Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mesh_looptools.py - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 2a403dd3118c029fdff14bc7232d52f5924182e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 2
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program; if not, write to the Free Software Foundation,
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####

bl_info = {
    'name': "LoopTools",
    'author': "Bart Crouch",
    'version': (3, 2, 0),
    'blender': (2, 5, 7),
    'api': 35979,
    'location': "View3D > Toolbar and View3D > Specials (W-key)",
    'warning': "",
    'description': "Mesh modelling toolkit. Several tools to aid modelling",
    'wiki_url': "http://wiki.blender.org/index.php/Extensions:2.5/Py/"\
        "Scripts/Modeling/LoopTools",
    'tracker_url': "http://projects.blender.org/tracker/index.php?"\
        "func=detail&aid=26189",
    'category': 'Mesh'}


import bpy
import mathutils
import math


##########################################
####### General functions ################
##########################################


# used by all tools to improve speed on reruns
looptools_cache = {}


# force a full recalculation next time
def cache_delete(tool):
    if tool in looptools_cache:
        del looptools_cache[tool]


# check cache for stored information
def cache_read(tool, object, mesh, input_method, boundaries):
    # current tool not cached yet
    if tool not in looptools_cache:
        return(False, False, False, False, False)
    # check if selected object didn't change
    if object.name != looptools_cache[tool]["object"]:
        return(False, False, False, False, False)
    # check if input didn't change
    if input_method != looptools_cache[tool]["input_method"]:
        return(False, False, False, False, False)
    if boundaries != looptools_cache[tool]["boundaries"]:
        return(False, False, False, False, False)
    modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
        and mod.type == 'MIRROR']
    if modifiers != looptools_cache[tool]["modifiers"]:
        return(False, False, False, False, False)
    input = [v.index for v in mesh.vertices if v.select and not v.hide]
    if input != looptools_cache[tool]["input"]:
        return(False, False, False, False, False)
    # reading values
    single_loops = looptools_cache[tool]["single_loops"]
    loops = looptools_cache[tool]["loops"]
    derived = looptools_cache[tool]["derived"]
    mapping = looptools_cache[tool]["mapping"]
    
    return(True, single_loops, loops, derived, mapping)


# store information in the cache
def cache_write(tool, object, mesh, input_method, boundaries, single_loops,
loops, derived, mapping):
    # clear cache of current tool
    if tool in looptools_cache:
        del looptools_cache[tool]
    # prepare values to be saved to cache
    input = [v.index for v in mesh.vertices if v.select and not v.hide]
    modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
        and mod.type == 'MIRROR']
    # update cache
    looptools_cache[tool] = {"input": input, "object": object.name,
        "input_method": input_method, "boundaries": boundaries,
        "single_loops": single_loops, "loops": loops,
        "derived": derived, "mapping": mapping, "modifiers": modifiers}


# calculates natural cubic splines through all given knots
def calculate_cubic_splines(mesh_mod, tknots, knots):
    # hack for circular loops
    if knots[0] == knots[-1] and len(knots) > 1:
        circular = True
        k_new1 = []
        for k in range(-1, -5, -1):
            if k - 1 < -len(knots):
                k += len(knots)
            k_new1.append(knots[k-1])
        k_new2 = []
        for k in range(4):
            if k + 1 > len(knots) - 1:
                k -= len(knots)
            k_new2.append(knots[k+1])
        for k in k_new1:
            knots.insert(0, k)
        for k in k_new2:
            knots.append(k)
        t_new1 = []
        total1 = 0
        for t in range(-1, -5, -1):
            if t - 1 < -len(tknots):
                t += len(tknots)
            total1 += tknots[t] - tknots[t-1]
            t_new1.append(tknots[0] - total1)
        t_new2 = []
        total2 = 0
        for t in range(4):
            if t + 1 > len(tknots) - 1:
                t -= len(tknots)
            total2 += tknots[t+1] - tknots[t]
            t_new2.append(tknots[-1] + total2)
        for t in t_new1:
            tknots.insert(0, t)
        for t in t_new2:
            tknots.append(t)
    else:
        circular = False
    # end of hack
    
    n = len(knots)
    if n < 2:
        return False
    x = tknots[:]
    locs = [mesh_mod.vertices[k].co[:] for k in knots]
    result = []
    for j in range(3):
        a = []
        for i in locs:
            a.append(i[j])
        h = []
        for i in range(n-1):
            if x[i+1] - x[i] == 0:
                h.append(1e-8)
            else:
                h.append(x[i+1] - x[i])
        q = [False]
        for i in range(1, n-1):
            q.append(3/h[i]*(a[i+1]-a[i]) - 3/h[i-1]*(a[i]-a[i-1]))
        l = [1.0]
        u = [0.0]
        z = [0.0]
        for i in range(1, n-1):
            l.append(2*(x[i+1]-x[i-1]) - h[i-1]*u[i-1])
            if l[i] == 0:
                l[i] = 1e-8
            u.append(h[i] / l[i])
            z.append((q[i] - h[i-1] * z[i-1]) / l[i])
        l.append(1.0)
        z.append(0.0)
        b = [False for i in range(n-1)]
        c = [False for i in range(n)]
        d = [False for i in range(n-1)]
        c[n-1] = 0.0
        for i in range(n-2, -1, -1):
            c[i] = z[i] - u[i]*c[i+1]
            b[i] = (a[i+1]-a[i])/h[i] - h[i]*(c[i+1]+2*c[i])/3
            d[i] = (c[i+1]-c[i]) / (3*h[i])
        for i in range(n-1):
            result.append([a[i], b[i], c[i], d[i], x[i]])
    splines = []
    for i in range(len(knots)-1):
        splines.append([result[i], result[i+n-1], result[i+(n-1)*2]])
    if circular: # cleaning up after hack
        knots = knots[4:-4]
        tknots = tknots[4:-4]
    
    return(splines)


# calculates linear splines through all given knots
def calculate_linear_splines(mesh_mod, tknots, knots):
    splines = []
    for i in range(len(knots)-1):
        a = mesh_mod.vertices[knots[i]].co
        b = mesh_mod.vertices[knots[i+1]].co
        d = b-a
        t = tknots[i]
        u = tknots[i+1]-t
        splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
    
    return(splines)


# calculate a best-fit plane to the given vertices
def calculate_plane(mesh_mod, loop, method="best_fit", object=False):
    # getting the vertex locations
    locs = [mathutils.Vector(mesh_mod.vertices[v].co[:]) for v in loop[0]]
    
    # calculating the center of masss
    com = mathutils.Vector()
    for loc in locs:
        com += loc
    com /= len(locs)
    x, y, z = com
    
    if method == 'best_fit':
        # creating the covariance matrix
        mat = mathutils.Matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
            [0.0, 0.0, 0.0]])
        for loc in locs:
            mat[0][0] += (loc[0]-x)**2
            mat[0][1] += (loc[0]-x)*(loc[1]-y)
            mat[0][2] += (loc[0]-x)*(loc[2]-z)
            mat[1][0] += (loc[1]-y)*(loc[0]-x)
            mat[1][1] += (loc[1]-y)**2
            mat[1][2] += (loc[1]-y)*(loc[2]-z)
            mat[2][0] += (loc[2]-z)*(loc[0]-x)
            mat[2][1] += (loc[2]-z)*(loc[1]-y)
            mat[2][2] += (loc[2]-z)**2
        
        # calculating the normal to the plane
        normal = False
        try:
            mat.invert()
        except:
            if sum(mat[0]) == 0.0:
                normal = mathutils.Vector([1.0, 0.0, 0.0])
            elif sum(mat[1]) == 0.0:
                normal = mathutils.Vector([0.0, 1.0, 0.0])
            elif sum(mat[2]) == 0.0:
                normal = mathutils.Vector([0.0, 0.0, 1.0])
        if not normal:
            itermax = 500
            iter = 0
            vec = mathutils.Vector([1.0, 1.0, 1.0])
            vec2 = (vec*mat)/(vec*mat).length
            while vec != vec2 and iter<itermax:
                iter += 1
                vec = vec2
                vec2 = (vec*mat)/(vec*mat).length
            normal = vec2
    
    elif method == 'normal':
        # averaging the vertex normals
        v_normals = [mesh_mod.vertices[v].normal for v in loop[0]]
        normal = mathutils.Vector()
        for v_normal in v_normals:
            normal += v_normal
        normal /= len(v_normals)
        normal.normalize()
        
    elif method == 'view':
        # calculate view normal
        rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
            inverted()
        normal = mathutils.Vector([0.0, 0.0, 1.0]) * rotation
        if object:
            normal *= object.matrix_world.inverted().to_euler().to_matrix()
    
    return(com, normal)


# calculate splines based on given interpolation method (controller function)
def calculate_splines(interpolation, mesh_mod, tknots, knots):
    if interpolation == 'cubic':
        splines = calculate_cubic_splines(mesh_mod, tknots, knots[:])
    else: # interpolations == 'linear'
        splines = calculate_linear_splines(mesh_mod, tknots, knots[:])
    
    return(splines)


# check loops and only return valid ones
def check_loops(loops, mapping, mesh_mod):
    valid_loops = []
    for loop, circular in loops:
        # loop needs to have at least 3 vertices
        if len(loop) < 3:
            continue
        # loop needs at least 1 vertex in the original, non-mirrored mesh
        if mapping:
            all_virtual = True
            for vert in loop:
                if mapping[vert] > -1:
                    all_virtual = False
                    break
            if all_virtual:
                continue
        # vertices can not all be at the same location
        stacked = True
        for i in range(len(loop) - 1):
            if (mesh_mod.vertices[loop[i]].co - \
            mesh_mod.vertices[loop[i+1]].co).length > 1e-6:
                stacked = False
                break
        if stacked:
            continue    
        # passed all tests, loop is valid
        valid_loops.append([loop, circular])
    
    return(valid_loops)


# input: mesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(mesh):
    edge_faces = dict([[edge.key, []] for edge in mesh.edges if not edge.hide])
    for face in mesh.faces:
        if face.hide:
            continue
        for key in face.edge_keys:
            edge_faces[key].append(face.index)
    
    return(edge_faces)

# input: mesh (edge-faces optional), output: dict with face-face connections
def dict_face_faces(mesh, edge_faces=False):
    if not edge_faces:
        edge_faces = dict_edge_faces(mesh)
    
    connected_faces = dict([[face.index, []] for face in mesh.faces if \
        not face.hide])
    for face in mesh.faces:
        if face.hide:
            continue
        for edge_key in face.edge_keys:
            for connected_face in edge_faces[edge_key]:
                if connected_face == face.index:
                    continue
                connected_faces[face.index].append(connected_face)
    
    return(connected_faces)


# input: mesh, output: dict with the vert index as key and edge-keys as value
def dict_vert_edges(mesh):
    vert_edges = dict([[v.index, []] for v in mesh.vertices if not v.hide])
    for edge in mesh.edges:
        if edge.hide:
            continue
        for vert in edge.key:
            vert_edges[vert].append(edge.key)
    
    return(vert_edges)


# input: mesh, output: dict with the vert index as key and face index as value
def dict_vert_faces(mesh):
    vert_faces = dict([[v.index, []] for v in mesh.vertices if not v.hide])
    for face in mesh.faces:
        if not face.hide:
            for vert in face.vertices:
                vert_faces[vert].append(face.index)
                
    return(vert_faces)


# input: list of edge-keys, output: dictionary with vertex-vertex connections
def dict_vert_verts(edge_keys):
    # create connection data
    vert_verts = {}
    for ek in edge_keys:
        for i in range(2):
            if ek[i] in vert_verts:
                vert_verts[ek[i]].append(ek[1-i])
            else:
                vert_verts[ek[i]] = [ek[1-i]]
    
    return(vert_verts)


# calculate input loops
def get_connected_input(object, mesh, scene, input):
    # get mesh with modifiers applied
    derived, mesh_mod = get_derived_mesh(object, mesh, scene)
    
    # calculate selected loops
    edge_keys = [edge.key for edge in mesh_mod.edges if \
        edge.select and not edge.hide]
    loops = get_connected_selections(edge_keys)
    
    # if only selected loops are needed, we're done
    if input == 'selected':
        return(derived, mesh_mod, loops)
    # elif input == 'all':    
    loops = get_parallel_loops(mesh_mod, loops)
    
    return(derived, mesh_mod, loops)


# sorts all edge-keys into a list of loops
def get_connected_selections(edge_keys):
    # create connection data
    vert_verts = dict_vert_verts(edge_keys)
    
    # find loops consisting of connected selected edges
    loops = []
    while len(vert_verts) > 0:
        loop = [iter(vert_verts.keys()).__next__()]
        growing = True
        flipped = False
        
        # extend loop
        while growing:
            # no more connection data for current vertex
            if loop[-1] not in vert_verts:
                if not flipped:
                    loop.reverse()
                    flipped = True
                else:
                    growing = False
            else:
                extended = False
                for i, next_vert in enumerate(vert_verts[loop[-1]]):
                    if next_vert not in loop:
                        vert_verts[loop[-1]].pop(i)
                        if len(vert_verts[loop[-1]]) == 0:
                            del vert_verts[loop[-1]]
                        # remove connection both ways
                        if next_vert in vert_verts:
                            if len(vert_verts[next_vert]) == 1:
                                del vert_verts[next_vert]
                            else:
                                vert_verts[next_vert].remove(loop[-1])
                        loop.append(next_vert)
                        extended = True
                        break
                if not extended:
                    # found one end of the loop, continue with next
                    if not flipped:
                        loop.reverse()
                        flipped = True
                    # found both ends of the loop, stop growing
                    else:
                        growing = False
        
        # check if loop is circular
        if loop[0] in vert_verts:
            if loop[-1] in vert_verts[loop[0]]:
                # is circular
                if len(vert_verts[loop[0]]) == 1:
                    del vert_verts[loop[0]]
                else:
                    vert_verts[loop[0]].remove(loop[-1])
                if len(vert_verts[loop[-1]]) == 1:
                    del vert_verts[loop[-1]]
                else:
                    vert_verts[loop[-1]].remove(loop[0])
                loop = [loop, True]
            else:
                # not circular
                loop = [loop, False]
        else:
            # not circular
            loop = [loop, False]
        
        loops.append(loop)
    
    return(loops)


# get the derived mesh data, if there is a mirror modifier
def get_derived_mesh(object, mesh, scene):
    # check for mirror modifiers
    if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
        derived = True
        # disable other modifiers
        show_viewport = [mod.name for mod in object.modifiers if \
            mod.show_viewport]
        for mod in object.modifiers:
            if mod.type != 'MIRROR':
                mod.show_viewport = False
        # get derived mesh
        mesh_mod = object.to_mesh(scene, True, 'PREVIEW')
        # re-enable other modifiers
        for mod_name in show_viewport:
            object.modifiers[mod_name].show_viewport = True
    # no mirror modifiers, so no derived mesh necessary
    else:
        derived = False
        mesh_mod = mesh
    
    return(derived, mesh_mod)


