Welcome to mirror list, hosted at ThFree Co, Russian Federation.

numba_functions.py « mesh_tissue - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 86e83e54628a5f7b0a2d773f10e9e528af43fb1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# SPDX-License-Identifier: GPL-2.0-or-later

import numpy as np
import time
import sys

bool_numba = False

try:
    from .utils_pip import Pip
    Pip._ensure_user_site_package()
    from numba import jit, njit, guvectorize, float64, int32, prange
    from numba.typed import List
    bool_numba = True
except:
    pass
    '''
    try:
        from .utils_pip import Pip
        #Pip.upgrade_pip()
        Pip.install('llvmlite')
        Pip.install('numba')
        from numba import jit, njit, guvectorize, float64, int32, prange
        bool_numba = True
        print('Tissue: Numba successfully installed!')
    except:
        print('Tissue: Numba not loaded correctly. Try restarting Blender')
    '''

if bool_numba:
    #from numba import jit, njit, guvectorize, float64, int32, prange

    @njit(parallel=True)
    def numba_reaction_diffusion(n_verts, n_edges, edge_verts, a, b, brush, diff_a, diff_b, f, k, dt, time_steps):
        arr = np.arange(n_edges)*2
        id0 = edge_verts[arr]
        id1 = edge_verts[arr+1]
        for i in range(time_steps):
            lap_a, lap_b = rd_init_laplacian(n_verts)
            numba_rd_laplacian(id0, id1, a, b, lap_a, lap_b)
            numba_rd_core(a, b, lap_a, lap_b, diff_a, diff_b, f, k, dt)
            numba_set_ab(a,b,brush)
        return a,b

    @njit(parallel=False)
    def integrate_field(n_edges, id0, id1, values, edge_flow, mult, time_steps):
        #n_edges = len(edge_flow)
        for i in range(time_steps):
            values0 = values
            for j in range(n_edges):
                v0 = id0[j]
                v1 = id1[j]
                values[v0] -= values0[v1] * edge_flow[j] * 0.001#mult[v1]
                values[v1] += values0[v0] * edge_flow[j] * 0.001#mult[v0]
            for j in range(n_edges):
                v0 = id0[j]
                v1 = id1[j]
                values[v0] = max(values[v0],0)
                values[v1] = max(values[v1],0)
        return values

    @njit(parallel=True)
    def numba_reaction_diffusion_anisotropic(n_verts, n_edges, edge_verts, a, b, brush, diff_a, diff_b, f, k, dt, time_steps, grad):
        arr = np.arange(n_edges)*2
        id0 = edge_verts[arr]
        id1 = edge_verts[arr+1]
        #grad = weight_grad[id0] - weight_grad[id1]
        #grad = np.abs(grad)
        #grad /= abs(np.max(grad))
        #grad = grad*0.98 + 0.02
        for i in range(time_steps):
            lap_a, lap_b = rd_init_laplacian(n_verts)
            numba_rd_laplacian_anisotropic(id0, id1, a, b, lap_a, lap_b, grad)
            numba_rd_core(a, b, lap_a, lap_b, diff_a, diff_b, f, k, dt)
            numba_set_ab(a,b,brush)
        return a,b

    #@guvectorize(['(float64[:] ,float64[:] , float64[:], float64[:], float64[:], float64[:], float64[:], float64[:], float64)'],'(n),(n),(n),(n),(n),(n),(n),(n),()',target='parallel')
    @njit(parallel=True)
    def numba_rd_core(a, b, lap_a, lap_b, diff_a, diff_b, f, k, dt):
        n = len(a)
        _f = np.full(n, f[0]) if len(f) == 1 else f
        _k = np.full(n, k[0]) if len(k) == 1 else k
        _diff_a = np.full(n, diff_a[0]) if len(diff_a) == 1 else diff_a
        _diff_b = np.full(n, diff_b[0]) if len(diff_b) == 1 else diff_b

        for i in prange(n):
            fi = _f[i]
            ki = _k[i]
            diff_ai = _diff_a[i]
            diff_bi = _diff_b[i]
            ab2 = a[i]*b[i]**2
            a[i] += (diff_ai * lap_a[i] - ab2 + fi*(1-a[i]))*dt
            b[i] += (diff_bi * lap_b[i] + ab2 - (ki+fi)*b[i])*dt

