dot(vec_B) < 0:
                        first_vert_U_idx = vert_neighbors[1]
                    else:
                        first_vert_U_idx = vert_neighbors[0]



                if selection_type == "TWO_NOT_CONNECTED":
                    self.selection_U2_exists = True

                    if nearest_tip_to_last_st_first_pt_idx not in single_unselected_verts or nearest_tip_to_last_st_first_pt_idx == middle_vertex_idx: # If the second selection is not closed.
                        self.selection_U2_is_closed = False
                        first_neighbor_U2_idx = None
                        closing_vert_U2_idx = None

                        first_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx

                    else:
                        self.selection_U2_is_closed = True
                        closing_vert_U2_idx = nearest_tip_to_last_st_first_pt_idx

                        # Get the neighbors of the first (unselected) vert of the closed selection U.
                        vert_neighbors = []
                        for verts in single_unselected_verts_and_neighbors:
                            if verts[0] == nearest_tip_to_last_st_first_pt_idx:
                                vert_neighbors.append(verts[1])
                                vert_neighbors.append(verts[2])
                                break

                        points_first_and_neighbor = []
                        points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[nearest_tip_to_last_st_first_pt_idx].co)
                        points_first_and_neighbor.append(self.main_object.matrix_world * self.main_object.data.vertices[vert_neighbors[0]].co)

                        points_last_stroke_tips = []
                        points_last_stroke_tips.append(self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[0].co)
                        points_last_stroke_tips.append(self.main_splines.data.splines[len(self.main_splines.data.splines) - 1].bezier_points[1].co)

                        vec_A = points_first_and_neighbor[0] - points_first_and_neighbor[1]
                        vec_B = points_last_stroke_tips[0] - points_last_stroke_tips[1]

                        # Compare the direction of the selection and the last grease pencil stroke to determine which is the vertex neighbor to the first vertex (unselected) of the closed selection. This will determine the direction of the closed selection.
                        if vec_A.dot(vec_B) < 0:
                            first_vert_U2_idx = vert_neighbors[1]
                        else:
                            first_vert_U2_idx = vert_neighbors[0]

                else:
                    self.selection_U2_exists = False

        elif selection_type == "NO_SELECTION":
            self.selection_U_exists = False
            self.selection_V_exists = False



        #### Get an ordered list of the vertices of Selection-U.
        verts_ordered_U = []
        if self.selection_U_exists:
            verts_ordered_U = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U_idx, middle_vertex_idx, closing_vert_U_idx)
            verts_ordered_U_indices = [x.index for x in verts_ordered_U]

        #### Get an ordered list of the vertices of Selection-U2.
        verts_ordered_U2 = []
        if self.selection_U2_exists:
            verts_ordered_U2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_U2_idx, middle_vertex_idx, closing_vert_U2_idx)
            verts_ordered_U2_indices = [x.index for x in verts_ordered_U2]

        #### Get an ordered list of the vertices of Selection-V.
        verts_ordered_V = []
        if self.selection_V_exists:
            verts_ordered_V = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V_idx, middle_vertex_idx, closing_vert_V_idx)
            verts_ordered_V_indices = [x.index for x in verts_ordered_V]

        #### Get an ordered list of the vertices of Selection-V2.
        verts_ordered_V2 = []
        if self.selection_V2_exists:
            verts_ordered_V2 = self.get_ordered_verts(self.main_object, all_selected_edges_idx, all_verts_idx, first_vert_V2_idx, middle_vertex_idx, closing_vert_V2_idx)
            verts_ordered_V2_indices = [x.index for x in verts_ordered_V2]



        #### Check if when there are two-not-connected selections both have the same number of verts. If not terminate the script.
        if ((self.selection_U2_exists and len(verts_ordered_U) != len(verts_ordered_U2)) or (self.selection_V2_exists and len(verts_ordered_V) != len(verts_ordered_V2))):
            # Display a warning.
            self.report({'WARNING'}, "Both selections must have the same number of edges")

            self.cleanup_on_interruption()

            self.stopping_errors = True

            return{'CANCELLED'}



        #### Calculate edges U proportions.

        # Sum selected edges U lengths.
        edges_lengths_U = []
        edges_lengths_sum_U = 0

        if self.selection_U_exists:
            edges_lengths_U, edges_lengths_sum_U = self.get_chain_length(self.main_object, verts_ordered_U)

        if self.selection_U2_exists:
            edges_lengths_U2, edges_lengths_sum_U2 = self.get_chain_length(self.main_object, verts_ordered_U2)

        # Sum selected edges V lengths.
        edges_lengths_V = []
        edges_lengths_sum_V = 0

        if self.selection_V_exists:
            edges_lengths_V, edges_lengths_sum_V = self.get_chain_length(self.main_object, verts_ordered_V)

        if self.selection_V2_exists:
            edges_lengths_V2, edges_lengths_sum_V2 = self.get_chain_length(self.main_object, verts_ordered_V2)


        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = bpy.context.scene.SURFSK_precision)
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


        # Proportions U.
        edges_proportions_U = []
        edges_proportions_U = self.get_edges_proportions(edges_lengths_U, edges_lengths_sum_U, self.selection_U_exists, self.edges_U)
        verts_count_U = len(edges_proportions_U) + 1

        if self.selection_U2_exists:
            edges_proportions_U2 = []
            edges_proportions_U2 = self.get_edges_proportions(edges_lengths_U2, edges_lengths_sum_U2, self.selection_U2_exists, self.edges_V)
            verts_count_U2 = len(edges_proportions_U2) + 1

        # Proportions V.
        edges_proportions_V = []
        edges_proportions_V = self.get_edges_proportions(edges_lengths_V, edges_lengths_sum_V, self.selection_V_exists, self.edges_V)
        verts_count_V = len(edges_proportions_V) + 1

        if self.selection_V2_exists:
            edges_proportions_V2 = []
            edges_proportions_V2 = self.get_edges_proportions(edges_lengths_V2, edges_lengths_sum_V2, self.selection_V2_exists, self.edges_V)
            verts_count_V2 = len(edges_proportions_V2) + 1








        #### Cyclic Follow: simplify sketched curves, make them Cyclic, and complete the actual sketched curves with a "closing segment".
        if self.cyclic_follow and not self.selection_V_exists and not ((self.selection_U_exists and not self.selection_U_is_closed) or (self.selection_U2_exists and not self.selection_U2_is_closed)):
            simplified_spline_coords = []
            simplified_curve = []
            ob_simplified_curve = []
            splines_first_v_co = []
            for i in range(len(self.main_splines.data.splines)):
                # Create a curve object for the actual spline "cyclic extension".
                simplified_curve.append(bpy.data.curves.new('SURFSKIO_simpl_crv', 'CURVE'))
                ob_simplified_curve.append(bpy.data.objects.new('SURFSKIO_simpl_crv', simplified_curve[i]))
                bpy.context.scene.objects.link(ob_simplified_curve[i])

                simplified_curve[i].dimensions = "3D"

                spline_coords = []
                for bp in self.main_splines.data.splines[i].bezier_points:
                    spline_coords.append(bp.co)

                # Simplification.
                simplified_spline_coords.append(self.simplify_spline(spline_coords, 5))

                # Get the coordinates of the first vert of the actual spline.
                splines_first_v_co.append(simplified_spline_coords[i][0])


                # Generate the spline.
                spline = simplified_curve[i].splines.new('BEZIER')
                spline.bezier_points.add(len(simplified_spline_coords[i]) - 1) # less one because one point is added when the spline is created.
                for p in range(0, len(simplified_spline_coords[i])):
                    spline.bezier_points[p].co = simplified_spline_coords[i][p]


                spline.use_cyclic_u = True

                spline_bp_count = len(spline.bezier_points)

                bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
                bpy.data.objects[ob_simplified_curve[i].name].select = True
                bpy.context.scene.objects.active = bpy.context.scene.objects[ob_simplified_curve[i].name]