# return a mapping of derived indices to indices
def get_mapping(derived, mesh, mesh_mod, single_vertices, full_search, loops):
    if not derived:
        return(False)
    
    if full_search:
        verts = [v for v in mesh.vertices if not v.hide]
    else:
        verts = [v for v in mesh.vertices if v.select and not v.hide]
    
    # non-selected vertices around single vertices also need to be mapped
    if single_vertices:
        mapping = dict([[vert, -1] for vert in single_vertices])
        verts_mod = [mesh_mod.vertices[vert] for vert in single_vertices]
        for v in verts:
            for v_mod in verts_mod:
                if (v.co - v_mod.co).length < 1e-6:
                    mapping[v_mod.index] = v.index
                    break
        real_singles = [v_real for v_real in mapping.values() if v_real>-1]
        
        verts_indices = [vert.index for vert in verts]
        for face in [face for face in mesh.faces if not face.select \
        and not face.hide]:
            for vert in face.vertices:
                if vert in real_singles:
                    for v in face.vertices:
                        if not v in verts_indices:
                            if mesh.vertices[v] not in verts:
                                verts.append(mesh.vertices[v])
                    break
    
    # create mapping of derived indices to indices
    mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
    if single_vertices:
        for single in single_vertices:
            mapping[single] = -1
    verts_mod = [mesh_mod.vertices[i] for i in mapping.keys()]
    for v in verts:
        for v_mod in verts_mod:
            if (v.co - v_mod.co).length < 1e-6:
                mapping[v_mod.index] = v.index
                verts_mod.remove(v_mod)
                break
    
    return(mapping)


# returns a list of all loops parallel to the input, input included
def get_parallel_loops(mesh_mod, loops):
    # get required dictionaries
    edge_faces = dict_edge_faces(mesh_mod)
    connected_faces = dict_face_faces(mesh_mod, edge_faces)
    # turn vertex loops into edge loops
    edgeloops = []
    for loop in loops:
        edgeloop = [[sorted([loop[0][i], loop[0][i+1]]) for i in \
            range(len(loop[0])-1)], loop[1]]
        if loop[1]: # circular
            edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
        edgeloops.append(edgeloop[:])
    # variables to keep track while iterating
    all_edgeloops = []
    has_branches = False
    
    for loop in edgeloops:
        # initialise with original loop
        all_edgeloops.append(loop[0])
        newloops = [loop[0]]
        verts_used = []
        for edge in loop[0]:
            if edge[0] not in verts_used:
                verts_used.append(edge[0])
            if edge[1] not in verts_used:
                verts_used.append(edge[1])
        
        # find parallel loops
        while len(newloops) > 0:
            side_a = []
            side_b = []
            for i in newloops[-1]:
                i = tuple(i)
                forbidden_side = False
                if not i in edge_faces:
                    # weird input with branches
                    has_branches = True
                    break
                for face in edge_faces[i]:
                    if len(side_a) == 0 and forbidden_side != "a":
                        side_a.append(face)
                        if forbidden_side:
                            break
                        forbidden_side = "a"
                        continue
                    elif side_a[-1] in connected_faces[face] and \
                    forbidden_side != "a":
                        side_a.append(face)
                        if forbidden_side:
                            break
                        forbidden_side = "a"
                        continue
                    if len(side_b) == 0 and forbidden_side != "b":
                        side_b.append(face)
                        if forbidden_side:
                            break
                        forbidden_side = "b"
                        continue
                    elif side_b[-1] in connected_faces[face] and \
                    forbidden_side != "b":
                        side_b.append(face)
                        if forbidden_side:
                            break
                        forbidden_side = "b"
                        continue
            
            if has_branches:
                # weird input with branches
                break
            
            newloops.pop(-1)
            sides = []
            if side_a:
                sides.append(side_a)
            if side_b:
                sides.append(side_b)
            
            for side in sides:
                extraloop = []
                for fi in side:
                    for key in mesh_mod.faces[fi].edge_keys:
                        if key[0] not in verts_used and key[1] not in \
                        verts_used:
                            extraloop.append(key)
                            break
                if extraloop:
                    for key in extraloop:
                        for new_vert in key:
                            if new_vert not in verts_used:
                                verts_used.append(new_vert)
                    newloops.append(extraloop)
                    all_edgeloops.append(extraloop)
    
    # input contains branches, only return selected loop
    if has_branches:
        return(loops)
    
    # change edgeloops into normal loops
    loops = []
    for edgeloop in all_edgeloops:
        loop = []
        # grow loop by comparing vertices between consecutive edge-keys
        for i in range(len(edgeloop)-1):
            for vert in range(2):
                if edgeloop[i][vert] in edgeloop[i+1]:
                    loop.append(edgeloop[i][vert])
                    break
        if loop:
            # add starting vertex
            for vert in range(2):
                if edgeloop[0][vert] != loop[0]:
                    loop = [edgeloop[0][vert]] + loop
                    break
            # add ending vertex
            for vert in range(2):
                if edgeloop[-1][vert] != loop[-1]:
                    loop.append(edgeloop[-1][vert])
                    break
            # check if loop is circular
            if loop[0] == loop[-1]:
                circular = True
                loop = loop[:-1]
            else:
                circular = False
        loops.append([loop, circular])
    
    return(loops)


# gather initial data
def initialise():
    global_undo = bpy.context.user_preferences.edit.use_global_undo
    bpy.context.user_preferences.edit.use_global_undo = False
    bpy.ops.object.mode_set(mode='OBJECT')
    object = bpy.context.active_object
    mesh = bpy.context.active_object.data
    
    return(global_undo, object, mesh)


# move the vertices to their new locations
def move_verts(mesh, mapping, move, influence):
    for loop in move:
        for index, loc in loop:
            if mapping:
                if mapping[index] == -1:
                    continue
                else:
                    index = mapping[index]
            if influence >= 0:
                mesh.vertices[index].co = loc*(influence/100) + \
                    mesh.vertices[index].co*((100-influence)/100)
            else:
                mesh.vertices[index].co = loc


# load custom tool settings 
def settings_load(self):
    lt = bpy.context.window_manager.looptools
    tool = self.name.split()[0].lower()
    keys = self.as_keywords().keys()
    for key in keys:
        setattr(self, key, getattr(lt, tool + "_" + key))


# store custom tool settings
def settings_write(self):
    lt = bpy.context.window_manager.looptools
    tool = self.name.split()[0].lower()
    keys = self.as_keywords().keys()
    for key in keys:
        setattr(lt, tool + "_" + key, getattr(self, key))


# clean up and set settings back to original state
def terminate(global_undo):
    bpy.ops.object.mode_set(mode='EDIT')
    bpy.context.user_preferences.edit.use_global_undo = global_undo


##########################################
####### Bridge functions #################
##########################################

# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(mesh, coordinates):
    result = []
    x = [0, 1, 2, 3]
    
    for j in range(3):
        a = []
        for i in coordinates:
            a.append(float(i[j]))
        h = []
        for i in range(3):
            h.append(x[i+1]-x[i])
        q = [False]
        for i in range(1,3):
            q.append(3.0/h[i]*(a[i+1]-a[i])-3.0/h[i-1]*(a[i]-a[i-1]))
        l = [1.0]
        u = [0.0]
        z = [0.0]
        for i in range(1,3):
            l.append(2.0*(x[i+1]-x[i-1])-h[i-1]*u[i-1])
            u.append(h[i]/l[i])
            z.append((q[i]-h[i-1]*z[i-1])/l[i])
        l.append(1.0)
        z.append(0.0)
        b = [False for i in range(3)]
        c = [False for i in range(4)]
        d = [False for i in range(3)]
        c[3] = 0.0
        for i in range(2,-1,-1):
            c[i] = z[i]-u[i]*c[i+1]
            b[i] = (a[i+1]-a[i])/h[i]-h[i]*(c[i+1]+2.0*c[i])/3.0
            d[i] = (c[i+1]-c[i])/(3.0*h[i])
        for i in range(3):
            result.append([a[i], b[i], c[i], d[i], x[i]])
    spline = [result[1], result[4], result[7]]

    return(spline)


# return a list with new vertex location vectors, a list with face vertex 
# integers, and the highest vertex integer in the virtual mesh
def bridge_calculate_geometry(mesh, lines, vertex_normals, segments,
interpolation, cubic_strength, min_width, max_vert_index):
    new_verts = []
    faces = []
    
    # calculate location based on interpolation method
    def get_location(line, segment, splines):
        v1 = mesh.vertices[lines[line][0]].co
        v2 = mesh.vertices[lines[line][1]].co
        if interpolation == 'linear':
            return v1 + (segment/segments) * (v2-v1)
        else: # interpolation == 'cubic'
            m = (segment/segments)
            ax,bx,cx,dx,tx = splines[line][0]
            x = ax+bx*m+cx*m**2+dx*m**3
            ay,by,cy,dy,ty = splines[line][1]
            y = ay+by*m+cy*m**2+dy*m**3
            az,bz,cz,dz,tz = splines[line][2]
            z = az+bz*m+cz*m**2+dz*m**3
            return mathutils.Vector([x,y,z])
        
    # no interpolation needed
    if segments == 1:
        for i, line in enumerate(lines):
            if i < len(lines)-1:
                faces.append([line[0], lines[i+1][0], lines[i+1][1], line[1]])
    # more than 1 segment, interpolate
    else:
        # calculate splines (if necessary) once, so no recalculations needed
        if interpolation == 'cubic':
            splines = []
            for line in lines:
                v1 = mesh.vertices[line[0]].co
                v2 = mesh.vertices[line[1]].co
                size = (v2-v1).length * cubic_strength
                splines.append(bridge_calculate_cubic_spline(mesh,
                    [v1+size*vertex_normals[line[0]], v1, v2,
                    v2+size*vertex_normals[line[1]]]))
        else:
            splines = False
        
        # create starting situation
        virtual_width = [(mathutils.Vector(mesh.vertices[lines[i][0]].co) - \
            mathutils.Vector(mesh.vertices[lines[i+1][0]].co)).length for i \
            in range(len(lines)-1)]
        new_verts = [get_location(0, seg, splines) for seg in range(1,
            segments)]
        first_line_indices = [i for i in range(max_vert_index+1,
            max_vert_index+segments)]
        
        prev_verts = new_verts[:] # vertex locations of verts on previous line
        prev_vert_indices = first_line_indices[:]
        max_vert_index += segments - 1 # highest vertex index in virtual mesh
        next_verts = [] # vertex locations of verts on current line
        next_vert_indices = []
        
        for i, line in enumerate(lines):
            if i < len(lines)-1:
                v1 = line[0]
                v2 = lines[i+1][0]
                end_face = True
                for seg in range(1, segments):
                    loc1 = prev_verts[seg-1]
                    loc2 = get_location(i+1, seg, splines)
                    if (loc1-loc2).length < (min_width/100)*virtual_width[i] \
                    and line[1]==lines[i+1][1]:
                        # triangle, no new vertex
                        faces.append([v1, v2, prev_vert_indices[seg-1],
                            prev_vert_indices[seg-1]])
                        next_verts += prev_verts[seg-1:]
                        next_vert_indices += prev_vert_indices[seg-1:]
                        end_face = False
                        break
                    else:
                        if i == len(lines)-2 and lines[0] == lines[-1]:
                            # quad with first line, no new vertex
                            faces.append([v1, v2, first_line_indices[seg-1],
                                prev_vert_indices[seg-1]])
                            v2 = first_line_indices[seg-1]
                            v1 = prev_vert_indices[seg-1]
                        else:
                            # quad, add new vertex
                            max_vert_index += 1
                            faces.append([v1, v2, max_vert_index,
                                prev_vert_indices[seg-1]])
                            v2 = max_vert_index
                            v1 = prev_vert_indices[seg-1]
                            new_verts.append(loc2)
                            next_verts.append(loc2)
                            next_vert_indices.append(max_vert_index)
                if end_face:
                    faces.append([v1, v2, lines[i+1][1], line[1]])
                
                prev_verts = next_verts[:]
                prev_vert_indices = next_vert_indices[:]
                next_verts = []
                next_vert_indices = []
    
    return(new_verts, faces, max_vert_index)


# calculate lines (list of lists, vertex indices) that are used for bridging
def bridge_calculate_lines(mesh, loops, mode, twist, reverse):
    lines = []
    loop1, loop2 = [i[0] for i in loops]
    loop1_circular, loop2_circular = [i[1] for i in loops]
    circular = loop1_circular or loop2_circular
    circle_full = False
    
    # calculate loop centers
    centers = []
    for loop in [loop1, loop2]:
        center = mathutils.Vector([0,0,0])
        for vertex in loop:
            center += mesh.vertices[vertex].co
        center /= len(loop)
        centers.append(center)
    for i, loop in enumerate([loop1, loop2]):
        for vertex in loop:
            if mesh.vertices[vertex].co == centers[i]:
                # prevent zero-length vectors in angle comparisons
                centers[i] += mathutils.Vector([0.01, 0, 0])
                break
    center1, center2 = centers
    
    # calculate the normals of the virtual planes that the loops are on
    normals = []
    normal_plurity = False
    for i, loop in enumerate([loop1, loop2]):
        # covariance matrix
        mat = mathutils.Matrix(((0.0, 0.0, 0.0), (0.0, 0.0, 0.0),
            (0.0, 0.0, 0.0)))
        x, y, z = centers[i]
        for loc in [mesh.vertices[vertex].co for vertex in loop]:
            mat[0][0] += (loc[0]-x)**2
            mat[0][1] += (loc[0]-x)*(loc[1]-y)
            mat[0][2] += (loc[0]-x)*(loc[2]-z)
            mat[1][0] += (loc[1]-y)*(loc[0]-x)
            mat[1][1] += (loc[1]-y)**2
            mat[1][2] += (loc[1]-y)*(loc[2]-z)
            mat[2][0] += (loc[2]-z)*(loc[0]-x)
            mat[2][1] += (loc[2]-z)*(loc[1]-y)
            mat[2][2] += (loc[2]-z)**2
        # plane normal
        normal = False
        if sum(mat[0]) < 1e-6 or sum(mat[1]) < 1e-6 or sum(mat[2]) < 1e-6:
            normal_plurity = True
        try:
            mat.invert()
        except:
            if sum(mat[0]) == 0:
                normal = mathutils.Vector([1.0, 0.0, 0.0])
            elif sum(mat[1]) == 0:
                normal = mathutils.Vector([0.0, 1.0, 0.0])
            elif sum(mat[2]) == 0:
                normal = mathutils.Vector([0.0, 0.0, 1.0])
        if not normal:
            itermax = 500
            iter = 0
            vec = mathutils.Vector([1.0, 1.0, 1.0])
            vec2 = (vec*mat)/(vec*mat).length
            while vec != vec2 and iter<itermax:
                iter+=1
                vec = vec2
                vec2 = (vec*mat)/(vec*mat).length
            normal = vec2
        normals.append(normal)
    # have plane normals face in the same direction (maximum angle: 90 degrees)
    if ((center1 + normals[0]) - center2).length < \
    ((center1 - normals[0]) - center2).length:
        normals[0].negate()
    if ((center2 + normals[1]) - center1).length > \
    ((center2 - normals[1]) - center1).length:
        normals[1].negate()
    