    @njit(parallel=True)
    def numba_rd_core_(a, b, lap_a, lap_b, diff_a, diff_b, f, k, dt):
        ab2 = a*b**2
        a += (diff_a*lap_a - ab2 + f*(1-a))*dt
        b += (diff_b*lap_b + ab2 - (k+f)*b)*dt

    @njit(parallel=True)
    def numba_set_ab(a, b, brush):
        n = len(a)
        _brush = np.full(n, brush[0]) if len(brush) == 1 else brush
        for i in prange(len(b)):
            b[i] += _brush[i]
            if b[i] < 0: b[i] = 0
            elif b[i] > 1: b[i] = 1
            if a[i] < 0: a[i] = 0
            elif a[i] > 1: a[i] = 1


    #@guvectorize(['(float64[:] ,float64[:] ,float64[:] , float64[:], float64[:], float64[:])'],'(m),(m),(n),(n),(n),(n)',target='parallel')
    @njit(parallel=True)
    def numba_rd_laplacian(id0, id1, a, b, lap_a, lap_b):
        for i in prange(len(id0)):
            v0 = id0[i]
            v1 = id1[i]
            lap_a[v0] += a[v1] - a[v0]
            lap_a[v1] += a[v0] - a[v1]
            lap_b[v0] += b[v1] - b[v0]
            lap_b[v1] += b[v0] - b[v1]
        #return lap_a, lap_b

    @njit(parallel=True)
    def numba_rd_laplacian_anisotropic(id0, id1, a, b, lap_a, lap_b, grad):
        for i in prange(len(id0)):
            v0 = id0[i]
            v1 = id1[i]
            lap_a[v0] += (a[v1] - a[v0])
            lap_a[v1] += (a[v0] - a[v1])
            lap_b[v0] -= (b[v1] - b[v0])*grad[i]
            lap_b[v1] += (b[v0] - b[v1])*grad[i]
        #return lap_a, lap_b

    @njit(parallel=True)
    def numba_rd_neigh_vertices(edge_verts):
        n_edges = len(edge_verts)/2
        id0 = np.zeros(n_edges)
        id1 = np.zeros(n_edges)
        for i in prange(n_edges):
            id0[i] = edge_verts[i*2]     # first vertex indices for each edge
            id1[i] = edge_verts[i*2+1]   # second vertex indices for each edge
        return id0, id1

    #@guvectorize(['(float64[:] ,float64[:] , float64[:], float64[:], float64[:])'],'(m),(n),(n),(n),(n)',target='parallel')
    @njit(parallel=True)
    #@njit
    def numba_rd_laplacian_(edge_verts, a, b, lap_a, lap_b):
        for i in prange(len(edge_verts)/2):
            v0 = edge_verts[i*2]
            v1 = edge_verts[i*2+1]
            lap_a[v0] += a[v1] - a[v0]
            lap_a[v1] += a[v0] - a[v1]
            lap_b[v0] += b[v1] - b[v0]
            lap_b[v1] += b[v0] - b[v1]
        #return lap_a, lap_b

    @njit(parallel=True)
    def rd_fill_laplacian(lap_a, lap_b, id0, id1, lap_a0, lap_b0):
        #for i, j, la0, lb0 in zip(id0,id1,lap_a0,lap_b0):
        for index in prange(len(id0)):
            i = id0[index]
            j = id1[index]
            la0 = lap_a0[index]
            lb0 = lap_b0[index]
            lap_a[i] += la0
            lap_b[i] += lb0
            lap_a[j] -= la0
            lap_b[j] -= lb0