                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
                bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
                bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')
                bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


                # Select the "closing segment", and subdivide it.
                ob_simplified_curve[i].data.splines[0].bezier_points[0].select_control_point = True
                ob_simplified_curve[i].data.splines[0].bezier_points[0].select_left_handle = True
                ob_simplified_curve[i].data.splines[0].bezier_points[0].select_right_handle = True

                ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_control_point = True
                ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_left_handle = True
                ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].select_right_handle = True

                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
                segments = sqrt((ob_simplified_curve[i].data.splines[0].bezier_points[0].co - ob_simplified_curve[i].data.splines[0].bezier_points[spline_bp_count - 1].co).length / self.average_gp_segment_length)
                for t in range(2):
                    bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = segments)


                # Delete the other vertices and make it non-cyclic to keep only the needed verts of the "closing segment".
                bpy.ops.curve.select_all(action = 'INVERT')
                bpy.ops.curve.delete(type='VERT')
                ob_simplified_curve[i].data.splines[0].use_cyclic_u = False
                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


                # Add the points of the "closing segment" to the original curve from grease pencil stroke.
                first_new_index = len(self.main_splines.data.splines[i].bezier_points)
                self.main_splines.data.splines[i].bezier_points.add(len(ob_simplified_curve[i].data.splines[0].bezier_points) - 1)
                for t in range(1, len(ob_simplified_curve[i].data.splines[0].bezier_points)):
                    self.main_splines.data.splines[i].bezier_points[t - 1 + first_new_index].co = ob_simplified_curve[i].data.splines[0].bezier_points[t].co


                # Delete the temporal curve.
                bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
                bpy.data.objects[ob_simplified_curve[i].name].select = True
                bpy.context.scene.objects.active = bpy.context.scene.objects[ob_simplified_curve[i].name]

                bpy.ops.object.delete()



        #### Get the coords of the points distributed along the sketched strokes, with proportions-U of the first selection.
        pts_on_strokes_with_proportions_U = self.distribute_pts(self.main_splines.data.splines, edges_proportions_U)

        sketched_splines_parsed = []

        if self.selection_U2_exists:
            # Initialize the multidimensional list with the proportions of all the segments.
            proportions_loops_crossing_strokes = []
            for i in range(len(pts_on_strokes_with_proportions_U)):
                proportions_loops_crossing_strokes.append([])

                for t in range(len(pts_on_strokes_with_proportions_U[0])):
                    proportions_loops_crossing_strokes[i].append(None)


            # Calculate the proportions of each segment of the loops-U from pts_on_strokes_with_proportions_U.
            for lp in range(len(pts_on_strokes_with_proportions_U[0])):
                loop_segments_lengths = []

                for st in range(len(pts_on_strokes_with_proportions_U)):
                    if st == 0: # When on the first stroke, add the segment from the selection to the dirst stroke.
                        loop_segments_lengths.append(((self.main_object.matrix_world * verts_ordered_U[lp].co) - pts_on_strokes_with_proportions_U[0][lp]).length)

                    if st != len(pts_on_strokes_with_proportions_U) - 1: # For all strokes except for the last, calculate the distance from the actual stroke to the next.
                        loop_segments_lengths.append((pts_on_strokes_with_proportions_U[st][lp] - pts_on_strokes_with_proportions_U[st + 1][lp]).length)

                    if st == len(pts_on_strokes_with_proportions_U) - 1: # When on the last stroke, add the segments from the last stroke to the second selection.
                        loop_segments_lengths.append((pts_on_strokes_with_proportions_U[st][lp] - (self.main_object.matrix_world * verts_ordered_U2[lp].co)).length)

                # Calculate full loop length.
                loop_seg_lengths_sum = 0
                for i in range(len(loop_segments_lengths)):
                    loop_seg_lengths_sum += loop_segments_lengths[i]

                # Fill the multidimensional list with the proportions of all the segments.
                for st in range(len(pts_on_strokes_with_proportions_U)):
                    proportions_loops_crossing_strokes[st][lp] = loop_segments_lengths[st] / loop_seg_lengths_sum


            # Calculate proportions for each stroke.
            for st in range(len(pts_on_strokes_with_proportions_U)):
                actual_stroke_spline = []
                actual_stroke_spline.append(self.main_splines.data.splines[st]) # Needs to be a list for the "distribute_pts" method.

                # Calculate the proportions for the actual stroke.
                actual_edges_proportions_U = []
                for i in range(len(edges_proportions_U)):
                    proportions_sum = 0

                    # Sum the proportions of this loop up to the actual.
                    for t in range(0, st + 1):
                        proportions_sum += proportions_loops_crossing_strokes[t][i]

                    actual_edges_proportions_U.append(edges_proportions_U[i] - ((edges_proportions_U[i] - edges_proportions_U2[i]) * proportions_sum))  # i + 1, because proportions_loops_crossing_strokes refers to loops, and the proportions refer to edges, so we start at the element 1 of proportions_loops_crossing_strokes instead of element 0.


                points_actual_spline = self.distribute_pts(actual_stroke_spline, actual_edges_proportions_U)
                sketched_splines_parsed.append(points_actual_spline[0])

        else:
            sketched_splines_parsed = pts_on_strokes_with_proportions_U



        #### If the selection type is "TWO_NOT_CONNECTED" replace the points of the last spline with the points in the "target" selection.
        if selection_type == "TWO_NOT_CONNECTED":
            if self.selection_U2_exists:
                for i in range(0, len(sketched_splines_parsed[len(sketched_splines_parsed) - 1])):
                    sketched_splines_parsed[len(sketched_splines_parsed) - 1][i] = self.main_object.matrix_world * verts_ordered_U2[i].co


        #### Create temporary curves along the "control-points" found on the sketched curves and the mesh selection.
        mesh_ctrl_pts_name = "SURFSKIO_ctrl_pts"
        me = bpy.data.meshes.new(mesh_ctrl_pts_name)
        ob_ctrl_pts = bpy.data.objects.new(mesh_ctrl_pts_name, me)
        ob_ctrl_pts.data = me
        bpy.context.scene.objects.link(ob_ctrl_pts)


        cyclic_loops_U = []
        first_verts = []
        second_verts = []
        last_verts = []
        for i in range(0, verts_count_U):
            vert_num_in_spline = 1

            if self.selection_U_exists:
                ob_ctrl_pts.data.vertices.add(1)
                last_v = ob_ctrl_pts.data.vertices[len(ob_ctrl_pts.data.vertices) - 1]
                last_v.co = self.main_object.matrix_world * verts_ordered_U[i].co

                vert_num_in_spline += 1


            for t in range(0, len(sketched_splines_parsed)):
                ob_ctrl_pts.data.vertices.add(1)
                v = ob_ctrl_pts.data.vertices[len(ob_ctrl_pts.data.vertices) - 1]
                v.co = sketched_splines_parsed[t][i]


                if vert_num_in_spline > 1:
                    ob_ctrl_pts.data.edges.add(1)
                    ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].vertices[0] = len(ob_ctrl_pts.data.vertices) - 2
                    ob_ctrl_pts.data.edges[len(ob_ctrl_pts.data.edges) - 1].vertices[1] = len(ob_ctrl_pts.data.vertices) - 1

                if t == 0:
                    first_verts.append(v.index)

                if t == 1:
                    second_verts.append(v.index)

                if t == len(sketched_splines_parsed) - 1:
                    last_verts.append(v.index)


                last_v = v

                vert_num_in_spline += 1


        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[ob_ctrl_pts.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[ob_ctrl_pts.name]

        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.mesh.select_all(action='DESELECT')
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