    # rotation matrix, representing the difference between the plane normals
    axis = normals[0].cross(normals[1])
    axis = mathutils.Vector([loc if abs(loc) > 1e-8 else 0 for loc in axis])
    if axis.angle(mathutils.Vector([0, 0, 1]), 0) > 1.5707964:
        axis.negate()
    angle = normals[0].dot(normals[1])
    rotation_matrix = mathutils.Matrix.Rotation(angle, 4, axis)
    
    # if circular, rotate loops so they are aligned
    if circular:
        # make sure loop1 is the circular one (or both are circular)
        if loop2_circular and not loop1_circular:
            loop1_circular, loop2_circular = True, False
            loop1, loop2 = loop2, loop1
        
        # match start vertex of loop1 with loop2
        target_vector = mesh.vertices[loop2[0]].co - center2
        dif_angles = [[((mesh.vertices[vertex].co - center1) * \
            rotation_matrix).angle(target_vector, 0), False, i] for \
            i, vertex in enumerate(loop1)]
        dif_angles.sort()
        if len(loop1) != len(loop2):
            angle_limit = dif_angles[0][0] * 1.2 # 20% margin
            dif_angles = [[(mesh.vertices[loop2[0]].co - \
                mesh.vertices[loop1[index]].co).length, angle, index] for \
                angle, distance, index in dif_angles if angle <= angle_limit]
            dif_angles.sort()
        loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
    
    # have both loops face the same way
    if normal_plurity and not circular:
        second_to_first, second_to_second, second_to_last = \
            [(mesh.vertices[loop1[1]].co - center1).\
            angle(mesh.vertices[loop2[i]].co - center2) for i in [0, 1, -1]]
        last_to_first, last_to_second = [(mesh.vertices[loop1[-1]].co - \
            center1).angle(mesh.vertices[loop2[i]].co - center2) for \
            i in [0, 1]]
        if (min(last_to_first, last_to_second)*1.1 < min(second_to_first, \
        second_to_second)) or (loop2_circular and second_to_last*1.1 < \
        min(second_to_first, second_to_second)):
            loop1.reverse()
            if circular:
                loop1 = [loop1[-1]] + loop1[:-1]
    else:
        angle = (mesh.vertices[loop1[0]].co - center1).\
            cross(mesh.vertices[loop1[1]].co - center1).angle(normals[0], 0)
        target_angle = (mesh.vertices[loop2[0]].co - center2).\
            cross(mesh.vertices[loop2[1]].co - center2).angle(normals[1], 0)
        limit = 1.5707964 # 0.5*pi, 90 degrees
        if not ((angle > limit and target_angle > limit) or \
        (angle < limit and target_angle < limit)):
            loop1.reverse()
            if circular:
                loop1 = [loop1[-1]] + loop1[:-1]
        elif normals[0].angle(normals[1]) > limit:
            loop1.reverse()
            if circular:
                loop1 = [loop1[-1]] + loop1[:-1]
    
    # both loops have the same length
    if len(loop1) == len(loop2):
        # manual override
        if twist:
            if abs(twist) < len(loop1):
                loop1 = loop1[twist:]+loop1[:twist]
        if reverse:
            loop1.reverse()
        
        lines.append([loop1[0], loop2[0]])
        for i in range(1, len(loop1)):
            lines.append([loop1[i], loop2[i]])
    
    # loops of different lengths
    else:
        # make loop1 longest loop
        if len(loop2) > len(loop1):
            loop1, loop2 = loop2, loop1
            loop1_circular, loop2_circular = loop2_circular, loop1_circular
        
        # manual override
        if twist:
            if abs(twist) < len(loop1):
                loop1 = loop1[twist:]+loop1[:twist]
        if reverse:
            loop1.reverse()
            
        # shortest angle difference doesn't always give correct start vertex
        if loop1_circular and not loop2_circular:
            shifting = 1
            while shifting:
                if len(loop1) - shifting < len(loop2):
                    shifting = False
                    break
                to_last, to_first = [((mesh.vertices[loop1[-1]].co - \
                    center1) * rotation_matrix).angle((mesh.\
                    vertices[loop2[i]].co - center2), 0) for i in [-1, 0]]
                if to_first < to_last:
                    loop1 = [loop1[-1]] + loop1[:-1]
                    shifting += 1
                else:
                    shifting = False
                    break
        
        # basic shortest side first
        if mode == 'basic':
            lines.append([loop1[0], loop2[0]])
            for i in range(1, len(loop1)):
                if i >= len(loop2) - 1:
                    # triangles
                    lines.append([loop1[i], loop2[-1]])
                else:
                    # quads
                    lines.append([loop1[i], loop2[i]])
        
        # shortest edge algorithm
        else: # mode == 'shortest'
            lines.append([loop1[0], loop2[0]])
            prev_vert2 = 0
            for i in range(len(loop1) -1):
                if prev_vert2 == len(loop2) - 1 and not loop2_circular:
                    # force triangles, reached end of loop2
                    tri, quad = 0, 1
                elif prev_vert2 == len(loop2) - 1 and loop2_circular:
                    # at end of loop2, but circular, so check with first vert
                    tri, quad = [(mathutils.Vector(mesh.vertices[loop1[i+1]].\
                        co) - mathutils.Vector(mesh.vertices[loop2[j]].co)).\
                        length for j in [prev_vert2, 0]]
                    circle_full = 2
                elif len(loop1) - 1 - i == len(loop2) - 1 - prev_vert2 and \
                not circle_full:
                    # force quads, otherwise won't make it to end of loop2
                    tri, quad = 1, 0
                else:
                    # calculate if tri or quad gives shortest edge
                    tri, quad = [(mathutils.Vector(mesh.vertices[loop1[i+1]].\
                        co) - mathutils.Vector(mesh.vertices[loop2[j]].co)).\
                        length for j in range(prev_vert2, prev_vert2+2)]
                
                # triangle
                if tri < quad:
                    lines.append([loop1[i+1], loop2[prev_vert2]])
                    if circle_full == 2:
                        circle_full = False
                # quad
                elif not circle_full:
                    lines.append([loop1[i+1], loop2[prev_vert2+1]])
                    prev_vert2 += 1
                # quad to first vertex of loop2
                else:
                    lines.append([loop1[i+1], loop2[0]])
                    prev_vert2 = 0
                    circle_full = True
    
    # final face for circular loops
    if loop1_circular and loop2_circular:
        lines.append([loop1[0], loop2[0]])
    
    return(lines)


# calculate number of segments needed
def bridge_calculate_segments(mesh, lines, loops, segments):
    # return if amount of segments is set by user
    if segments != 0:
        return segments
    
    # edge lengths
    average_edge_length = [(mesh.vertices[vertex].co - \
        mesh.vertices[loop[0][i+1]].co).length for loop in loops for \
        i, vertex in enumerate(loop[0][:-1])]
    # closing edges of circular loops
    average_edge_length += [(mesh.vertices[loop[0][-1]].co - \
        mesh.vertices[loop[0][0]].co).length for loop in loops if loop[1]] 
    
    # average lengths
    average_edge_length = sum(average_edge_length) / len(average_edge_length)
    average_bridge_length = sum([(mesh.vertices[v1].co - \
        mesh.vertices[v2].co).length for v1, v2 in lines]) / len(lines)
    
    segments = max(1, round(average_bridge_length / average_edge_length))
        
    return(segments)


# return dictionary with vertex index as key, and the normal vector as value
def bridge_calculate_virtual_vertex_normals(mesh, lines, loops, edge_faces,
edgekey_to_edge):
    if not edge_faces: # interpolation isn't set to cubic
        return False
    
    # pity reduce() isn't one of the basic functions in python anymore
    def average_vector_dictionary(dic):
        for key, vectors in dic.items():
            #if type(vectors) == type([]) and len(vectors) > 1:
            if len(vectors) > 1:
                average = mathutils.Vector([0, 0, 0])
                for vector in vectors:
                    average += vector
                average /= len(vectors)
                dic[key] = [average]
        return dic
    
    # get all edges of the loop
    edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i],
        loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \
        j in [0,1]]
    edges = edges[0] + edges[1]
    for j in [0, 1]:
        if loops[j][1]: # circular
            edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
                loops[j][0][-1]]))])
    
    """
    calculation based on face topology (assign edge-normals to vertices)
    
    edge_normal = face_normal x edge_vector
    vertex_normal = average(edge_normals)
    """
    vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]])
    for edge in edges:
        faces = edge_faces[edge.key] # valid faces connected to edge
        
        if faces:
            # get edge coordinates
            v1, v2 = [mesh.vertices[edge.key[i]].co for i in [0,1]]
            edge_vector = v1 - v2
            if edge_vector.length < 1e-4:
                # zero-length edge, vertices at same location
                continue
            edge_center = (v1 + v2) / 2
            
            # average face coordinates, if connected to more than 1 valid face
            if len(faces) > 1:
                face_normal = mathutils.Vector([0, 0, 0])
                face_center = mathutils.Vector([0, 0, 0])
                for face in faces:
                    face_normal += face.normal
                    face_center += face.center
                face_normal /= len(faces)
                face_center /= len(faces)
            else:
                face_normal = faces[0].normal
                face_center = faces[0].center
            if face_normal.length < 1e-4:
                # faces with a surface of 0 have no face normal
                continue
            
            # calculate virtual edge normal
            edge_normal = edge_vector.cross(face_normal)
            edge_normal.length = 0.01
            if (face_center - (edge_center + edge_normal)).length > \
            (face_center - (edge_center - edge_normal)).length:
                # make normal face the correct way
                edge_normal.negate()
            edge_normal.normalize()
            # add virtual edge normal as entry for both vertices it connects
            for vertex in edge.key:
                vertex_normals[vertex].append(edge_normal)
    
    """ 
    calculation based on connection with other loop (vertex focused method) 
    - used for vertices that aren't connected to any valid faces
    
    plane_normal = edge_vector x connection_vector
    vertex_normal = plane_normal x edge_vector
    """
    vertices = [vertex for vertex, normal in vertex_normals.items() if not \
        normal]
    
    if vertices:
        # edge vectors connected to vertices
        edge_vectors = dict([[vertex, []] for vertex in vertices])
        for edge in edges:
            for v in edge.key:
                if v in edge_vectors:
                    edge_vector = mesh.vertices[edge.key[0]].co - \
                        mesh.vertices[edge.key[1]].co
                    if edge_vector.length < 1e-4:
                        # zero-length edge, vertices at same location
                        continue
                    edge_vectors[v].append(edge_vector)
    
        # connection vectors between vertices of both loops
        connection_vectors = dict([[vertex, []] for vertex in vertices])
        connections = dict([[vertex, []] for vertex in vertices])
        for v1, v2 in lines:
            if v1 in connection_vectors or v2 in connection_vectors:
                new_vector = mesh.vertices[v1].co - mesh.vertices[v2].co
                if new_vector.length < 1e-4:
                    # zero-length connection vector,
                    # vertices in different loops at same location
                    continue
                if v1 in connection_vectors:
                    connection_vectors[v1].append(new_vector)
                    connections[v1].append(v2)
                if v2 in connection_vectors:
                    connection_vectors[v2].append(new_vector)
                    connections[v2].append(v1)
        connection_vectors = average_vector_dictionary(connection_vectors)
        connection_vectors = dict([[vertex, vector[0]] if vector else \
            [vertex, []] for vertex, vector in connection_vectors.items()])
        
        for vertex, values in edge_vectors.items():
            # vertex normal doesn't matter, just assign a random vector to it
            if not connection_vectors[vertex]:
                vertex_normals[vertex] = [mathutils.Vector([1, 0, 0])]
                continue
            
            # calculate to what location the vertex is connected, 
            # used to determine what way to flip the normal
            connected_center = mathutils.Vector([0, 0, 0])
            for v in connections[vertex]:
                connected_center += mesh.vertices[v].co
            if len(connections[vertex]) > 1:
                connected_center /= len(connections[vertex])
            if len(connections[vertex]) == 0:
                # shouldn't be possible, but better safe than sorry
                vertex_normals[vertex] = [mathutils.Vector([1, 0, 0])]
                continue
            
            # can't do proper calculations, because of zero-length vector
            if not values:
                if (connected_center - (mesh.vertices[vertex].co + \
                connection_vectors[vertex])).length < (connected_center - \
                (mesh.vertices[vertex].co - connection_vectors[vertex])).\
                length:
                    connection_vectors[vertex].negate()
                vertex_normals[vertex] = [connection_vectors[vertex].\
                    normalized()]
                continue
            
            # calculate vertex normals using edge-vectors,
            # connection-vectors and the derived plane normal
            for edge_vector in values:
                plane_normal = edge_vector.cross(connection_vectors[vertex])
                vertex_normal = edge_vector.cross(plane_normal)
                vertex_normal.length = 0.1
                if (connected_center - (mesh.vertices[vertex].co + \
                vertex_normal)).length < (connected_center - \
                (mesh.vertices[vertex].co - vertex_normal)).length:
                # make normal face the correct way
                    vertex_normal.negate()
                vertex_normal.normalize()
                vertex_normals[vertex].append(vertex_normal)
    
    # average virtual vertex normals, based on all edges it's connected to
    vertex_normals = average_vector_dictionary(vertex_normals)
    vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \
        vertex_normals.items()])
    
    return(vertex_normals)


# add vertices to mesh
def bridge_create_vertices(mesh, vertices):
    start_index = len(mesh.vertices)
    mesh.vertices.add(len(vertices))
    for i in range(len(vertices)):
        mesh.vertices[start_index + i].co = vertices[i]


# add faces to mesh
def bridge_create_faces(mesh, faces, twist):
    # have the normal point the correct way
    if twist < 0:
        [face.reverse() for face in faces]
        faces = [face[2:]+face[:2] if face[0]==face[1] else face for \
            face in faces]
    
    # eekadoodle prevention
    for i in range(len(faces)):
        if not faces[i][-1]:
            if faces[i][0] == faces[i][-1]:
                faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]]
            else:
                faces[i] = [faces[i][-1]] + faces[i][:-1]
    
    start_faces = len(mesh.faces)
    mesh.faces.add(len(faces))
    for i in range(len(faces)):
        mesh.faces[start_faces + i].vertices_raw = faces[i]
    mesh.update(calc_edges = True) # calc_edges prevents memory-corruption


# calculate input loops
def bridge_get_input(mesh):
    # create list of internal edges, which should be skipped
    eks_of_selected_faces = [item for sublist in [face.edge_keys for face \
        in mesh.faces if face.select and not face.hide] for item in sublist]
    edge_count = {}
    for ek in eks_of_selected_faces:
        if ek in edge_count:
            edge_count[ek] += 1
        else:
            edge_count[ek] = 1
    internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
    
    # sort correct edges into loops
    selected_edges = [edge.key for edge in mesh.edges if edge.select \
        and not edge.hide and edge.key not in internal_edges]
    loops = get_connected_selections(selected_edges)
    
    return(loops)


# return values needed by the bridge operator
def bridge_initialise(mesh, interpolation):
    if interpolation == 'cubic':
        # dict with edge-key as key and list of connected valid faces as value
        face_blacklist = [face.index for face in mesh.faces if face.select or \
            face.hide]
        edge_faces = dict([[edge.key, []] for edge in mesh.edges if not \
            edge.hide])
        for face in mesh.faces:
            if face.index in face_blacklist:
                continue
            for key in face.edge_keys:
                edge_faces[key].append(face)
        # dictionary with the edge-key as key and edge as value
        edgekey_to_edge = dict([[edge.key, edge] for edge in mesh.edges if \
            edge.select and not edge.hide])
    else:
        edge_faces = False
        edgekey_to_edge = False
    
    # selected faces input
    old_selected_faces = [face.index for face in mesh.faces if face.select \
        and not face.hide]
    
    # find out if faces created by bridging should be smoothed
    smooth = False
    if mesh.faces:
        if sum([face.use_smooth for face in mesh.faces])/len(mesh.faces) \
        >= 0.5:
            smooth = True
    
    return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)


# return a string with the input method
def bridge_input_method(loft, loft_loop):
    method = ""
    if loft:
        if loft_loop:
            method = "Loft loop"
        else:
            method = "Loft no-loop"
    else:
        method = "Bridge"
    
    return(method)


# match up loops in pairs, used for multi-input bridging
def bridge_match_loops(mesh, loops):
    # calculate average loop normals and centers
    normals = []
    centers = []
    for vertices, circular in loops:
        normal = mathutils.Vector([0, 0, 0])
        center = mathutils.Vector([0, 0, 0])
        for vertex in vertices:
            normal += mesh.vertices[vertex].normal
            center += mesh.vertices[vertex].co
        normals.append(normal / len(vertices) / 10)
        centers.append(center / len(vertices))
    
    # possible matches if loop normals are faced towards the center
    # of the other loop
    matches = dict([[i, []] for i in range(len(loops))])
    matches_amount = 0
    for i in range(len(loops) + 1):
        for j in range(i+1, len(loops)):
            if (centers[i] - centers[j]).length > (centers[i] - (centers[j] \
            + normals[j])).length and (centers[j] - centers[i]).length > \
            (centers[j] - (centers[i] + normals[i])).length:
                matches_amount += 1
                matches[i].append([(centers[i] - centers[j]).length, i, j])
                matches[j].append([(centers[i] - centers[j]).length, j, i])
    # if no loops face each other, just make matches between all the loops
    if matches_amount == 0:
        for i in range(len(loops) + 1):
            for j in range(i+1, len(loops)):
                matches[i].append([(centers[i] - centers[j]).length, i, j])
                matches[j].append([(centers[i] - centers[j]).length, j, i])
    for key, value in matches.items():
        value.sort()
    
    # matches based on distance between centers and number of vertices in loops
    new_order = []
    for loop_index in range(len(loops)):
        if loop_index in new_order:
            continue
        loop_matches = matches[loop_index]
        if not loop_matches:
            continue
        shortest_distance = loop_matches[0][0]
        shortest_distance *= 1.1
        loop_matches = [[abs(len(loops[loop_index][0]) - \
            len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in \
            loop_matches if loop[0] < shortest_distance]
        loop_matches.sort()
        for match in loop_matches:
            if match[3] not in new_order:
                new_order += [loop_index, match[3]]
                break
    
    # reorder loops based on matches
    if len(new_order) >= 2:
        loops = [loops[i] for i in new_order]
    
    return(loops)


# have normals of selection face outside
def bridge_recalculate_normals():
    bpy.ops.object.mode_set(mode = 'EDIT')
    bpy.ops.mesh.normals_make_consistent()


# remove old_selected_faces
def bridge_remove_internal_faces(mesh, old_selected_faces):
    select_mode = [i for i in bpy.context.tool_settings.mesh_select_mode]
    bpy.context.tool_settings.mesh_select_mode = [False, False, True]
    
    # hack to keep track of the current selection
    for edge in mesh.edges:
        if edge.select and not edge.hide:
            edge.bevel_weight = (edge.bevel_weight/3) + 0.2
        else:
            edge.bevel_weight = (edge.bevel_weight/3) + 0.6
    
    # remove faces
    bpy.ops.object.mode_set(mode = 'EDIT')
    bpy.ops.mesh.select_all(action = 'DESELECT')
    bpy.ops.object.mode_set(mode = 'OBJECT')
    for face in old_selected_faces:
        mesh.faces[face].select = True
    bpy.ops.object.mode_set(mode = 'EDIT')
    bpy.ops.mesh.delete(type = 'FACE')
    
    # restore old selection, using hack
    bpy.ops.object.mode_set(mode = 'OBJECT')
    bpy.context.tool_settings.mesh_select_mode = [False, True, False]
    for edge in mesh.edges:
        if edge.bevel_weight < 0.6:
            edge.bevel_weight = (edge.bevel_weight-0.2) * 3
            edge.select = True
        else:
            edge.bevel_weight = (edge.bevel_weight-0.6) * 3
    bpy.ops.object.mode_set(mode = 'EDIT')
    bpy.ops.object.mode_set(mode = 'OBJECT')
    bpy.context.tool_settings.mesh_select_mode = select_mode


# update list of internal faces that are flagged for removal
def bridge_save_unused_faces(mesh, old_selected_faces, loops):
    # key: vertex index, value: lists of selected faces using it
    vertex_to_face = dict([[i, []] for i in range(len(mesh.vertices))])
    [[vertex_to_face[vertex_index].append(face) for vertex_index in \
        mesh.faces[face].vertices] for face in old_selected_faces]
    
    # group selected faces that are connected
    groups = []
    grouped_faces = []
    for face in old_selected_faces:
        if face in grouped_faces:
            continue
        grouped_faces.append(face)
        group = [face]
        new_faces = [face]
        while new_faces:
            grow_face = new_faces[0]
            for vertex in mesh.faces[grow_face].vertices:
                vertex_face_group = [face for face in vertex_to_face[vertex] \
                    if face not in grouped_faces]
                new_faces += vertex_face_group
                grouped_faces += vertex_face_group
                group += vertex_face_group
            new_faces.pop(0)
        groups.append(group)
    
    # key: vertex index, value: True/False (is it in a loop that is used)
    used_vertices = dict([[i, 0] for i in range(len(mesh.vertices))])
    for loop in loops:
        for vertex in loop[0]:
            used_vertices[vertex] = True
    
    # check if group is bridged, if not remove faces from internal faces list
    for group in groups:
        used = False
        for face in group:
            if used:
                break
            for vertex in mesh.faces[face].vertices:
                if used_vertices[vertex]:
                    used = True
                    break
        if not used:
            for face in group:
                old_selected_faces.remove(face)


# add the newly created faces to the selection
def bridge_select_new_faces(mesh, amount, smooth):
    select_mode = [i for i in bpy.context.tool_settings.mesh_select_mode]
    bpy.context.tool_settings.mesh_select_mode = [False, False, True]
    for i in range(amount):
        mesh.faces[-(i+1)].select = True
        mesh.faces[-(i+1)].use_smooth = smooth
    bpy.ops.object.mode_set(mode = 'EDIT')
    bpy.ops.object.mode_set(mode = 'OBJECT')
    bpy.context.tool_settings.mesh_select_mode = select_mode


# sort loops, so they are connected in the correct order when lofting
def bridge_sort_loops(mesh, loops, loft_loop):
    # simplify loops to single points, and prepare for pathfinding
    x, y, z = [[sum([mesh.vertices[i].co[j] for i in loop[0]]) / \
        len(loop[0]) for loop in loops] for j in range(3)]
    nodes = [mathutils.Vector([x[i], y[i], z[i]]) for i in range(len(loops))]
    
    active_node = 0
    open = [i for i in range(1, len(loops))]
    path = [[0,0]]
    # connect node to path, that is shortest to active_node
    while len(open) > 0:
        distances = [(nodes[active_node] - nodes[i]).length for i in open]
        active_node = open[distances.index(min(distances))]
        open.remove(active_node)
        path.append([active_node, min(distances)])
    # check if we didn't start in the middle of the path
    for i in range(2, len(path)):
        if (nodes[path[i][0]]-nodes[0]).length < path[i][1]:
            temp = path[:i]
            path.reverse()
            path = path[:-i] + temp
            break
    
    # reorder loops
    loops = [loops[i[0]] for i in path]
    # if requested, duplicate first loop at last position, so loft can loop
    if loft_loop:
        loops = loops + [loops[0]]
    
    return(loops)


##########################################
####### Circle functions #################
##########################################

# convert 3d coordinates to 2d coordinates on plane
def circle_3d_to_2d(mesh_mod, loop, com, normal):
    # project vertices onto the plane
    verts = [mesh_mod.vertices[v] for v in loop[0]]
    verts_projected = [[mathutils.Vector(v.co[:]) - \
        (mathutils.Vector(v.co[:])-com).dot(normal)*normal, v.index] \
        for v in verts]
    
    # calculate two vectors (p and q) along the plane
    m = mathutils.Vector([normal[0]+1.0, normal[1], normal[2]])
    p = m - (m.dot(normal) * normal)
    if p.dot(p) == 0.0:
        m = mathutils.Vector([normal[0], normal[1]+1.0, normal[2]])
        p = m - (m.dot(normal) * normal)
    q = p.cross(normal)
    
    # change to 2d coordinates using perpendicular projection
    locs_2d = []
    for loc, vert in verts_projected:
        vloc = loc - com
        x = p.dot(vloc) / p.dot(p)
        y = q.dot(vloc) / q.dot(q)
        locs_2d.append([x, y, vert])
    
    return(locs_2d, p, q)


# calculate a best-fit circle to the 2d locations on the plane
def circle_calculate_best_fit(locs_2d):
    # initial guess
    x0 = 0.0
    y0 = 0.0
    r = 1.0
    
    # calculate center and radius (non-linear least squares solution)
    for iter in range(500):
        jmat = []
        k = []
        for v in locs_2d:
            d = (v[0]**2-2.0*x0*v[0]+v[1]**2-2.0*y0*v[1]+x0**2+y0**2)**0.5
            jmat.append([(x0-v[0])/d, (y0-v[1])/d, -1.0])
            k.append(-(((v[0]-x0)**2+(v[1]-y0)**2)**0.5-r))
        jmat2 = mathutils.Matrix([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], \
            [0.0, 0.0, 0.0]])
        k2 = mathutils.Vector([0.0, 0.0, 0.0])
        for i in range(len(jmat)):
            k2 += mathutils.Vector(jmat[i])*k[i]
            jmat2[0][0] += jmat[i][0]**2
            jmat2[0][1] += jmat[i][0]*jmat[i][1]
            jmat2[0][2] += jmat[i][0]*jmat[i][2]
            jmat2[1][1] += jmat[i][1]**2
            jmat2[1][2] += jmat[i][1]*jmat[i][2]
            jmat2[2][2] += jmat[i][2]**2
        jmat2[1][0] = jmat2[0][1]
        jmat2[2][0] = jmat2[0][2]
        jmat2[2][1] = jmat2[1][2]
        try:
            jmat2.invert()
        except:
            pass
        dx0, dy0, dr = k2 * jmat2
        x0 += dx0
        y0 += dy0
        r += dr
        # stop iterating if we're close enough to optimal solution
        if abs(dx0)<1e-6 and abs(dy0)<1e-6 and abs(dr)<1e-6:
            break
    
    # return center of circle and radius
    return(x0, y0, r)


# calculate circle so no vertices have to be moved away from the center
def circle_calculate_min_fit(locs_2d):
    # center of circle
    x0 = (min([i[0] for i in locs_2d])+max([i[0] for i in locs_2d]))/2.0
    y0 = (min([i[1] for i in locs_2d])+max([i[1] for i in locs_2d]))/2.0
    center = mathutils.Vector([x0, y0])
    # radius of circle
    r = min([(mathutils.Vector([i[0], i[1]])-center).length for i in locs_2d])
    