        #### Determine which loops-U will be "Cyclic".
        for i in range(0, len(first_verts)):
            if self.automatic_join and not self.cyclic_cross and selection_type != "TWO_CONNECTED" and len(self.main_splines.data.splines) >= 3: # When there is Cyclic Cross there is no need of Automatic Join, (and there are at least three strokes).
                v = ob_ctrl_pts.data.vertices

                first_point_co = v[first_verts[i]].co
                second_point_co = v[second_verts[i]].co
                last_point_co = v[last_verts[i]].co

                # Coordinates of the point in the center of both the first and last verts.
                verts_center_co = [(first_point_co[0] + last_point_co[0]) / 2, (first_point_co[1] + last_point_co[1]) / 2, (first_point_co[2] + last_point_co[2]) / 2]

                vec_A = second_point_co - first_point_co
                vec_B = second_point_co - mathutils.Vector(verts_center_co)


                # Calculate the length of the first segment of the loop, and the length it would have after moving the first vert to the middle position between first and last.
                length_original = (second_point_co - first_point_co).length
                length_target = (second_point_co - mathutils.Vector(verts_center_co)).length

                angle = vec_A.angle(vec_B) / math.pi


                if length_target <= length_original * 1.03 * self.join_stretch_factor and angle <= 0.008 * self.join_stretch_factor and not self.selection_U_exists: # If the target length doesn't stretch too much, and the its angle doesn't change to much either.
                    cyclic_loops_U.append(True)

                    # Move the first vert to the center coordinates.
                    ob_ctrl_pts.data.vertices[first_verts[i]].co = verts_center_co

                    # Select the last verts from Cyclic loops, for later deletion all at once.
                    v[last_verts[i]].select = True

                else:
                    cyclic_loops_U.append(False)

            else:
                if self.cyclic_cross and not self.selection_U_exists and not ((self.selection_V_exists and not self.selection_V_is_closed) or (self.selection_V2_exists and not self.selection_V2_is_closed)): # If "Cyclic Cross" is active then "all" crossing curves become cyclic.
                    cyclic_loops_U.append(True)
                else:
                    cyclic_loops_U.append(False)

        # The cyclic_loops_U list needs to be reversed.
        cyclic_loops_U.reverse()

        # Delete the previously selected (last_)verts.
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.mesh.delete('INVOKE_REGION_WIN', type='VERT')
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

        # Create curves from control points.
        bpy.ops.object.convert('INVOKE_REGION_WIN', target='CURVE', keep_original=False)
        ob_curves_surf = bpy.context.scene.objects.active
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.curve.spline_type_set('INVOKE_REGION_WIN', type='BEZIER')
        bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')

        # Make Cyclic the splines designated as Cyclic.
        for i in range(0, len(cyclic_loops_U)):
            ob_curves_surf.data.splines[i].use_cyclic_u = cyclic_loops_U[i]


        #### Get the coords of all points on first loop-U, for later comparison with its subdivided version, to know which points of the loops-U are crossed by the original strokes. The indices wiil be the same for the other loops-U.
        if self.loops_on_strokes:
            coords_loops_U_control_points = []
            for p in ob_ctrl_pts.data.splines[0].bezier_points:
                coords_loops_U_control_points.append(["%.4f" % p.co[0], "%.4f" % p.co[1], "%.4f" % p.co[2]])

            tuple(coords_loops_U_control_points)


        # Calculate number of edges-V in case option "Loops on strokes" is active or inactive.
        if self.loops_on_strokes and not self.selection_V_exists:
                edges_V_count = len(self.main_splines.data.splines) * self.edges_V
        else:
            edges_V_count = len(edges_proportions_V)


        # The Follow precision will vary depending on the number of Follow face-loops.
        precision_multiplier = round(2 + (edges_V_count / 15))

        curve_cuts = bpy.context.scene.SURFSK_precision * precision_multiplier

        # Subdivide the curves.
        bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = curve_cuts)

        # The verts position shifting that happens with splines subdivision. For later reorder splines points.
        verts_position_shift = curve_cuts + 1

        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


        # Reorder coordinates of the points of each spline to put the first point of the spline starting at the position it was the first point before sudividing the curve. And make a new curve object per spline (to handle memory better later).
        splines_U_objects = []
        for i in range(len(ob_curves_surf.data.splines)):
            spline_U_curve = bpy.data.curves.new('SURFSKIO_spline_U_' + str(i), 'CURVE')
            ob_spline_U = bpy.data.objects.new('SURFSKIO_spline_U_' + str(i), spline_U_curve)
            bpy.context.scene.objects.link(ob_spline_U)

            spline_U_curve.dimensions = "3D"


            # Add points to the spline in the new curve object.
            ob_spline_U.data.splines.new('BEZIER')
            for t in range(len(ob_curves_surf.data.splines[i].bezier_points)):
                if cyclic_loops_U[i] == True and not self.selection_U_exists: # If the loop is cyclic.
                    if t + verts_position_shift <= len(ob_curves_surf.data.splines[i].bezier_points) - 1:
                        point_index = t + verts_position_shift
                    else:
                        point_index = t + verts_position_shift - len(ob_curves_surf.data.splines[i].bezier_points)
                else:
                    point_index = t

                if t > 0: # to avoid adding the first point since it's added when the spline is created.
                    ob_spline_U.data.splines[0].bezier_points.add(1)
                ob_spline_U.data.splines[0].bezier_points[t].co = ob_curves_surf.data.splines[i].bezier_points[point_index].co


            if cyclic_loops_U[i] == True and not self.selection_U_exists: # If the loop is cyclic.
                # Add a last point at the same location as the first one.
                ob_spline_U.data.splines[0].bezier_points.add(1)
                ob_spline_U.data.splines[0].bezier_points[len(ob_spline_U.data.splines[0].bezier_points) - 1].co = ob_spline_U.data.splines[0].bezier_points[0].co
            else:
                ob_spline_U.data.splines[0].use_cyclic_u = False


            splines_U_objects.append(ob_spline_U)


            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[ob_spline_U.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[ob_spline_U.name]



        #### When option "Loops on strokes" is active each "Cross" loop will have its own proportions according to where the original strokes "touch" them.
        if self.loops_on_strokes:
            # Get the indices of points where the original strokes "touch" loops-U.
            points_U_crossed_by_strokes = []
            for i in range(len(splines_U_objects[0].data.splines[0].bezier_points)):
                bp = splines_U_objects[0].data.splines[0].bezier_points[i]
                if ["%.4f" % bp.co[0], "%.4f" % bp.co[1], "%.4f" % bp.co[2]] in coords_loops_U_control_points:
                    points_U_crossed_by_strokes.append(i)

            # Make a dictionary with the number of the edge, in the selected chain V, corresponding to each stroke.
            edge_order_number_for_splines = {}
            if self.selection_V_exists:
                # For two-connected selections add a first hypothetic stroke at the begining.
                if selection_type == "TWO_CONNECTED":
                    edge_order_number_for_splines[0] = 0


                for i in range(len(self.main_splines.data.splines)):
                    sp = self.main_splines.data.splines[i]
                    v_idx, dist_temp = self.shortest_distance(self.main_object, sp.bezier_points[0].co, verts_ordered_V_indices)

                    edge_idx_in_chain = verts_ordered_V_indices.index(v_idx) # Get the position (edges count) of the vert v_idx in the selected chain V.