    # return center of circle and radius
    return(x0, y0, r)


# calculate the new locations of the vertices that need to be moved
def circle_calculate_verts(flatten, mesh_mod, locs_2d, com, p, q, normal):
    # changing 2d coordinates back to 3d coordinates
    locs_3d = []
    for loc in locs_2d:
        locs_3d.append([loc[2], loc[0]*p + loc[1]*q + com])
    
    if flatten: # flat circle
        return(locs_3d)
    
    else: # project the locations on the existing mesh
        vert_edges = dict_vert_edges(mesh_mod)
        vert_faces = dict_vert_faces(mesh_mod)
        faces = [f for f in mesh_mod.faces if not f.hide]
        rays = [normal, -normal]
        new_locs = []
        for loc in locs_3d:
            projection = False
            if mesh_mod.vertices[loc[0]].co == loc[1]: # vertex hasn't moved
                projection = loc[1]
            else:
                dif = normal.angle(loc[1]-mesh_mod.vertices[loc[0]].co)
                if -1e-6 < dif < 1e-6 or math.pi-1e-6 < dif < math.pi+1e-6:
                    # original location is already along projection normal
                    projection = mesh_mod.vertices[loc[0]].co
                else:
                    # quick search through adjacent faces
                    for face in vert_faces[loc[0]]:
                        verts = [mesh_mod.vertices[v].co for v in \
                            mesh_mod.faces[face].vertices]
                        if len(verts) == 3: # triangle
                            v1, v2, v3 = verts
                            v4 = False
                        else: # quad
                            v1, v2, v3, v4 = verts
                        for ray in rays:
                            intersect = mathutils.geometry.\
                            intersect_ray_tri(v1, v2, v3, ray, loc[1])
                            if intersect:
                                projection = intersect
                                break
                            elif v4:
                                intersect = mathutils.geometry.\
                                intersect_ray_tri(v1, v3, v4, ray, loc[1])
                                if intersect:
                                    projection = intersect
                                    break
                        if projection:
                            break
            if not projection:
                # check if projection is on adjacent edges
                for edgekey in vert_edges[loc[0]]:
                    line1 = mesh_mod.vertices[edgekey[0]].co
                    line2 = mesh_mod.vertices[edgekey[1]].co
                    intersect, dist = mathutils.geometry.intersect_point_line(\
                        loc[1], line1, line2)
                    if 1e-6 < dist < 1 - 1e-6:
                        projection = intersect
                        break
            if not projection:
                # full search through the entire mesh
                hits = []
                for face in faces:
                    verts = [mesh_mod.vertices[v].co for v in face.vertices]
                    if len(verts) == 3: # triangle
                        v1, v2, v3 = verts
                        v4 = False
                    else: # quad
                        v1, v2, v3, v4 = verts
                    for ray in rays:
                        intersect = mathutils.geometry.intersect_ray_tri(\
                            v1, v2, v3, ray, loc[1])
                        if intersect:
                            hits.append([(loc[1] - intersect).length,
                                intersect])
                            break
                        elif v4:
                            intersect = mathutils.geometry.intersect_ray_tri(\
                                v1, v3, v4, ray, loc[1])
                            if intersect:
                                hits.append([(loc[1] - intersect).length,
                                    intersect])
                                break
                if len(hits) >= 1:
                    # if more than 1 hit with mesh, closest hit is new loc
                    hits.sort()
                    projection = hits[0][1]
            if not projection:
                # nothing to project on, remain at flat location
                projection = loc[1]
            new_locs.append([loc[0], projection])
        
        # return new positions of projected circle
        return(new_locs)


# check loops and only return valid ones
def circle_check_loops(single_loops, loops, mapping, mesh_mod):
    valid_single_loops = {}
    valid_loops = []
    for i, [loop, circular] in enumerate(loops):
        # loop needs to have at least 3 vertices
        if len(loop) < 3:
            continue
        # loop needs at least 1 vertex in the original, non-mirrored mesh
        if mapping:
            all_virtual = True
            for vert in loop:
                if mapping[vert] > -1:
                    all_virtual = False
                    break
            if all_virtual:
                continue
        # loop has to be non-collinear
        collinear = True
        loc0 = mathutils.Vector(mesh_mod.vertices[loop[0]].co[:])
        loc1 = mathutils.Vector(mesh_mod.vertices[loop[1]].co[:])
        for v in loop[2:]:
            locn = mathutils.Vector(mesh_mod.vertices[v].co[:])
            if loc0 == loc1 or loc1 == locn:
                loc0 = loc1
                loc1 = locn
                continue
            d1 = loc1-loc0
            d2 = locn-loc1
            if -1e-6 < d1.angle(d2, 0) < 1e-6:
                loc0 = loc1
                loc1 = locn
                continue
            collinear = False
            break
        if collinear:
            continue
        # passed all tests, loop is valid
        valid_loops.append([loop, circular])
        valid_single_loops[len(valid_loops)-1] = single_loops[i]
    
    return(valid_single_loops, valid_loops)


# calculate the location of single input vertices that need to be flattened
def circle_flatten_singles(mesh_mod, com, p, q, normal, single_loop):
    new_locs = []
    for vert in single_loop:
        loc = mathutils.Vector(mesh_mod.vertices[vert].co[:])
        new_locs.append([vert,  loc - (loc-com).dot(normal)*normal])
    
    return(new_locs)


# calculate input loops
def circle_get_input(object, mesh, scene):
    # get mesh with modifiers applied
    derived, mesh_mod = get_derived_mesh(object, mesh, scene)
    
    # create list of edge-keys based on selection state
    faces = False
    for face in mesh.faces:
        if face.select and not face.hide:
            faces = True
            break
    if faces:
        # get selected, non-hidden , non-internal edge-keys
        eks_selected = [key for keys in [face.edge_keys for face in \
            mesh_mod.faces if face.select and not face.hide] for key in keys]
        edge_count = {}
        for ek in eks_selected:
            if ek in edge_count:
                edge_count[ek] += 1
            else:
                edge_count[ek] = 1
        edge_keys = [edge.key for edge in mesh_mod.edges if edge.select \
            and not edge.hide and edge_count.get(edge.key, 1)==1]
    else:
        # no faces, so no internal edges either
        edge_keys = [edge.key for edge in mesh_mod.edges if edge.select \
            and not edge.hide]
    
    # add edge-keys around single vertices
    verts_connected = dict([[vert, 1] for edge in [edge for edge in \
        mesh_mod.edges if edge.select and not edge.hide] for vert in edge.key])
    single_vertices = [vert.index for vert in mesh_mod.vertices if \
        vert.select and not vert.hide and not \
        verts_connected.get(vert.index, False)]
    
    if single_vertices and len(mesh.faces)>0:
        vert_to_single = dict([[v.index, []] for v in mesh_mod.vertices \
            if not v.hide])
        for face in [face for face in mesh_mod.faces if not face.select \
        and not face.hide]:
            for vert in face.vertices:
                if vert in single_vertices:
                    for ek in face.edge_keys:
                        if not vert in ek:
                            edge_keys.append(ek)
                            if vert not in vert_to_single[ek[0]]:
                                vert_to_single[ek[0]].append(vert)
                            if vert not in vert_to_single[ek[1]]:
                                vert_to_single[ek[1]].append(vert)
                    break
    
    # sort edge-keys into loops
    loops = get_connected_selections(edge_keys)
    
    # find out to which loops the single vertices belong
    single_loops = dict([[i, []] for i in range(len(loops))])
    if single_vertices and len(mesh.faces)>0:
        for i, [loop, circular] in enumerate(loops):
            for vert in loop:
                if vert_to_single[vert]:
                    for single in vert_to_single[vert]:
                        if single not in single_loops[i]:
                            single_loops[i].append(single)
    
    return(derived, mesh_mod, single_vertices, single_loops, loops)


# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
    for i in range(len(locs_2d)):
        oldx, oldy, j = locs_2d[i]
        newx, newy, k = new_locs_2d[i]
        altx = newx*(influence/100)+ oldx*((100-influence)/100)
        alty = newy*(influence/100)+ oldy*((100-influence)/100)
        locs_2d[i] = [altx, alty, j]
    
    return(locs_2d)


# project 2d locations on circle, respecting distance relations between verts
def circle_project_non_regular(locs_2d, x0, y0, r):
    for i in range(len(locs_2d)):
        x, y, j = locs_2d[i]
        loc = mathutils.Vector([x-x0, y-y0])
        loc.length = r
        locs_2d[i] = [loc[0], loc[1], j]
    
    return(locs_2d)


# project 2d locations on circle, with equal distance between all vertices
def circle_project_regular(locs_2d, x0, y0, r):
    # find offset angle and circling direction
    x, y, i = locs_2d[0]
    loc = mathutils.Vector([x-x0, y-y0])
    loc.length = r
    offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
    loca = mathutils.Vector([x-x0, y-y0, 0.0])
    if loc[1] < -1e-6:
        offset_angle *= -1
    x, y, j = locs_2d[1]
    locb = mathutils.Vector([x-x0, y-y0, 0.0])
    if loca.cross(locb)[2] >= 0:
        ccw = 1
    else:
        ccw = -1
    # distribute vertices along the circle
    for i in range(len(locs_2d)):
        t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
        x = math.cos(t) * r
        y = math.sin(t) * r
        locs_2d[i] = [x, y, locs_2d[i][2]]
    
    return(locs_2d)


# shift loop, so the first vertex is closest to the center
def circle_shift_loop(mesh_mod, loop, com):
    verts, circular = loop
    distances = [[(mesh_mod.vertices[vert].co - com).length, i] \
        for i, vert in enumerate(verts)]
    distances.sort()
    shift = distances[0][1]
    loop = [verts[shift:] + verts[:shift], circular]
    
    return(loop)


##########################################
####### Curve functions ##################
##########################################

# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
    knots = [v for v in loop[0] if v in verts_selected]
    points = loop[0][:]
    # circular loop, potential for weird splines
    if loop[1]:
        offset = int(len(loop[0]) / 4)
        kpos = []
        for k in knots:
            kpos.append(loop[0].index(k))
        kdif = []
        for i in range(len(kpos) - 1):
            kdif.append(kpos[i+1] - kpos[i])
        kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
        kadd = []
        for k in kdif:
            if k > 2 * offset:
                kadd.append([kdif.index(k), True])
            # next 2 lines are optional, they insert
            # an extra control point in small gaps
            #elif k > offset:
            #   kadd.append([kdif.index(k), False])
        kins = []
        krot = False
        for k in kadd: # extra knots to be added
            if k[1]: # big gap (break circular spline)
                kpos = loop[0].index(knots[k[0]]) + offset
                if kpos > len(loop[0]) - 1:
                    kpos -= len(loop[0])
                kins.append([knots[k[0]], loop[0][kpos]])
                kpos2 = k[0] + 1
                if kpos2 > len(knots)-1:
                    kpos2 -= len(knots)
                kpos2 = loop[0].index(knots[kpos2]) - offset
                if kpos2 < 0:
                    kpos2 += len(loop[0])
                kins.append([loop[0][kpos], loop[0][kpos2]])
                krot = loop[0][kpos2]
            else: # small gap (keep circular spline)
                k1 = loop[0].index(knots[k[0]])
                k2 = k[0] + 1
                if k2 > len(knots)-1:
                    k2 -= len(knots)
                k2 = loop[0].index(knots[k2])
                if k2 < k1:
                    dif = len(loop[0]) - 1 - k1 + k2
                else:
                    dif = k2 - k1
                kn = k1 + int(dif/2)
                if kn > len(loop[0]) - 1:
                    kn -= len(loop[0])
                kins.append([loop[0][k1], loop[0][kn]])
        for j in kins: # insert new knots
            knots.insert(knots.index(j[0]) + 1, j[1])
        if not krot: # circular loop
            knots.append(knots[0])
            points = loop[0][loop[0].index(knots[0]):]
            points += loop[0][0:loop[0].index(knots[0]) + 1]
        else: # non-circular loop (broken by script)
            krot = knots.index(krot)
            knots = knots[krot:] + knots[0:krot]
            if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
                points = loop[0][loop[0].index(knots[0]):]
                points += loop[0][0:loop[0].index(knots[-1])+1]
            else:
                points = loop[0][loop[0].index(knots[0]):\
                    loop[0].index(knots[-1]) + 1]
    # non-circular loop, add first and last point as knots
    else:
        if loop[0][0] not in knots:
            knots.insert(0, loop[0][0])
        if loop[0][-1] not in knots:
            knots.append(loop[0][-1])
    
    return(knots, points)


# calculate relative positions compared to first knot
def curve_calculate_t(mesh_mod, knots, points, pknots, regular, circular):
    tpoints = []
    loc_prev = False
    len_total = 0
    
    for p in points:
        if p in knots:
            loc = pknots[knots.index(p)] # use projected knot location
        else:
            loc = mathutils.Vector(mesh_mod.vertices[p].co[:])
        if not loc_prev:
            loc_prev = loc
        len_total += (loc-loc_prev).length
        tpoints.append(len_total)
        loc_prev = loc
    tknots = []
    for p in points:
        if p in knots:
            tknots.append(tpoints[points.index(p)])
    if circular:
        tknots[-1] = tpoints[-1]
    
    # regular option
    if regular:
        tpoints_average = tpoints[-1] / (len(tpoints) - 1)
        for i in range(1, len(tpoints) - 1):
            tpoints[i] = i * tpoints_average
        for i in range(len(knots)):
            tknots[i] = tpoints[points.index(knots[i])]
        if circular:
            tknots[-1] = tpoints[-1]
    
    
    return(tknots, tpoints)


# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(mesh_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
    newlocs = {}
    move = []
    
    for p in points:
        if p in knots:
            continue
        m = tpoints[points.index(p)]
        if m in tknots:
            n = tknots.index(m)
        else:
            t = tknots[:]
            t.append(m)
            t.sort()
            n = t.index(m) - 1
        if n > len(splines) - 1:
            n = len(splines) - 1
        elif n < 0:
            n = 0
        
        if interpolation == 'cubic':
            ax, bx, cx, dx, tx = splines[n][0]
            x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
            ay, by, cy, dy, ty = splines[n][1]
            y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
            az, bz, cz, dz, tz = splines[n][2]
            z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
            newloc = mathutils.Vector([x,y,z])
        else: # interpolation == 'linear'
            a, d, t, u = splines[n]
            newloc = ((m-t)/u)*d + a

        if restriction != 'none': # vertex movement is restricted
            newlocs[p] = newloc
        else: # set the vertex to its new location
            move.append([p, newloc])
        
    if restriction != 'none': # vertex movement is restricted
        for p in points:
            if p in newlocs:
                newloc = newlocs[p]
            else:
                move.append([p, mesh_mod.vertices[p].co])
                continue
            oldloc = mesh_mod.vertices[p].co
            normal = mesh_mod.vertices[p].normal
            dloc = newloc - oldloc
            if dloc.length < 1e-6:
                move.append([p, newloc])
            elif restriction == 'extrude': # only extrusions
                if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
                    move.append([p, newloc])
            else: # restriction == 'indent' only indentations
                if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
                    move.append([p, newloc])

    return(move)


# trim loops to part between first and last selected vertices (including)
def curve_cut_boundaries(mesh_mod, loops):
    cut_loops = []
    for loop, circular in loops:
        if circular:
            # don't cut
            cut_loops.append([loop, circular])
            continue
        selected = [mesh_mod.vertices[v].select for v in loop]
        first = selected.index(True)
        selected.reverse()
        last = -selected.index(True)
        if last == 0:
            cut_loops.append([loop[first:], circular])
        else:
            cut_loops.append([loop[first:last], circular])
    
    return(cut_loops)


# calculate input loops
def curve_get_input(object, mesh, boundaries, scene):
    # get mesh with modifiers applied
    derived, mesh_mod = get_derived_mesh(object, mesh, scene)
    
    # vertices that still need a loop to run through it
    verts_unsorted = [v.index for v in mesh_mod.vertices if \
        v.select and not v.hide]
    # necessary dictionaries
    vert_edges = dict_vert_edges(mesh_mod)
    edge_faces = dict_edge_faces(mesh_mod)
    correct_loops = []
    
    # find loops through each selected vertex
    while len(verts_unsorted) > 0:
        loops = curve_vertex_loops(mesh_mod, verts_unsorted[0], vert_edges,
            edge_faces)
        verts_unsorted.pop(0)
        
        # check if loop is fully selected
        search_perpendicular = False
        i = -1
        for loop, circular in loops:
            i += 1
            selected = [v for v in loop if mesh_mod.vertices[v].select]
            if len(selected) < 2:
                # only one selected vertex on loop, don't use
                loops.pop(i)
                continue
            elif len(selected) == len(loop):
                search_perpendicular = loop
                break
        # entire loop is selected, find perpendicular loops
        if search_perpendicular:
            for vert in loop:
                if vert in verts_unsorted:
                    verts_unsorted.remove(vert)
            perp_loops = curve_perpendicular_loops(mesh_mod, loop,
                vert_edges, edge_faces)
            for perp_loop in perp_loops:
                correct_loops.append(perp_loop)
        # normal input
        else:
            for loop, circular in loops:
                correct_loops.append([loop, circular])
    
    # boundaries option
    if boundaries:
        correct_loops = curve_cut_boundaries(mesh_mod, correct_loops)
    
    return(derived, mesh_mod, correct_loops)


# return all loops that are perpendicular to the given one
def curve_perpendicular_loops(mesh_mod, start_loop, vert_edges, edge_faces):
    # find perpendicular loops
    perp_loops = []
    for start_vert in start_loop:
        loops = curve_vertex_loops(mesh_mod, start_vert, vert_edges,
            edge_faces)
        for loop, circular in loops:
            selected = [v for v in loop if mesh_mod.vertices[v].select]
            if len(selected) == len(loop):
                continue
            else:
                perp_loops.append([loop, circular, loop.index(start_vert)])
    
    # trim loops to same lengths
    shortest = [[len(loop[0]), i] for i, loop in enumerate(perp_loops)\
        if not loop[1]]
    if not shortest:
        # all loops are circular, not trimming
        return([[loop[0], loop[1]] for loop in perp_loops])
    else:
        shortest = min(shortest)
    shortest_start = perp_loops[shortest[1]][2]
    before_start = shortest_start
    after_start = shortest[0] - shortest_start - 1
    bigger_before = before_start > after_start
    trimmed_loops = []
    for loop in perp_loops:
        # have the loop face the same direction as the shortest one
        if bigger_before:
            if loop[2] < len(loop[0]) / 2:
                loop[0].reverse()
                loop[2] = len(loop[0]) - loop[2] - 1
        else:
            if loop[2] > len(loop[0]) / 2:
                loop[0].reverse()
                loop[2] = len(loop[0]) - loop[2] - 1
        # circular loops can shift, to prevent wrong trimming
        if loop[1]:
            shift = shortest_start - loop[2]
            if loop[2] + shift > 0 and loop[2] + shift < len(loop[0]):
                loop[0] = loop[0][-shift:] + loop[0][:-shift]
            loop[2] += shift
            if loop[2] < 0:
                loop[2] += len(loop[0])
            elif loop[2] > len(loop[0]) -1:
                loop[2] -= len(loop[0])
        # trim
        start = max(0, loop[2] - before_start)
        end = min(len(loop[0]), loop[2] + after_start + 1)
        trimmed_loops.append([loop[0][start:end], False])
    
    return(trimmed_loops)


# project knots on non-selected geometry
def curve_project_knots(mesh_mod, verts_selected, knots, points, circular):
    # function to project vertex on edge
    def project(v1, v2, v3):
        # v1 and v2 are part of a line
        # v3 is projected onto it
        v2 -= v1
        v3 -= v1
        p = v3.project(v2)
        return(p + v1)
    
    if circular: # project all knots
        start = 0
        end = len(knots)
        pknots = []
    else: # first and last knot shouldn't be projected
        start = 1
        end = -1
        pknots = [mathutils.Vector(mesh_mod.vertices[knots[0]].co[:])]
    for knot in knots[start:end]:
        if knot in verts_selected:
            knot_left = knot_right = False
            for i in range(points.index(knot)-1, -1*len(points), -1):
                if points[i] not in knots:
                    knot_left = points[i]
                    break
            for i in range(points.index(knot)+1, 2*len(points)):
                if i > len(points) - 1:
                    i -= len(points)
                if points[i] not in knots:
                    knot_right = points[i]
                    break
            if knot_left and knot_right and knot_left != knot_right:
                knot_left = mathutils.Vector(\
                    mesh_mod.vertices[knot_left].co[:])
                knot_right = mathutils.Vector(\
                    mesh_mod.vertices[knot_right].co[:])
                knot = mathutils.Vector(mesh_mod.vertices[knot].co[:])
                pknots.append(project(knot_left, knot_right, knot))
            else:
                pknots.append(mathutils.Vector(mesh_mod.vertices[knot].co[:]))
        else: # knot isn't selected, so shouldn't be changed
            pknots.append(mathutils.Vector(mesh_mod.vertices[knot].co[:]))
    if not circular:
        pknots.append(mathutils.Vector(mesh_mod.vertices[knots[-1]].co[:]))
    
    return(pknots)


# find all loops through a given vertex
def curve_vertex_loops(mesh_mod, start_vert, vert_edges, edge_faces):
    edges_used = []
    loops = []
        
    for edge in vert_edges[start_vert]:
        if edge in edges_used:
            continue
        loop = []
        circular = False
        for vert in edge:
            active_faces = edge_faces[edge]
            new_vert = vert
            growing = True
            while growing:
                growing = False
                new_edges = vert_edges[new_vert]
                loop.append(new_vert)
                if len(loop) > 1:
                    edges_used.append(tuple(sorted([loop[-1], loop[-2]])))
                if len(new_edges) < 3 or len(new_edges) > 4:
                    # pole
                    break
                else:
                    # find next edge
                    for new_edge in new_edges:
                        if new_edge in edges_used:
                            continue
                        eliminate = False
                        for new_face in edge_faces[new_edge]:
                            if new_face in active_faces:
                                eliminate = True
                                break
                        if eliminate:
                            continue
                        # found correct new edge
                        active_faces = edge_faces[new_edge]
                        v1, v2 = new_edge
                        if v1 != new_vert:
                            new_vert = v1
                        else:
                            new_vert = v2
                        if new_vert == loop[0]:
                            circular = True
                        else:
                            growing = True
                        break
            if circular:
                break
            loop.reverse()
        loops.append([loop, circular])
    
    return(loops)


##########################################
####### Flatten functions ################
##########################################

# sort input into loops
def flatten_get_input(mesh):
    vert_verts = dict_vert_verts([edge.key for edge in mesh.edges \
        if edge.select and not edge.hide])
    verts = [v.index for v in mesh.vertices if v.select and not v.hide]
    
    # no connected verts, consider all selected verts as a single input
    if not vert_verts:
        return([[verts, False]])
    
    loops = []
    while len(verts) > 0:
        # start of loop
        loop = [verts[0]]
        verts.pop(0)
        if loop[-1] in vert_verts:
            to_grow = vert_verts[loop[-1]]
        else:
            to_grow = []
        # grow loop
        while len(to_grow) > 0:
            new_vert = to_grow[0]
            to_grow.pop(0)
            if new_vert in loop:
                continue
            loop.append(new_vert)
            verts.remove(new_vert)
            to_grow += vert_verts[new_vert]
        # add loop to loops
        loops.append([loop, False])
    
    return(loops)


# calculate position of vertex projections on plane
def flatten_project(mesh, loop, com, normal):
    verts = [mesh.vertices[v] for v in loop[0]]
    verts_projected = [[v.index, mathutils.Vector(v.co[:]) - \
        (mathutils.Vector(v.co[:])-com).dot(normal)*normal] for v in verts]
    
    return(verts_projected)


##########################################
####### Relax functions ##################
##########################################

# create lists with knots and points, all correctly sorted
def relax_calculate_knots(loops):
    all_knots = []
    all_points = []
    for loop, circular in loops:
        knots = [[], []]
        points = [[], []]
        if circular:
            if len(loop)%2 == 1: # odd
                extend = [False, True, 0, 1, 0, 1]
            else: # even
                extend = [True, False, 0, 1, 1, 2]
        else:
            if len(loop)%2 == 1: # odd
                extend = [False, False, 0, 1, 1, 2]
            else: # even
                extend = [False, False, 0, 1, 1, 2]
        for j in range(2):
            if extend[j]:
                loop = [loop[-1]] + loop + [loop[0]]
            for i in range(extend[2+2*j], len(loop), 2):
                knots[j].append(loop[i])
            for i in range(extend[3+2*j], len(loop), 2):
                if loop[i] == loop[-1] and not circular:
                    continue
                if len(points[j]) == 0:
                    points[j].append(loop[i])
                elif loop[i] != points[j][0]:
                    points[j].append(loop[i])
            if circular:
                if knots[j][0] != knots[j][-1]:
                    knots[j].append(knots[j][0])
        if len(points[1]) == 0:
            knots.pop(1)
            points.pop(1)
        for k in knots:
            all_knots.append(k)
        for p in points:
            all_points.append(p)
    
    return(all_knots, all_points)


# calculate relative positions compared to first knot
def relax_calculate_t(mesh_mod, knots, points, regular):
    all_tknots = []
    all_tpoints = []
    for i in range(len(knots)):
        amount = len(knots[i]) + len(points[i])
        mix  = []
        for j in range(amount):
            if j%2 == 0:
                mix.append([True, knots[i][round(j/2)]])
            elif j == amount-1:
                mix.append([True, knots[i][-1]])
            else:
                mix.append([False, points[i][int(j/2)]])
        len_total = 0
        loc_prev = False
        tknots = []
        tpoints = []
        for m in mix:
            loc = mathutils.Vector(mesh_mod.vertices[m[1]].co[:])
            if not loc_prev:
                loc_prev = loc
            len_total += (loc - loc_prev).length
            if m[0]:
                tknots.append(len_total)
            else:
                tpoints.append(len_total)
            loc_prev = loc
        if regular:
            tpoints = []
            for p in range(len(points[i])):
                tpoints.append((tknots[p] + tknots[p+1]) / 2)
        all_tknots.append(tknots)
        all_tpoints.append(tpoints)
    
    return(all_tknots, all_tpoints)


# change the location of the points to their place on the spline
def relax_calculate_verts(mesh_mod, interpolation, tknots, knots, tpoints,
points, splines):
    change = []
    move = []
    for i in range(len(knots)):
        for p in points[i]:
            m = tpoints[i][points[i].index(p)]
            if m in tknots[i]:
                n = tknots[i].index(m)
            else:
                t = tknots[i][:]
                t.append(m)
                t.sort()
                n = t.index(m)-1
            if n > len(splines[i]) - 1:
                n = len(splines[i]) - 1
            elif n < 0:
                n = 0
            
            if interpolation == 'cubic':
                ax, bx, cx, dx, tx = splines[i][n][0]
                x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
                ay, by, cy, dy, ty = splines[i][n][1]
                y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
                az, bz, cz, dz, tz = splines[i][n][2]
                z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
                change.append([p, mathutils.Vector([x,y,z])])
            else: # interpolation == 'linear'
                a, d, t, u = splines[i][n]
                if u == 0:
                    u = 1e-8
                change.append([p, ((m-t)/u)*d + a])
    for c in change:
        move.append([c[0], (mesh_mod.vertices[c[0]].co + c[1]) / 2])
    
    return(move)


##########################################
####### Space functions ##################
##########################################

# calculate relative positions compared to first knot
def space_calculate_t(mesh_mod, knots):
    tknots = []
    loc_prev = False
    len_total = 0
    for k in knots:
        loc = mathutils.Vector(mesh_mod.vertices[k].co[:])
        if not loc_prev:
            loc_prev = loc
        len_total += (loc - loc_prev).length
        tknots.append(len_total)
        loc_prev = loc
    amount = len(knots)
    t_per_segment = len_total / (amount - 1)
    tpoints = [i * t_per_segment for i in range(amount)]
    
    return(tknots, tpoints)


# change the location of the points to their place on the spline
def space_calculate_verts(mesh_mod, interpolation, tknots, tpoints, points,
splines):
    move = []
    for p in points:
        m = tpoints[points.index(p)]
        if m in tknots:
            n = tknots.index(m)
        else:
            t = tknots[:]
            t.append(m)
            t.sort()
            n = t.index(m) - 1
        if n > len(splines) - 1:
            n = len(splines) - 1
        elif n < 0:
            n = 0
        
        if interpolation == 'cubic':
            ax, bx, cx, dx, tx = splines[n][0]
            x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
            ay, by, cy, dy, ty = splines[n][1]
            y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
            az, bz, cz, dz, tz = splines[n][2]
            z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
            move.append([p, mathutils.Vector([x,y,z])])
        else: # interpolation == 'linear'
            a, d, t, u = splines[n]
            move.append([p, ((m-t)/u)*d + a])
    
    return(move)


##########################################
####### Operators ########################
##########################################

# bridge operator
class Bridge(bpy.types.Operator):
    bl_idname = 'mesh.looptools_bridge'
    bl_label = "Bridge / Loft"
    bl_description = "Bridge two, or loft several, loops of vertices"
    bl_options = {'REGISTER', 'UNDO'}
    
    cubic_strength = bpy.props.FloatProperty(name = "Strength",
        description = "Higher strength results in more fluid curves",
        default = 1.0,
        soft_min = -3.0,
        soft_max = 3.0)
    interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
        items = (('cubic', "Cubic", "Gives curved results"),
            ('linear', "Linear", "Basic, fast, straight interpolation")),
        description = "Interpolation mode: algorithm used when creating "\
            "segments",
        default = 'cubic')
    loft = bpy.props.BoolProperty(name = "Loft",
        description = "Loft multiple loops, instead of considering them as "\
            "a multi-input for bridging",
        default = False)
    loft_loop = bpy.props.BoolProperty(name = "Loop",
        description = "Connect the first and the last loop with each other",
        default = False)
    min_width = bpy.props.IntProperty(name = "Minimum width",
        description = "Segments with an edge smaller than this are merged "\
            "(compared to base edge)",
        default = 0,
        min = 0,
        max = 100,
        subtype = 'PERCENTAGE')
    mode = bpy.props.EnumProperty(name = "Mode",
        items = (('basic', "Basic", "Fast algorithm"), ('shortest',
            "Shortest edge", "Slower algorithm with better vertex matching")),
        description = "Algorithm used for bridging",
        default = 'shortest')
    remove_faces = bpy.props.BoolProperty(name = "Remove faces",
        description = "Remove faces that are internal after bridging",
        default = True)
    reverse = bpy.props.BoolProperty(name = "Reverse",
        description = "Manually override the direction in which the loops "\
            "are bridged. Only use if the tool gives the wrong result.",
        default = False)
    segments = bpy.props.IntProperty(name = "Segments",
        description = "Number of segments used to bridge the gap "\
            "(0 = automatic)",
        default = 1,
        min = 0,
        soft_max = 20)
    twist = bpy.props.IntProperty(name = "Twist",
        description = "Twist what vertices are connected to each other",
        default = 0)
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return (ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        #layout.prop(self, "mode") # no cases yet where 'basic' mode is needed
        