                    # For two-connected selections the strokes go after the hypothetic stroke added before, so the index adds one per spline.
                    if selection_type == "TWO_CONNECTED":
                        spline_number = i + 1
                    else:
                        spline_number = i

                    edge_order_number_for_splines[spline_number] = edge_idx_in_chain


                    # Get the first and last verts indices for later comparison.
                    if i == 0:
                        first_v_idx = v_idx
                    elif i == len(self.main_splines.data.splines) - 1:
                        last_v_idx = v_idx


                if self.selection_V_is_closed:
                    # If there is no last stroke on the last vertex (same as first vertex), add a hypothetic spline at last vert order.
                    if first_v_idx != last_v_idx:
                        edge_order_number_for_splines[(len(self.main_splines.data.splines) - 1) + 1] = len(verts_ordered_V_indices) - 1
                    else:
                        if self.cyclic_cross:
                            edge_order_number_for_splines[len(self.main_splines.data.splines) - 1] = len(verts_ordered_V_indices) - 2
                            edge_order_number_for_splines[(len(self.main_splines.data.splines) - 1) + 1] = len(verts_ordered_V_indices) - 1
                        else:
                            edge_order_number_for_splines[len(self.main_splines.data.splines) - 1] = len(verts_ordered_V_indices) - 1



        #### Get the coords of the points distributed along the "crossing curves", with appropriate proportions-V.
        surface_splines_parsed = []
        for i in range(len(splines_U_objects)):
            sp_ob = splines_U_objects[i]
            # If "Loops on strokes" option is active, calculate the proportions for each loop-U.
            if self.loops_on_strokes:
                # Segments distances from stroke to stroke.
                dist = 0
                full_dist = 0
                segments_distances = []
                for t in range(len(sp_ob.data.splines[0].bezier_points)):
                    bp = sp_ob.data.splines[0].bezier_points[t]

                    if t == 0:
                        last_p = bp.co
                    else:
                        actual_p = bp.co
                        dist += (last_p - actual_p).length

                        if t in points_U_crossed_by_strokes:
                            segments_distances.append(dist)
                            full_dist += dist

                            dist = 0

                        last_p = actual_p

                # Calculate Proportions.
                used_edges_proportions_V = []
                for t in range(len(segments_distances)):
                    if self.selection_V_exists:
                        if t == 0:
                            order_number_last_stroke = 0

                        segment_edges_length_V = 0
                        segment_edges_length_V2 = 0
                        for order in range(order_number_last_stroke, edge_order_number_for_splines[t + 1]):
                            segment_edges_length_V += edges_lengths_V[order]
                            if self.selection_V2_exists:
                                segment_edges_length_V2 += edges_lengths_V2[order]


                        for order in range(order_number_last_stroke, edge_order_number_for_splines[t + 1]):
                            # Calculate each "sub-segment" (the ones between each stroke) length.
                            if self.selection_V2_exists:
                                proportion_sub_seg = (edges_lengths_V2[order] - ((edges_lengths_V2[order] - edges_lengths_V[order]) / len(splines_U_objects) * i)) / (segment_edges_length_V2 - (segment_edges_length_V2 - segment_edges_length_V) / len(splines_U_objects) * i)
                                sub_seg_dist = segments_distances[t] * proportion_sub_seg
                            else:
                                proportion_sub_seg = edges_lengths_V[order] / segment_edges_length_V
                                sub_seg_dist = segments_distances[t] * proportion_sub_seg

                            used_edges_proportions_V.append(sub_seg_dist / full_dist)

                        order_number_last_stroke = edge_order_number_for_splines[t + 1]

                    else:
                        for c in range(self.edges_V):
                            # Calculate each "sub-segment" (the ones between each stroke) length.
                            sub_seg_dist = segments_distances[t] / self.edges_V
                            used_edges_proportions_V.append(sub_seg_dist / full_dist)

                actual_spline = self.distribute_pts(sp_ob.data.splines, used_edges_proportions_V)
                surface_splines_parsed.append(actual_spline[0])

            else:
                if self.selection_V2_exists:
                    used_edges_proportions_V = []
                    for p in range(len(edges_proportions_V)):
                        used_edges_proportions_V.append(edges_proportions_V2[p] - ((edges_proportions_V2[p] - edges_proportions_V[p]) / len(splines_U_objects) * i))
                else:
                    used_edges_proportions_V = edges_proportions_V

                actual_spline = self.distribute_pts(sp_ob.data.splines, used_edges_proportions_V)
                surface_splines_parsed.append(actual_spline[0])




        # Set the verts of the first and last splines to the locations of the respective verts in the selections.
        if self.selection_V_exists:
            for i in range(0, len(surface_splines_parsed[0])):
                surface_splines_parsed[len(surface_splines_parsed) - 1][i] = self.main_object.matrix_world * verts_ordered_V[i].co

        if selection_type == "TWO_NOT_CONNECTED":
            if self.selection_V2_exists:
                for i in range(0, len(surface_splines_parsed[0])):
                    surface_splines_parsed[0][i] = self.main_object.matrix_world * verts_ordered_V2[i].co




        # When "Automatic join" option is active (and the selection type is not "TWO_CONNECTED"), merge the verts of the tips of the loops when they are "near enough".
        if self.automatic_join and selection_type != "TWO_CONNECTED":
            #### Join the tips of "Follow" loops that are near enough and must be "closed".
            if not self.selection_V_exists and len(edges_proportions_U) >= 3:
                for i in range(len(surface_splines_parsed[0])):
                    sp = surface_splines_parsed
                    loop_segment_dist = (sp[0][i] - sp[1][i]).length
                    full_loop_dist = loop_segment_dist * self.edges_U

                    verts_middle_position_co = [(sp[0][i][0] + sp[len(sp) - 1][i][0]) / 2, (sp[0][i][1] + sp[len(sp) - 1][i][1]) / 2, (sp[0][i][2] + sp[len(sp) - 1][i][2]) / 2]

                    points_original = []
                    points_original.append(sp[1][i])
                    points_original.append(sp[0][i])

                    points_target = []
                    points_target.append(sp[1][i])
                    points_target.append(mathutils.Vector(verts_middle_position_co))

                    vec_A = points_original[0] - points_original[1]
                    vec_B = points_target[0] - points_target[1]


                    angle = vec_A.angle(vec_B) / math.pi

                    edge_new_length = (mathutils.Vector(verts_middle_position_co) - sp[1][i]).length

                    if edge_new_length <= loop_segment_dist * 1.5 * self.join_stretch_factor and angle < 0.25 * self.join_stretch_factor: # If after moving the verts to the middle point, the segment doesn't stretch too much.
                        if not (self.selection_U_exists and i == 0) and not (self.selection_U2_exists and i == len(surface_splines_parsed[0]) - 1): # Avoid joining when the actual loop must be merged with the original mesh.
                            # Change the coords of both verts to the middle position.
                            surface_splines_parsed[0][i] = verts_middle_position_co
                            surface_splines_parsed[len(surface_splines_parsed) - 1][i] = verts_middle_position_co



        #### Delete object with control points and object from grease pencil convertion.
        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[ob_ctrl_pts.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[ob_ctrl_pts.name]

        bpy.ops.object.delete()


        for sp_ob in splines_U_objects:
            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[sp_ob.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[sp_ob.name]

            bpy.ops.object.delete()




        #### Generate surface.

        # Get all verts coords.
        all_surface_verts_co = []
        for i in range(0, len(surface_splines_parsed)):
            # Get coords of all verts and make a list with them
            for pt_co in surface_splines_parsed[i]:
                all_surface_verts_co.append(pt_co)


        # Define verts for each face.
        all_surface_faces = []
        for i in range(0, len(all_surface_verts_co) - len(surface_splines_parsed[0])):
            if ((i + 1) / len(surface_splines_parsed[0]) != int((i + 1) / len(surface_splines_parsed[0]))):
                all_surface_faces.append([i+1, i , i + len(surface_splines_parsed[0]), i + len(surface_splines_parsed[0]) + 1])


        # Build the mesh.
        surf_me_name = "SURFSKIO_surface"
        me_surf = bpy.data.meshes.new(surf_me_name)

        me_surf.from_pydata(all_surface_verts_co, [], all_surface_faces)

        me_surf.update()

        ob_surface = bpy.data.objects.new(surf_me_name, me_surf)
        bpy.context.scene.objects.link(ob_surface)