        # top row
        col_top = layout.column(align=True)
        row = col_top.row(align=True)
        col_left = row.column(align=True)
        col_right = row.column(align=True)
        col_right.active = self.segments != 1
        col_left.prop(self, "segments")
        col_right.prop(self, "min_width", text="")
        # bottom row
        bottom_left = col_left.row()
        bottom_left.active = self.segments != 1
        bottom_left.prop(self, "interpolation", text="")
        bottom_right = col_right.row()
        bottom_right.active = self.interpolation == 'cubic'
        bottom_right.prop(self, "cubic_strength")
        # boolean properties
        col_top.prop(self, "remove_faces")
        if self.loft:
            col_top.prop(self, "loft_loop")
        
        # override properties
        col_top.separator()
        row = layout.row(align = True)
        row.prop(self, "twist")
        row.prop(self, "reverse")
    
    def invoke(self, context, event):
        # load custom settings
        context.window_manager.looptools.bridge_loft = self.loft
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, mesh = initialise()
        edge_faces, edgekey_to_edge, old_selected_faces, smooth = \
            bridge_initialise(mesh, self.interpolation)
        settings_write(self)
        
        # check cache to see if we can save time
        input_method = bridge_input_method(self.loft, self.loft_loop)
        cached, single_loops, loops, derived, mapping = cache_read("Bridge",
            object, mesh, input_method, False)
        if not cached:
            # get loops
            loops = bridge_get_input(mesh)
            if loops:
                # reorder loops if there are more than 2
                if len(loops) > 2:
                    if self.loft:
                        loops = bridge_sort_loops(mesh, loops, self.loft_loop)
                    else:
                        loops = bridge_match_loops(mesh, loops)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Bridge", object, mesh, input_method, False, False,
                loops, False, False)
        
        if loops:
            # calculate new geometry
            vertices = []
            faces = []
            max_vert_index = len(mesh.vertices)-1
            for i in range(1, len(loops)):
                if not self.loft and i%2 == 0:
                    continue
                lines = bridge_calculate_lines(mesh, loops[i-1:i+1],
                    self.mode, self.twist, self.reverse)
                vertex_normals = bridge_calculate_virtual_vertex_normals(mesh,
                    lines, loops[i-1:i+1], edge_faces, edgekey_to_edge)
                segments = bridge_calculate_segments(mesh, lines,
                    loops[i-1:i+1], self.segments)
                new_verts, new_faces, max_vert_index = \
                    bridge_calculate_geometry(mesh, lines, vertex_normals,
                    segments, self.interpolation, self.cubic_strength,
                    self.min_width, max_vert_index)
                if new_verts:
                    vertices += new_verts
                if new_faces:
                    faces += new_faces
            # make sure faces in loops that aren't used, aren't removed
            if self.remove_faces and old_selected_faces:
                bridge_save_unused_faces(mesh, old_selected_faces, loops)
            # create vertices
            if vertices:
                bridge_create_vertices(mesh, vertices)
            # create faces
            if faces:
                bridge_create_faces(mesh, faces, self.twist)
                bridge_select_new_faces(mesh, len(faces), smooth)
            # edge-data could have changed, can't use cache next run
            if faces and not vertices:
                cache_delete("Bridge")
            # delete internal faces
            if self.remove_faces and old_selected_faces:
                bridge_remove_internal_faces(mesh, old_selected_faces)
            # make sure normals are facing outside
            bridge_recalculate_normals()
        
        terminate(global_undo)
        return{'FINISHED'}


# circle operator
class Circle(bpy.types.Operator):
    bl_idname = "mesh.looptools_circle"
    bl_label = "Circle"
    bl_description = "Move selected vertices into a circle shape"
    bl_options = {'REGISTER', 'UNDO'}
    
    custom_radius = bpy.props.BoolProperty(name = "Radius",
        description = "Force a custom radius",
        default = False)
    fit = bpy.props.EnumProperty(name = "Method",
        items = (("best", "Best fit", "Non-linear least squares"),
            ("inside", "Fit inside","Only move vertices towards the center")),
        description = "Method used for fitting a circle to the vertices",
        default = 'best')
    flatten = bpy.props.BoolProperty(name = "Flatten",
        description = "Flatten the circle, instead of projecting it on the " \
            "mesh",
        default = True)
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    radius = bpy.props.FloatProperty(name = "Radius",
        description = "Custom radius for circle",
        default = 1.0,
        min = 0.0,
        soft_max = 1000.0)
    regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the " \
            "circle",
        default = True)
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "fit")
        col.separator()
        
        col.prop(self, "flatten")
        row = col.row(align=True)
        row.prop(self, "custom_radius")
        row_right = row.row(align=True)
        row_right.active = self.custom_radius
        row_right.prop(self, "radius", text="")
        col.prop(self, "regular")
        col.separator()
                
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, mesh = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Circle",
            object, mesh, False, False)
        if cached:
            derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
        else:
            # find loops
            derived, mesh_mod, single_vertices, single_loops, loops = \
                circle_get_input(object, mesh, context.scene)
            mapping = get_mapping(derived, mesh, mesh_mod, single_vertices,
                False, loops)
            single_loops, loops = circle_check_loops(single_loops, loops,
                mapping, mesh_mod)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Circle", object, mesh, False, False, single_loops,
                loops, derived, mapping)
        
        move = []
        for i, loop in enumerate(loops):
            # best fitting flat plane
            com, normal = calculate_plane(mesh_mod, loop)
            # if circular, shift loop so we get a good starting vertex
            if loop[1]:
                loop = circle_shift_loop(mesh_mod, loop, com)
            # flatten vertices on plane
            locs_2d, p, q = circle_3d_to_2d(mesh_mod, loop, com, normal)
            # calculate circle
            if self.fit == 'best':
                x0, y0, r = circle_calculate_best_fit(locs_2d)
            else: # self.fit == 'inside'
                x0, y0, r = circle_calculate_min_fit(locs_2d)
            # radius override
            if self.custom_radius:
                r = self.radius / p.length
            # calculate positions on circle
            if self.regular:
                new_locs_2d = circle_project_regular(locs_2d[:], x0, y0, r)
            else:
                new_locs_2d = circle_project_non_regular(locs_2d[:], x0, y0, r)
            # take influence into account
            locs_2d = circle_influence_locs(locs_2d, new_locs_2d,
                self.influence)
            # calculate 3d positions of the created 2d input
            move.append(circle_calculate_verts(self.flatten, mesh_mod,
                locs_2d, com, p, q, normal))
            # flatten single input vertices on plane defined by loop
            if self.flatten and single_loops:
                move.append(circle_flatten_singles(mesh_mod, com, p, q,
                    normal, single_loops[i]))
        
        # move vertices to new locations
        move_verts(mesh, mapping, move, -1)
        
        # cleaning up 
        if derived:
            bpy.context.blend_data.meshes.remove(mesh_mod)
        terminate(global_undo)
        
        return{'FINISHED'}


# curve operator
class Curve(bpy.types.Operator):
    bl_idname = "mesh.looptools_curve"
    bl_label = "Curve"
    bl_description = "Turn a loop into a smooth curve"
    bl_options = {'REGISTER', 'UNDO'}
    
    boundaries = bpy.props.BoolProperty(name = "Boundaries",
        description = "Limit the tool to work within the boundaries of the "\
            "selected vertices",
        default = False)
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Simple and fast linear algorithm")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the" \
            "curve",
        default = True)
    restriction = bpy.props.EnumProperty(name = "Restriction",
        items = (("none", "None", "No restrictions on vertex movement"),
            ("extrude", "Extrude only","Only allow extrusions (no "\
                "indentations)"),
            ("indent", "Indent only", "Only allow indentation (no "\
                "extrusions)")),
        description = "Restrictions on how the vertices can be moved",
        default = 'none')
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "interpolation")
        col.prop(self, "restriction")
        col.prop(self, "boundaries")
        col.prop(self, "regular")
        col.separator()
        
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, mesh = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Curve",
            object, mesh, False, self.boundaries)
        if cached:
            derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
        else:
            # find loops
            derived, mesh_mod, loops = curve_get_input(object, mesh,
                self.boundaries, context.scene)
            mapping = get_mapping(derived, mesh, mesh_mod, False, True, loops)
            loops = check_loops(loops, mapping, mesh_mod)
        verts_selected = [v.index for v in mesh_mod.vertices if v.select \
            and not v.hide]
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Curve", object, mesh, False, self.boundaries, False,
                loops, derived, mapping)
        
        move = []
        for loop in loops:
            knots, points = curve_calculate_knots(loop, verts_selected)
            pknots = curve_project_knots(mesh_mod, verts_selected, knots,
                points, loop[1])
            tknots, tpoints = curve_calculate_t(mesh_mod, knots, points,
                pknots, self.regular, loop[1])
            splines = calculate_splines(self.interpolation, mesh_mod,
                tknots, knots)
            move.append(curve_calculate_vertices(mesh_mod, knots, tknots,
                points, tpoints, splines, self.interpolation,
                self.restriction))
        
        # move vertices to new locations
        move_verts(mesh, mapping, move, self.influence)
        
        # cleaning up 
        if derived:
            bpy.context.blend_data.meshes.remove(mesh_mod)
        
        terminate(global_undo)
        return{'FINISHED'}


# flatten operator
class Flatten(bpy.types.Operator):
    bl_idname = "mesh.looptools_flatten"
    bl_label = "Flatten"
    bl_description = "Flatten vertices on a best-fitting plane"
    bl_options = {'REGISTER', 'UNDO'}
    
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    plane = bpy.props.EnumProperty(name = "Plane",
        items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
            ("normal", "Normal", "Derive plane from averaging vertex "\
            "normals"),
            ("view", "View", "Flatten on a plane perpendicular to the "\
            "viewing angle")),
        description = "Plane on which vertices are flattened",
        default = 'best_fit')
    restriction = bpy.props.EnumProperty(name = "Restriction",
        items = (("none", "None", "No restrictions on vertex movement"),
            ("bounding_box", "Bounding box", "Vertices are restricted to "\
            "movement inside the bounding box of the selection")),
        description = "Restrictions on how the vertices can be moved",
        default = 'none')
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "plane")
        #col.prop(self, "restriction")
        col.separator()
        
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, mesh = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Flatten",
            object, mesh, False, False)
        if not cached:
            # order input into virtual loops
            loops = flatten_get_input(mesh)
            loops = check_loops(loops, mapping, mesh)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Flatten", object, mesh, False, False, False, loops,
                False, False)
        
        move = []
        for loop in loops:
            # calculate plane and position of vertices on them
            com, normal = calculate_plane(mesh, loop, method=self.plane,
                object=object)
            to_move = flatten_project(mesh, loop, com, normal)
            if self.restriction == 'none':
                move.append(to_move)
            else:
                move.append(to_move)
        move_verts(mesh, False, move, self.influence)
        
        terminate(global_undo)
        return{'FINISHED'}


# relax operator
class Relax(bpy.types.Operator):
    bl_idname = "mesh.looptools_relax"
    bl_label = "Relax"
    bl_description = "Relax the loop, so it is smoother"
    bl_options = {'REGISTER', 'UNDO'}
    
    input = bpy.props.EnumProperty(name = "Input",
        items = (("all", "Parallel (all)", "Also use non-selected "\
                "parallel loops as input"),
            ("selected", "Selection","Only use selected vertices as input")),
        description = "Loops that are relaxed",
        default = 'selected')
    interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Simple and fast linear algorithm")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    iterations = bpy.props.EnumProperty(name = "Iterations",
        items = (("1", "1", "One"),
            ("3", "3", "Three"),
            ("5", "5", "Five"),
            ("10", "10", "Ten"),
            ("25", "25", "Twenty-five")),
        description = "Number of times the loop is relaxed",
        default = "1")
    regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the" \
            "loop",
        default = True)
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "interpolation")
        col.prop(self, "input")
        col.prop(self, "iterations")
        col.prop(self, "regular")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, mesh = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Relax",
            object, mesh, self.input, False)
        if cached:
            derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
        else:
            # find loops
            derived, mesh_mod, loops = get_connected_input(object, mesh,
                context.scene, self.input)
            mapping = get_mapping(derived, mesh, mesh_mod, False, False, loops)
            loops = check_loops(loops, mapping, mesh_mod)
        knots, points = relax_calculate_knots(loops)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Relax", object, mesh, self.input, False, False, loops,
                derived, mapping)
        
        for iteration in range(int(self.iterations)):
            # calculate splines and new positions
            tknots, tpoints = relax_calculate_t(mesh_mod, knots, points,
                self.regular)
            splines = []
            for i in range(len(knots)):
                splines.append(calculate_splines(self.interpolation, mesh_mod,
                    tknots[i], knots[i]))
            move = [relax_calculate_verts(mesh_mod, self.interpolation,
                tknots, knots, tpoints, points, splines)]
            move_verts(mesh, mapping, move, -1)
        
        # cleaning up 
        if derived:
            bpy.context.blend_data.meshes.remove(mesh_mod)
        terminate(global_undo)
        
        return{'FINISHED'}


# space operator
class Space(bpy.types.Operator):
    bl_idname = "mesh.looptools_space"
    bl_label = "Space"
    bl_description = "Space the vertices in a regular distrubtion on the loop"
    bl_options = {'REGISTER', 'UNDO'}
    
    influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    input = bpy.props.EnumProperty(name = "Input",
        items = (("all", "Parallel (all)", "Also use non-selected "\
                "parallel loops as input"),
            ("selected", "Selection","Only use selected vertices as input")),
        description = "Loops that are spaced",
        default = 'selected')
    interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Vertices are projected on existing edges")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    
    @classmethod
    def poll(cls, context):
        ob = context.active_object
        return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
    
    def draw(self, context):
        layout = self.layout
        col = layout.column()
        
        col.prop(self, "interpolation")
        col.prop(self, "input")
        col.separator()
        
        col.prop(self, "influence")
    
    def invoke(self, context, event):
        # load custom settings
        settings_load(self)
        return self.execute(context)
    
    def execute(self, context):
        # initialise
        global_undo, object, mesh = initialise()
        settings_write(self)
        # check cache to see if we can save time
        cached, single_loops, loops, derived, mapping = cache_read("Space",
            object, mesh, self.input, False)
        if cached:
            derived, mesh_mod = get_derived_mesh(object, mesh, context.scene)
        else:
            # find loops
            derived, mesh_mod, loops = get_connected_input(object, mesh,
                context.scene, self.input)
            mapping = get_mapping(derived, mesh, mesh_mod, False, False, loops)
            loops = check_loops(loops, mapping, mesh_mod)
        