        # Select all the "unselected but participating" verts, from closed selection or double selections with middle-vertex, for later join with remove doubles.
        for v_idx in single_unselected_verts:
            self.main_object.data.vertices[v_idx].select = True


        #### Join the new mesh to the main object.
        ob_surface.select = True
        self.main_object.select = True
        bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]

        bpy.ops.object.join('INVOKE_REGION_WIN')

        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

        bpy.ops.mesh.remove_doubles('INVOKE_REGION_WIN', threshold=0.0001)
        bpy.ops.mesh.normals_make_consistent('INVOKE_REGION_WIN', inside=False)
        bpy.ops.mesh.select_all('INVOKE_REGION_WIN', action='DESELECT')



        return{'FINISHED'}



    def execute(self, context):
        self.initial_global_undo_state = bpy.context.user_preferences.edit.use_global_undo

        bpy.context.user_preferences.edit.use_global_undo = False

        if not self.is_fill_faces:
            bpy.ops.wm.context_set_value(data_path='tool_settings.mesh_select_mode', value='True, False, False')

            # Build splines from the "last saved splines".
            last_saved_curve = bpy.data.curves.new('SURFSKIO_last_crv', 'CURVE')
            self.main_splines = bpy.data.objects.new('SURFSKIO_last_crv', last_saved_curve)
            bpy.context.scene.objects.link(self.main_splines)

            last_saved_curve.dimensions = "3D"

            for sp in self.last_strokes_splines_coords:
                spline = self.main_splines.data.splines.new('BEZIER')
                spline.bezier_points.add(len(sp) - 1) # less one because one point is added when the spline is created.
                for p in range(0, len(sp)):
                    spline.bezier_points[p].co = [sp[p][0], sp[p][1], sp[p][2]]


            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.main_splines.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.main_splines.name]

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
            bpy.ops.curve.handle_type_set(type='VECTOR') # Important to make it vector first and then automatic, otherwise the tips handles get too big and distort the shrinkwrap results later.
            bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type='AUTOMATIC')
            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


            self.main_splines.name = "SURFSKIO_temp_strokes"


            if self.is_crosshatch:
                strokes_for_crosshatch = True
                strokes_for_rectangular_surface = False
            else:
                strokes_for_rectangular_surface = True
                strokes_for_crosshatch = False


            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.main_object.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


            if strokes_for_rectangular_surface:
                self.rectangular_surface()
            elif strokes_for_crosshatch:
                self.crosshatch_surface_execute()


            #### Delete main splines
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.main_splines.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.main_splines.name]

            bpy.ops.object.delete()

            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.main_object.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


        bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state

        return{'FINISHED'}



    def invoke(self, context, event):
        self.initial_global_undo_state = bpy.context.user_preferences.edit.use_global_undo

        self.main_object = bpy.context.scene.objects.active
        self.main_object_selected_verts_count = int(self.main_object.data.total_vert_sel)


        bpy.context.user_preferences.edit.use_global_undo = False


        bpy.ops.wm.context_set_value(data_path='tool_settings.mesh_select_mode', value='True, False, False')

        # Out Edit mode and In again to make sure the actual mesh selections are being taken.
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



        self.cyclic_cross = bpy.context.scene.SURFSK_cyclic_cross
        self.cyclic_follow = bpy.context.scene.SURFSK_cyclic_follow
        self.automatic_join = bpy.context.scene.SURFSK_automatic_join
        self.loops_on_strokes = bpy.context.scene.SURFSK_loops_on_strokes
        self.keep_strokes = bpy.context.scene.SURFSK_keep_strokes

        self.edges_U = 10

        if self.loops_on_strokes:
            self.edges_V = 3
        else:
            self.edges_V = 10

        self.is_fill_faces = False

        self.stopping_errors = False

        self.last_strokes_splines_coords = []


        #### Determine the type of the strokes.
        self.strokes_type = get_strokes_type(self.main_object)

        #### Check if it will be used grease pencil strokes or curves.
        if self.strokes_type == "GP_STROKES" or self.strokes_type == "EXTERNAL_CURVE": # If there are strokes to be used.
            if self.strokes_type == "GP_STROKES":
                # Convert grease pencil strokes to curve.
                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
                bpy.ops.gpencil.convert('INVOKE_REGION_WIN', type='CURVE', use_link_strokes=False)
                # XXX gpencil.convert now keep org object as active/selected, *not* newly created curve!
                # XXX This is far from perfect, but should work in most cases...
#                self.original_curve = bpy.context.object
                for ob in bpy.context.selected_objects:
                    if ob != bpy.context.scene.objects.active and ob.name.startswith("GP_Layer"):
                        self.original_curve = ob
                self.using_external_curves = False
            elif self.strokes_type == "EXTERNAL_CURVE":
                for ob in bpy.context.selected_objects:
                    if ob != bpy.context.scene.objects.active:
                        self.original_curve = ob
                self.using_external_curves = True

                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


            #### Make sure there are no objects left from erroneous executions of this operator, with the reserved names used here.
            for o in bpy.data.objects:
                if o.name.find("SURFSKIO_") != -1:
                    bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
                    bpy.data.objects[o.name].select = True
                    bpy.context.scene.objects.active = bpy.data.objects[o.name]

                    bpy.ops.object.delete()


            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.original_curve.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.original_curve.name]

            bpy.ops.object.duplicate('INVOKE_REGION_WIN')


            self.temporary_curve = bpy.context.scene.objects.active


            # Deselect all points of the curve
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



            # Delete splines with only a single isolated point.
            for i in range(len(self.temporary_curve.data.splines)):
                sp = self.temporary_curve.data.splines[i]

                if len(sp.bezier_points) == 1:
                    sp.bezier_points[0].select_control_point = True

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.curve.delete(type='VERT')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.temporary_curve.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.temporary_curve.name]

            #### Set a minimum number of points for crosshatch
            minimum_points_num = 15

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            # Check if the number of points of each curve has at least the number of points of minimum_points_num, which is a bit more than the face-loops limit. If not, subdivide to reach at least that number of ponts.
            for i in range(len(self.temporary_curve.data.splines)):
                sp = self.temporary_curve.data.splines[i]

                if len(sp.bezier_points) < minimum_points_num:
                    for bp in sp.bezier_points:
                        bp.select_control_point = True

                    if (len(sp.bezier_points) - 1) != 0:
                        subdivide_cuts = int((minimum_points_num - len(sp.bezier_points)) / (len(sp.bezier_points) - 1)) + 1 # Formula to get the number of cuts that will make a curve of N number of points have near to "minimum_points_num" points, when subdividing with this number of cuts.
                    else:
                        subdivide_cuts = 0


                    bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = subdivide_cuts)
                    bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



            # Detect if the strokes are a crosshatch and do it if it is.
            self.crosshatch_surface_invoke(self.temporary_curve)



            if not self.is_crosshatch:
                bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
                bpy.data.objects[self.temporary_curve.name].select = True
                bpy.context.scene.objects.active = bpy.data.objects[self.temporary_curve.name]

                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

                #### Set a minimum number of points for rectangular surfaces.
                minimum_points_num = 60

                # Check if the number of points of each curve has at least the number of points of minimum_points_num, which is a bit more than the face-loops limit. If not, subdivide to reach at least that number of ponts.
                for i in range(len(self.temporary_curve.data.splines)):
                    sp = self.temporary_curve.data.splines[i]

                    if len(sp.bezier_points) < minimum_points_num:
                        for bp in sp.bezier_points:
                            bp.select_control_point = True

                        if (len(sp.bezier_points) - 1) != 0:
                            subdivide_cuts = int((minimum_points_num - len(sp.bezier_points)) / (len(sp.bezier_points) - 1)) + 1 # Formula to get the number of cuts that will make a curve of N number of points have near to "minimum_points_num" points, when subdividing with this number of cuts.
                        else:
                            subdivide_cuts = 0