        # saving cache for faster execution next time
        if not cached:
            cache_write("Space", object, mesh, self.input, False, False, loops,
                derived, mapping)
        
        move = []
        for loop in loops:
            # calculate splines and new positions
            if loop[1]: # circular
                loop[0].append(loop[0][0])
            tknots, tpoints = space_calculate_t(mesh_mod, loop[0][:])
            splines = calculate_splines(self.interpolation, mesh_mod,
                tknots, loop[0][:])
            move.append(space_calculate_verts(mesh_mod, self.interpolation,
                tknots, tpoints, loop[0][:-1], splines))
        
        # move vertices to new locations
        move_verts(mesh, mapping, move, self.influence)
        
        # cleaning up 
        if derived:
            bpy.context.blend_data.meshes.remove(mesh_mod)
        terminate(global_undo)
        
        return{'FINISHED'}


##########################################
####### GUI and registration #############
##########################################

# menu containing all tools
class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
    bl_label = "LoopTools"
    
    def draw(self, context):
        layout = self.layout
        
        layout.operator("mesh.looptools_bridge", text="Bridge").loft = False
        layout.operator("mesh.looptools_circle")
        layout.operator("mesh.looptools_curve")
        layout.operator("mesh.looptools_flatten")
        layout.operator("mesh.looptools_bridge", text="Loft").loft = True
        layout.operator("mesh.looptools_relax")
        layout.operator("mesh.looptools_space")


# panel containing all tools
class VIEW3D_PT_tools_looptools(bpy.types.Panel):
    bl_space_type = 'VIEW_3D'
    bl_region_type = 'TOOLS'
    bl_context = "mesh_edit"
    bl_label = "LoopTools"

    def draw(self, context):
        layout = self.layout
        col = layout.column(align=True)
        lt = context.window_manager.looptools
        
        # bridge - first line
        split = col.split(percentage=0.15)
        if lt.display_bridge:
            split.prop(lt, "display_bridge", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_bridge", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_bridge", text="Bridge").loft = False
        # bridge - settings
        if lt.display_bridge:
            box = col.column(align=True).box().column()
            #box.prop(self, "mode")
            
            # top row
            col_top = box.column(align=True)
            row = col_top.row(align=True)
            col_left = row.column(align=True)
            col_right = row.column(align=True)
            col_right.active = lt.bridge_segments != 1
            col_left.prop(lt, "bridge_segments")
            col_right.prop(lt, "bridge_min_width", text="")
            # bottom row
            bottom_left = col_left.row()
            bottom_left.active = lt.bridge_segments != 1
            bottom_left.prop(lt, "bridge_interpolation", text="")
            bottom_right = col_right.row()
            bottom_right.active = lt.bridge_interpolation == 'cubic'
            bottom_right.prop(lt, "bridge_cubic_strength")
            # boolean properties
            col_top.prop(lt, "bridge_remove_faces")
            
            # override properties
            col_top.separator()
            row = box.row(align = True)
            row.prop(lt, "bridge_twist")
            row.prop(lt, "bridge_reverse")
        
        # circle - first line
        split = col.split(percentage=0.15)
        if lt.display_circle:
            split.prop(lt, "display_circle", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_circle", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_circle")
        # circle - settings
        if lt.display_circle:
            box = col.column(align=True).box().column()
            box.prop(lt, "circle_fit")
            box.separator()
            
            box.prop(lt, "circle_flatten")
            row = box.row(align=True)
            row.prop(lt, "circle_custom_radius")
            row_right = row.row(align=True)
            row_right.active = lt.circle_custom_radius
            row_right.prop(lt, "circle_radius", text="")
            box.prop(lt, "circle_regular")
            box.separator()
            
            box.prop(lt, "circle_influence")
        
        # curve - first line
        split = col.split(percentage=0.15)
        if lt.display_curve:
            split.prop(lt, "display_curve", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_curve", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_curve")
        # curve - settings
        if lt.display_curve:
            box = col.column(align=True).box().column()
            box.prop(lt, "curve_interpolation")
            box.prop(lt, "curve_restriction")
            box.prop(lt, "curve_boundaries")
            box.prop(lt, "curve_regular")
            box.separator()
            
            box.prop(lt, "curve_influence")
        
        # flatten - first line
        split = col.split(percentage=0.15)
        if lt.display_flatten:
            split.prop(lt, "display_flatten", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_flatten", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_flatten")
        # flatten - settings
        if lt.display_flatten:
            box = col.column(align=True).box().column()
            box.prop(lt, "flatten_plane")
            #box.prop(lt, "flatten_restriction")
            box.separator()
            
            box.prop(lt, "flatten_influence")
        
        # loft - first line
        split = col.split(percentage=0.15)
        if lt.display_loft:
            split.prop(lt, "display_loft", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_loft", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_bridge", text="Loft").loft = True
        # loft - settings
        if lt.display_loft:
            box = col.column(align=True).box().column()
            #box.prop(self, "mode")
            
            # top row
            col_top = box.column(align=True)
            row = col_top.row(align=True)
            col_left = row.column(align=True)
            col_right = row.column(align=True)
            col_right.active = lt.bridge_segments != 1
            col_left.prop(lt, "bridge_segments")
            col_right.prop(lt, "bridge_min_width", text="")
            # bottom row
            bottom_left = col_left.row()
            bottom_left.active = lt.bridge_segments != 1
            bottom_left.prop(lt, "bridge_interpolation", text="")
            bottom_right = col_right.row()
            bottom_right.active = lt.bridge_interpolation == 'cubic'
            bottom_right.prop(lt, "bridge_cubic_strength")
            # boolean properties
            col_top.prop(lt, "bridge_remove_faces")
            col_top.prop(lt, "bridge_loft_loop")
            
            # override properties
            col_top.separator()
            row = box.row(align = True)
            row.prop(lt, "bridge_twist")
            row.prop(lt, "bridge_reverse")
        
        # relax - first line
        split = col.split(percentage=0.15)
        if lt.display_relax:
            split.prop(lt, "display_relax", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_relax", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_relax")
        # relax - settings
        if lt.display_relax:
            box = col.column(align=True).box().column()
            box.prop(lt, "relax_interpolation")
            box.prop(lt, "relax_input")
            box.prop(lt, "relax_iterations")
            box.prop(lt, "relax_regular")
        
        # space - first line
        split = col.split(percentage=0.15)
        if lt.display_space:
            split.prop(lt, "display_space", text="", icon='DOWNARROW_HLT')
        else:
            split.prop(lt, "display_space", text="", icon='RIGHTARROW')
        split.operator("mesh.looptools_space")
        # space - settings
        if lt.display_space:
            box = col.column(align=True).box().column()
            box.prop(lt, "space_interpolation")
            box.prop(lt, "space_input")
            box.separator()
            
            box.prop(lt, "space_influence")


# property group containing all properties for the gui in the panel
class LoopToolsProps(bpy.types.PropertyGroup):
    """
    Fake module like class
    bpy.context.window_manager.looptools
    """
    
    # general display properties
    display_bridge = bpy.props.BoolProperty(name = "Bridge settings",
        description = "Display settings of the Bridge tool",
        default = False)
    display_circle = bpy.props.BoolProperty(name = "Circle settings",
        description = "Display settings of the Circle tool",
        default = False)
    display_curve = bpy.props.BoolProperty(name = "Curve settings",
        description = "Display settings of the Curve tool",
        default = False)
    display_flatten = bpy.props.BoolProperty(name = "Flatten settings",
        description = "Display settings of the Flatten tool",
        default = False)
    display_loft = bpy.props.BoolProperty(name = "Loft settings",
        description = "Display settings of the Loft tool",
        default = False)
    display_relax = bpy.props.BoolProperty(name = "Relax settings",
        description = "Display settings of the Relax tool",
        default = False)
    display_space = bpy.props.BoolProperty(name = "Space settings",
        description = "Display settings of the Space tool",
        default = False)
    
    # bridge properties
    bridge_cubic_strength = bpy.props.FloatProperty(name = "Strength",
        description = "Higher strength results in more fluid curves",
        default = 1.0,
        soft_min = -3.0,
        soft_max = 3.0)
    bridge_interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
        items = (('cubic', "Cubic", "Gives curved results"),
            ('linear', "Linear", "Basic, fast, straight interpolation")),
        description = "Interpolation mode: algorithm used when creating "\
            "segments",
        default = 'cubic')
    bridge_loft = bpy.props.BoolProperty(name = "Loft",
        description = "Loft multiple loops, instead of considering them as "\
            "a multi-input for bridging",
        default = False)
    bridge_loft_loop = bpy.props.BoolProperty(name = "Loop",
        description = "Connect the first and the last loop with each other",
        default = False)
    bridge_min_width = bpy.props.IntProperty(name = "Minimum width",
        description = "Segments with an edge smaller than this are merged "\
            "(compared to base edge)",
        default = 0,
        min = 0,
        max = 100,
        subtype = 'PERCENTAGE')
    bridge_mode = bpy.props.EnumProperty(name = "Mode",
        items = (('basic', "Basic", "Fast algorithm"), ('shortest',
            "Shortest edge", "Slower algorithm with better vertex matching")),
        description = "Algorithm used for bridging",
        default = 'shortest')
    bridge_remove_faces = bpy.props.BoolProperty(name = "Remove faces",
        description = "Remove faces that are internal after bridging",
        default = True)
    bridge_reverse = bpy.props.BoolProperty(name = "Reverse",
        description = "Manually override the direction in which the loops "\
            "are bridged. Only use if the tool gives the wrong result.",
        default = False)
    bridge_segments = bpy.props.IntProperty(name = "Segments",
        description = "Number of segments used to bridge the gap "\
            "(0 = automatic)",
        default = 1,
        min = 0,
        soft_max = 20)
    bridge_twist = bpy.props.IntProperty(name = "Twist",
        description = "Twist what vertices are connected to each other",
        default = 0)
    
    # circle properties
    circle_custom_radius = bpy.props.BoolProperty(name = "Radius",
        description = "Force a custom radius",
        default = False)
    circle_fit = bpy.props.EnumProperty(name = "Method",
        items = (("best", "Best fit", "Non-linear least squares"),
            ("inside", "Fit inside","Only move vertices towards the center")),
        description = "Method used for fitting a circle to the vertices",
        default = 'best')
    circle_flatten = bpy.props.BoolProperty(name = "Flatten",
        description = "Flatten the circle, instead of projecting it on the " \
            "mesh",
        default = True)
    circle_influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    circle_radius = bpy.props.FloatProperty(name = "Radius",
        description = "Custom radius for circle",
        default = 1.0,
        min = 0.0,
        soft_max = 1000.0)
    circle_regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the " \
            "circle",
        default = True)
    
    # curve properties
    curve_boundaries = bpy.props.BoolProperty(name = "Boundaries",
        description = "Limit the tool to work within the boundaries of the "\
            "selected vertices",
        default = False)
    curve_influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    curve_interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Simple and fast linear algorithm")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    curve_regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the" \
            "curve",
        default = True)
    curve_restriction = bpy.props.EnumProperty(name = "Restriction",
        items = (("none", "None", "No restrictions on vertex movement"),
            ("extrude", "Extrude only","Only allow extrusions (no "\
                "indentations)"),
            ("indent", "Indent only", "Only allow indentation (no "\
                "extrusions)")),
        description = "Restrictions on how the vertices can be moved",
        default = 'none')
    
    # flatten properties
    flatten_influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    flatten_plane = bpy.props.EnumProperty(name = "Plane",
        items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
            ("normal", "Normal", "Derive plane from averaging vertex "\
            "normals"),
            ("view", "View", "Flatten on a plane perpendicular to the "\
            "viewing angle")),
        description = "Plane on which vertices are flattened",
        default = 'best_fit')
    flatten_restriction = bpy.props.EnumProperty(name = "Restriction",
        items = (("none", "None", "No restrictions on vertex movement"),
            ("bounding_box", "Bounding box", "Vertices are restricted to "\
            "movement inside the bounding box of the selection")),
        description = "Restrictions on how the vertices can be moved",
        default = 'none')
    
    # relax properties
    relax_input = bpy.props.EnumProperty(name = "Input",
        items = (("all", "Parallel (all)", "Also use non-selected "\
                "parallel loops as input"),
            ("selected", "Selection","Only use selected vertices as input")),
        description = "Loops that are relaxed",
        default = 'selected')
    relax_interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Simple and fast linear algorithm")),
        description = "Algorithm used for interpolation",
        default = 'cubic')
    relax_iterations = bpy.props.EnumProperty(name = "Iterations",
        items = (("1", "1", "One"),
            ("3", "3", "Three"),
            ("5", "5", "Five"),
            ("10", "10", "Ten"),
            ("25", "25", "Twenty-five")),
        description = "Number of times the loop is relaxed",
        default = "1")
    relax_regular = bpy.props.BoolProperty(name = "Regular",
        description = "Distribute vertices at constant distances along the" \
            "loop",
        default = True)
    
    # space properties
    space_influence = bpy.props.FloatProperty(name = "Influence",
        description = "Force of the tool",
        default = 100.0,
        min = 0.0,
        max = 100.0,
        precision = 1,
        subtype = 'PERCENTAGE')
    space_input = bpy.props.EnumProperty(name = "Input",
        items = (("all", "Parallel (all)", "Also use non-selected "\
                "parallel loops as input"),
            ("selected", "Selection","Only use selected vertices as input")),
        description = "Loops that are spaced",
        default = 'selected')
    space_interpolation = bpy.props.EnumProperty(name = "Interpolation",
        items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
            ("linear", "Linear", "Vertices are projected on existing edges")),
        description = "Algorithm used for interpolation",
        default = 'cubic')


# draw function for integration in menus
def menu_func(self, context):
    self.layout.menu("VIEW3D_MT_edit_mesh_looptools")
    self.layout.separator()


# define classes for registration
classes = [VIEW3D_MT_edit_mesh_looptools,
    VIEW3D_PT_tools_looptools,
    LoopToolsProps,
    Bridge,
    Circle,
    Curve,
    Flatten,
    Relax,
    Space]


# registering and menu integration
def register():
    for c in classes:
        bpy.utils.register_class(c)
    bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_func)
    bpy.types.WindowManager.looptools = bpy.props.PointerProperty(\
        type = LoopToolsProps)


# unregistering and removing menus
def unregister():
    for c in classes:
        bpy.utils.unregister_class(c)
    bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_func)
    try:
        del bpy.types.WindowManager.looptools
    except:
        pass


if __name__ == "__main__":
    register()