                        bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = subdivide_cuts)
                        bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')

                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')




            # Save coordinates of the actual strokes (as the "last saved splines").
            for sp_idx in range(len(self.temporary_curve.data.splines)):
                self.last_strokes_splines_coords.append([])
                for bp_idx in range(len(self.temporary_curve.data.splines[sp_idx].bezier_points)):
                    coords = self.temporary_curve.matrix_world * self.temporary_curve.data.splines[sp_idx].bezier_points[bp_idx].co
                    self.last_strokes_splines_coords[sp_idx].append([coords[0], coords[1], coords[2]])


            # Check for cyclic splines, put the first and last points in the middle of their actual positions.
            for sp_idx in range(len(self.temporary_curve.data.splines)):
                if self.temporary_curve.data.splines[sp_idx].use_cyclic_u == True:
                    first_p_co = self.last_strokes_splines_coords[sp_idx][0]
                    last_p_co = self.last_strokes_splines_coords[sp_idx][len(self.last_strokes_splines_coords[sp_idx]) - 1]

                    target_co = [(first_p_co[0] + last_p_co[0]) / 2, (first_p_co[1] + last_p_co[1]) / 2, (first_p_co[2] + last_p_co[2]) / 2]

                    self.last_strokes_splines_coords[sp_idx][0] = target_co
                    self.last_strokes_splines_coords[sp_idx][len(self.last_strokes_splines_coords[sp_idx]) - 1] = target_co

            tuple(self.last_strokes_splines_coords)



            # Estimation of the average length of the segments between each point of the grease pencil strokes. Will be useful to determine whether a curve should be made "Cyclic".
            segments_lengths_sum = 0
            segments_count = 0
            random_spline = self.temporary_curve.data.splines[0].bezier_points
            for i in range(0, len(random_spline)):
                if i != 0 and len(random_spline) - 1 >= i:
                    segments_lengths_sum += (random_spline[i - 1].co - random_spline[i].co).length
                    segments_count += 1

            self.average_gp_segment_length = segments_lengths_sum / segments_count


            #### Delete temporary strokes curve object
            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.temporary_curve.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.temporary_curve.name]

            bpy.ops.object.delete()


            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.main_object.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


            self.execute(context)
            bpy.context.user_preferences.edit.use_global_undo = False # Set again since "execute()" will turn it again to its initial value.


            #### If "Keep strokes" option is not active, delete original strokes curve object.
            if (not self.stopping_errors and not self.keep_strokes) or self.is_crosshatch:
                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
                bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
                bpy.data.objects[self.original_curve.name].select = True
                bpy.context.scene.objects.active = bpy.data.objects[self.original_curve.name]

                bpy.ops.object.delete()

                bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
                bpy.data.objects[self.main_object.name].select = True
                bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]

                bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



            #### Delete grease pencil strokes.
            if self.strokes_type == "GP_STROKES" and not self.stopping_errors:
                bpy.ops.gpencil.active_frame_delete('INVOKE_REGION_WIN')


            bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state


            if not self.stopping_errors:
                return {"FINISHED"}
            else:
                return{"CANCELLED"}

        elif self.strokes_type == "SELECTION_ALONE":
            self.is_fill_faces = True

            created_faces_count = self.fill_with_faces(self.main_object)

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state

            if created_faces_count == 0:
                self.report({'WARNING'}, "There aren't any strokes attatched to the object")
                return {"CANCELLED"}
            else:
                return {"FINISHED"}


        bpy.context.user_preferences.edit.use_global_undo = self.initial_global_undo_state

        if self.strokes_type == "EXTERNAL_NO_CURVE":
            self.report({'WARNING'}, "The secondary object is not a Curve.")
            return{"CANCELLED"}

        elif self.strokes_type == "MORE_THAN_ONE_EXTERNAL":
            self.report({'WARNING'}, "There shouldn't be more than one secondary object selected.")
            return{"CANCELLED"}

        elif self.strokes_type == "SINGLE_GP_STROKE_NO_SELECTION" or self.strokes_type == "SINGLE_CURVE_STROKE_NO_SELECTION":
            self.report({'WARNING'}, "It's needed at least one stroke and one selection, or two strokes.")
            return{"CANCELLED"}

        elif self.strokes_type == "NO_STROKES":
            self.report({'WARNING'}, "There aren't any strokes attatched to the object")
            return{"CANCELLED"}

        elif self.strokes_type == "CURVE_WITH_NON_BEZIER_SPLINES":
            self.report({'WARNING'}, "All splines must be Bezier.")
            return{"CANCELLED"}

        else:
            return{"CANCELLED"}


# Edit strokes operator.
class GPENCIL_OT_SURFSK_edit_strokes(bpy.types.Operator):
    bl_idname = "gpencil.surfsk_edit_strokes"
    bl_label = "Bsurfaces edit strokes"
    bl_description = "Edit the grease pencil strokes or curves used"


    def execute(self, context):
        #### Determine the type of the strokes.
        self.strokes_type = get_strokes_type(self.main_object)
        #### Check if strokes are grease pencil strokes or a curves object.
        selected_objs = bpy.context.selected_objects
        if self.strokes_type == "EXTERNAL_CURVE" or self.strokes_type == "SINGLE_CURVE_STROKE_NO_SELECTION":
            for ob in selected_objs:
                if ob != bpy.context.scene.objects.active:
                    curve_ob = ob

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[curve_ob.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[curve_ob.name]

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        elif self.strokes_type == "GP_STROKES" or self.strokes_type == "SINGLE_GP_STROKE_NO_SELECTION":
            #### Convert grease pencil strokes to curve.
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.gpencil.convert('INVOKE_REGION_WIN', type='CURVE', use_link_strokes=False)
            for ob in bpy.context.selected_objects:
                    if ob != bpy.context.scene.objects.active and ob.name.startswith("GP_Layer"):
                        ob_gp_strokes = ob

            #ob_gp_strokes = bpy.context.object

            #### Delete grease pencil strokes.
            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[self.main_object.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[self.main_object.name]

            bpy.ops.gpencil.active_frame_delete('INVOKE_REGION_WIN')


            #### Clean up curves.
            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[ob_gp_strokes.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[ob_gp_strokes.name]

            curve_crv = ob_gp_strokes.data
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.curve.spline_type_set('INVOKE_REGION_WIN', type="BEZIER")
            bpy.ops.curve.handle_type_set('INVOKE_REGION_WIN', type="AUTOMATIC")
            bpy.data.curves[curve_crv.name].show_handles = False
            bpy.data.curves[curve_crv.name].show_normal_face = False

        elif self.strokes_type == "EXTERNAL_NO_CURVE":
            self.report({'WARNING'}, "The secondary object is not a Curve.")
            return{"CANCELLED"}
        elif self.strokes_type == "MORE_THAN_ONE_EXTERNAL":
            self.report({'WARNING'}, "There shouldn't be more than one secondary object selected.")
            return{"CANCELLED"}
        elif self.strokes_type == "NO_STROKES" or self.strokes_type == "SELECTION_ALONE":
            self.report({'WARNING'}, "There aren't any strokes attatched to the object")
            return{"CANCELLED"}
        else:
            return{"CANCELLED"}



    def invoke (self, context, event):
        self.main_object = bpy.context.object

        self.execute(context)

        return {"FINISHED"}


class CURVE_OT_SURFSK_reorder_splines(bpy.types.Operator):
    bl_idname = "curve.surfsk_reorder_splines"
    bl_label = "Bsurfaces reorder splines"
    bl_description = "Defines the order of the splines by using grease pencil strokes"
    bl_options = {'REGISTER', 'UNDO'}

    def execute(self, context):
        objects_to_delete = []
        #### Convert grease pencil strokes to curve.
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.gpencil.convert('INVOKE_REGION_WIN', type='CURVE', use_link_strokes=False)
        for ob in bpy.context.selected_objects:
            if ob != bpy.context.scene.objects.active and ob.name.startswith("GP_Layer"):
                GP_strokes_curve = ob

        #GP_strokes_curve = bpy.context.object
        objects_to_delete.append(GP_strokes_curve)

        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[GP_strokes_curve.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[GP_strokes_curve.name]


        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='SELECT')
        bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = 100)
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

        bpy.ops.object.duplicate('INVOKE_REGION_WIN')
        GP_strokes_mesh = bpy.context.object
        objects_to_delete.append(GP_strokes_mesh)

        GP_strokes_mesh.data.resolution_u = 1
        bpy.ops.object.convert(target='MESH', keep_original=False)


        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[self.main_curve.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[self.main_curve.name]

        bpy.ops.object.duplicate('INVOKE_REGION_WIN')
        curves_duplicate_1 = bpy.context.object
        objects_to_delete.append(curves_duplicate_1)



        minimum_points_num = 500


        for x in range(round(minimum_points_num / 100)): # Some iterations since the subdivision operator has a limit of 100 subdivisions per iteration.
            #### Check if the number of points of each curve has at least the number of points of minimum_points_num. If not, subdivide to reach at least that number of ponts.
            for i in range(len(curves_duplicate_1.data.splines)):
                sp = curves_duplicate_1.data.splines[i]

                if len(sp.bezier_points) < minimum_points_num:
                    for bp in sp.bezier_points:
                        bp.select_control_point = True

                    if (len(sp.bezier_points) - 1) != 0:
                        subdivide_cuts = int((minimum_points_num - len(sp.bezier_points)) / (len(sp.bezier_points) - 1)) + 1 # Formula to get the number of cuts that will make a curve of N number of points have near to "minimum_points_num" points, when subdividing with this number of cuts.
                    else:
                        subdivide_cuts = 0

                    bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
                    bpy.ops.curve.subdivide('INVOKE_REGION_WIN', number_cuts = subdivide_cuts)
                    bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
                    bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


        bpy.ops.object.duplicate('INVOKE_REGION_WIN')
        curves_duplicate_2 = bpy.context.object
        objects_to_delete.append(curves_duplicate_2)


        #### Duplicate the duplicate and add Shrinkwrap to it, with the grease pencil strokes curve as target.
        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[curves_duplicate_2.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[curves_duplicate_2.name]

        bpy.ops.object.modifier_add('INVOKE_REGION_WIN', type='SHRINKWRAP')
        curves_duplicate_2.modifiers["Shrinkwrap"].wrap_method = "NEAREST_VERTEX"
        curves_duplicate_2.modifiers["Shrinkwrap"].target = GP_strokes_mesh
        bpy.ops.object.modifier_apply('INVOKE_REGION_WIN', apply_as='DATA', modifier='Shrinkwrap')


        #### Get the distance of each vert from its original position to its position with Shrinkwrap.
        nearest_points_coords = {}
        for st_idx in range(len(curves_duplicate_1.data.splines)):
            for bp_idx in range(len(curves_duplicate_1.data.splines[st_idx].bezier_points)):
                bp_1_co = curves_duplicate_1.matrix_world * curves_duplicate_1.data.splines[st_idx].bezier_points[bp_idx].co
                bp_2_co = curves_duplicate_2.matrix_world * curves_duplicate_2.data.splines[st_idx].bezier_points[bp_idx].co

                if bp_idx == 0:
                    shortest_dist = (bp_1_co - bp_2_co).length
                    nearest_points_coords[st_idx] = ("%.4f" % bp_2_co[0], "%.4f" % bp_2_co[1], "%.4f" % bp_2_co[2])

                dist = (bp_1_co - bp_2_co).length

                if dist < shortest_dist:
                    nearest_points_coords[st_idx] = ("%.4f" % bp_2_co[0], "%.4f" % bp_2_co[1], "%.4f" % bp_2_co[2])
                    shortest_dist = dist



        #### Get all coords of GP strokes points, for comparison.
        GP_strokes_coords = []
        for st_idx in range(len(GP_strokes_curve.data.splines)):
            GP_strokes_coords.append([("%.4f" % x if "%.4f" % x != "-0.00" else "0.00", "%.4f" % y if "%.4f" % y != "-0.00" else "0.00", "%.4f" % z if "%.4f" % z != "-0.00" else "0.00") for x, y, z in [bp.co for bp in GP_strokes_curve.data.splines[st_idx].bezier_points]])


        #### Check the point of the GP strokes with the same coords as the nearest points of the curves (with shrinkwrap).
        GP_connection_points = {} # Dictionary with GP stroke index as index, and a list as value. The list has as index the point index of the GP stroke nearest to the spline, and as value the spline index.
        for gp_st_idx in range(len(GP_strokes_coords)):
            GPvert_spline_relationship = {}

            for splines_st_idx in range(len(nearest_points_coords)):
                if nearest_points_coords[splines_st_idx] in GP_strokes_coords[gp_st_idx]:
                    GPvert_spline_relationship[GP_strokes_coords[gp_st_idx].index(nearest_points_coords[splines_st_idx])] = splines_st_idx


            GP_connection_points[gp_st_idx] = GPvert_spline_relationship


        #### Get the splines new order.
        splines_new_order = []
        for i in GP_connection_points:
            dict_keys = sorted(GP_connection_points[i].keys()) # Sort dictionaries by key

            for k in dict_keys:
                splines_new_order.append(GP_connection_points[i][k])



        #### Reorder.

        curve_original_name = self.main_curve.name

        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[self.main_curve.name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[self.main_curve.name]

        self.main_curve.name = "SURFSKIO_CRV_ORD"

        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')


        for sp_idx in range(len(self.main_curve.data.splines)):
            self.main_curve.data.splines[0].bezier_points[0].select_control_point = True

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            bpy.ops.curve.separate('EXEC_REGION_WIN')
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')



        #### Get the names of the separated splines objects in the original order.
        splines_unordered = {}
        for o in bpy.data.objects:
            if o.name.find("SURFSKIO_CRV_ORD") != -1:
                spline_order_string = o.name.partition(".")[2]

                if spline_order_string != "" and int(spline_order_string) > 0:
                    spline_order_index = int(spline_order_string) - 1
                    splines_unordered[spline_order_index] = o.name



        #### Join all splines objects in final order.
        for order_idx in splines_new_order:
            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[splines_unordered[order_idx]].select = True
            bpy.data.objects["SURFSKIO_CRV_ORD"].select = True
            bpy.context.scene.objects.active = bpy.data.objects["SURFSKIO_CRV_ORD"]

            bpy.ops.object.join('INVOKE_REGION_WIN')


        #### Go back to the original name of the curves object.
        bpy.context.object.name = curve_original_name


        #### Delete all unused objects.
        for o in objects_to_delete:
            bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
            bpy.data.objects[o.name].select = True
            bpy.context.scene.objects.active = bpy.data.objects[o.name]

            bpy.ops.object.delete()


        bpy.ops.object.select_all('INVOKE_REGION_WIN', action='DESELECT')
        bpy.data.objects[curve_original_name].select = True
        bpy.context.scene.objects.active = bpy.data.objects[curve_original_name]

        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')


        bpy.ops.gpencil.active_frame_delete('INVOKE_REGION_WIN')



        return {"FINISHED"}



    def invoke (self, context, event):
        self.main_curve = bpy.context.object


        there_are_GP_strokes = False
        try:
            #### Get the active grease pencil layer.
            strokes_num = len(self.main_curve.grease_pencil.layers.active.active_frame.strokes)

            if strokes_num > 0:
                there_are_GP_strokes = True
        except:
            pass


        if there_are_GP_strokes:
            self.execute(context)
            self.report({'INFO'}, "Splines have been reordered.")
        else:
            self.report({'WARNING'}, "Draw grease pencil strokes to connect splines.")

        return {"FINISHED"}




class CURVE_OT_SURFSK_first_points(bpy.types.Operator):
    bl_idname = "curve.surfsk_first_points"
    bl_label = "Bsurfaces set first points"
    bl_description = "Set the selected points as the first point of each spline"
    bl_options = {'REGISTER', 'UNDO'}



    def execute(self, context):
        splines_to_invert = []

        #### Check non-cyclic splines to invert.
        for i in range(len(self.main_curve.data.splines)):
            b_points = self.main_curve.data.splines[i].bezier_points

            if not i in self.cyclic_splines: # Only for non-cyclic splines
                if b_points[len(b_points) - 1].select_control_point:
                    splines_to_invert.append(i)


        #### Reorder points of cyclic splines, and set all handles to "Automatic".

        # Check first selected point.
        cyclic_splines_new_first_pt = {}
        for i in self.cyclic_splines:
            sp = self.main_curve.data.splines[i]

            for t in range(len(sp.bezier_points)):
                bp = sp.bezier_points[t]
                if bp.select_control_point or bp.select_right_handle or bp.select_left_handle:
                    cyclic_splines_new_first_pt[i] = t
                    break # To take only one if there are more.

        # Reorder.
        for spline_idx in cyclic_splines_new_first_pt:
            sp = self.main_curve.data.splines[spline_idx]

            spline_old_coords = []
            for bp_old in sp.bezier_points:
                coords = (bp_old.co[0], bp_old.co[1], bp_old.co[2])

                left_handle_type = str(bp_old.handle_left_type)
                left_handle_length = float(bp_old.handle_left.length)
                left_handle_xyz = (float(bp_old.handle_left.x), float(bp_old.handle_left.y), float(bp_old.handle_left.z))

                right_handle_type = str(bp_old.handle_right_type)
                right_handle_length = float(bp_old.handle_right.length)
                right_handle_xyz = (float(bp_old.handle_right.x), float(bp_old.handle_right.y), float(bp_old.handle_right.z))

                spline_old_coords.append([coords, left_handle_type, right_handle_type, left_handle_length, right_handle_length, left_handle_xyz, right_handle_xyz])


            for t in range(len(sp.bezier_points)):
                bp = sp.bezier_points

                if t + cyclic_splines_new_first_pt[spline_idx] + 1 <= len(bp) - 1:
                    new_index = t + cyclic_splines_new_first_pt[spline_idx] + 1
                else:
                    new_index = t + cyclic_splines_new_first_pt[spline_idx] + 1 - len(bp)

                bp[t].co = mathutils.Vector(spline_old_coords[new_index][0])

                bp[t].handle_left.length = spline_old_coords[new_index][3]
                bp[t].handle_right.length = spline_old_coords[new_index][4]

                bp[t].handle_left_type = "FREE"
                bp[t].handle_right_type = "FREE"

                bp[t].handle_left.x = spline_old_coords[new_index][5][0]
                bp[t].handle_left.y = spline_old_coords[new_index][5][1]
                bp[t].handle_left.z = spline_old_coords[new_index][5][2]

                bp[t].handle_right.x = spline_old_coords[new_index][6][0]
                bp[t].handle_right.y = spline_old_coords[new_index][6][1]
                bp[t].handle_right.z = spline_old_coords[new_index][6][2]

                bp[t].handle_left_type = spline_old_coords[new_index][1]
                bp[t].handle_right_type = spline_old_coords[new_index][2]



        #### Invert the non-cyclic splines designated above.
        for i in range(len(splines_to_invert)):
            bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')

            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
            self.main_curve.data.splines[splines_to_invert[i]].bezier_points[0].select_control_point = True
            bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')

            bpy.ops.curve.switch_direction()

        bpy.ops.curve.select_all('INVOKE_REGION_WIN', action='DESELECT')


        #### Keep selected the first vert of each spline.
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')
        for i in range(len(self.main_curve.data.splines)):
            if not self.main_curve.data.splines[i].use_cyclic_u:
                bp = self.main_curve.data.splines[i].bezier_points[0]
            else:
                bp = self.main_curve.data.splines[i].bezier_points[len(self.main_curve.data.splines[i].bezier_points) - 1]

            bp.select_control_point = True
            bp.select_right_handle = True
            bp.select_left_handle = True
        bpy.ops.object.editmode_toggle('INVOKE_REGION_WIN')




        return {'FINISHED'}



    def invoke (self, context, event):
        self.main_curve = bpy.context.object

        # Check if all curves are Bezier, and detect which ones are cyclic.
        self.cyclic_splines = []
        for i in range(len(self.main_curve.data.splines)):
            if self.main_curve.data.splines[i].type != "BEZIER":
                self.report({'WARNING'}, 'All splines must be Bezier type.')

                return {'CANCELLED'}
            else:
                if self.main_curve.data.splines[i].use_cyclic_u:
                    self.cyclic_splines.append(i)



        self.execute(context)
        self.report({'INFO'}, "First points have been set.")

        return {'FINISHED'}




def register():
    bpy.utils.register_class(VIEW3D_PT_tools_SURFSK_mesh)
    bpy.utils.register_class(VIEW3D_PT_tools_SURFSK_curve)
    bpy.utils.register_class(GPENCIL_OT_SURFSK_add_surface)
    bpy.utils.register_class(GPENCIL_OT_SURFSK_edit_strokes)
    bpy.utils.register_class(CURVE_OT_SURFSK_reorder_splines)
    bpy.utils.register_class(CURVE_OT_SURFSK_first_points)



    bpy.types.Scene.SURFSK_cyclic_cross = bpy.props.BoolProperty(
        name="Cyclic Cross",
        description="Make cyclic the face-loops crossing the strokes",
        default=False)

    bpy.types.Scene.SURFSK_cyclic_follow = bpy.props.BoolProperty(
        name="Cyclic Follow",
        description="Make cyclic the face-loops following the strokes",
        default=False)

    bpy.types.Scene.SURFSK_keep_strokes = bpy.props.BoolProperty(
        name="Keep strokes",
        description="Keeps the sketched strokes or curves after adding the surface",
        default=False)

    bpy.types.Scene.SURFSK_automatic_join = bpy.props.BoolProperty(
        name="Automatic join",
        description="Join automatically vertices of either surfaces generated by crosshatching, or from the borders of closed shapes",
        default=True)

    bpy.types.Scene.SURFSK_loops_on_strokes = bpy.props.BoolProperty(
        name="Loops on strokes",
        description="Make the loops match the paths of the strokes",
        default=True)

    bpy.types.Scene.SURFSK_precision = bpy.props.IntProperty(
        name="Precision",
        description="Precision level of the surface calculation",
        default=2,
        min=1,
        max=100)


def unregister():
    bpy.utils.unregister_class(VIEW3D_PT_tools_SURFSK_mesh)
    bpy.utils.unregister_class(VIEW3D_PT_tools_SURFSK_curve)
    bpy.utils.unregister_class(GPENCIL_OT_SURFSK_add_surface)
    bpy.utils.unregister_class(GPENCIL_OT_SURFSK_edit_strokes)
    bpy.utils.unregister_class(CURVE_OT_SURFSK_reorder_splines)
    bpy.utils.unregister_class(CURVE_OT_SURFSK_first_points)

    del bpy.types.Scene.SURFSK_precision
    del bpy.types.Scene.SURFSK_keep_strokes
    del bpy.types.Scene.SURFSK_automatic_join
    del bpy.types.Scene.SURFSK_cyclic_cross
    del bpy.types.Scene.SURFSK_cyclic_follow
    del bpy.types.Scene.SURFSK_loops_on_strokes



if __name__ == "__main__":
    register()