    @njit(parallel=True)
    def rd_init_laplacian(n_verts):
        lap_a = np.zeros(n_verts)
        lap_b = np.zeros(n_verts)
        return lap_a, lap_b

    '''
    @jit
    def numba_reaction_diffusion(n_verts, n_edges, edge_verts, a, b, diff_a, diff_b, f, k, dt, time_steps, db):
        arr = np.arange(n_edges)*2
        id0 = edge_verts[arr]     # first vertex indices for each edge
        id1 = edge_verts[arr+1]   # second vertex indices for each edge
        #dgrad = abs(grad[id1] - grad[id0])
        for i in range(time_steps):
            lap_a = np.zeros(n_verts)
            lap_b = np.zeros(n_verts)
            b += db
            lap_a0 =  a[id1] - a[id0]   # laplacian increment for first vertex of each edge
            lap_b0 =  b[id1] -  b[id0]   # laplacian increment for first vertex of each edge
            #lap_a0 *= dgrad
            #lap_b0 *= dgrad

            for i, j, la0, lb0 in zip(id0,id1,lap_a0,lap_b0):
                lap_a[i] += la0
                lap_b[i] += lb0
                lap_a[j] -= la0
                lap_b[j] -= lb0
            ab2 = a*b**2
            #a += eval("(diff_a*lap_a - ab2 + f*(1-a))*dt")
            #b += eval("(diff_b*lap_b + ab2 - (k+f)*b)*dt")
            a += (diff_a*lap_a - ab2 + f*(1-a))*dt
            b += (diff_b*lap_b + ab2 - (k+f)*b)*dt
        return a, b
    '''
    '''
    @njit(parallel=True)
    def numba_lerp2_(v00, v10, v01, v11, vx, vy):
        sh = v00.shape
        co2 = np.zeros((sh[0],len(vx),sh[-1]))
        for i in prange(len(v00)):
            for j in prange(len(vx)):
                for k in prange(len(v00[0][0])):
                    co0 = v00[i][0][k] + (v10[i][0][k] - v00[i][0][k]) * vx[j][0]
                    co1 = v01[i][0][k] + (v11[i][0][k] - v01[i][0][k]) * vx[j][0]
                    co2[i][j][k] = co0 + (co1 - co0) * vy[j][0]
        return co2


    @njit(parallel=True)
    def numba_lerp2_vec(v0, vx, vy):
        n_faces = v0.shape[0]
        co2 = np.zeros((n_faces,len(vx),3))
        for i in prange(n_faces):
            for j in prange(len(vx)):
                for k in prange(3):
                    co0 = v0[i][0][k] + (v0[i][1][k] - v0[i][0][k]) * vx[j][0]
                    co1 = v0[i][3][k] + (v0[i][2][k] - v0[i][3][k]) * vx[j][0]
                    co2[i][j][k] = co0 + (co1 - co0) * vy[j][0]
        return co2

    @njit(parallel=True)
    def numba_lerp2__(val, vx, vy):
        n_faces = len(val)
        co2 = np.zeros((n_faces,len(vx),1))
        for i in prange(n_faces):
            for j in prange(len(vx)):
                co0 = val[i][0] + (val[i][1] - val[i][0]) * val[j][0]
                co1 = val[i][3] + (val[i][2] - val[i][3]) * val[j][0]
                co2[i][j][0] = co0 + (co1 - co0) * vy[j][0]
        return co2
    '''

    @njit(parallel=True)
    def numba_combine_and_flatten(arrays):
        n_faces = len(arrays)
        n_verts = len(arrays[0])
        new_list = [0.0]*n_faces*n_verts*3
        for i in prange(n_faces):
            for j in prange(n_verts):
                for k in prange(3):
                    new_list[i*n_verts*3+j*3+k] = arrays[i][j,k]
        return new_list

    @njit(parallel=True)
    def numba_calc_thickness_area_weight(co2,n2,vz,a,weight):
        shape = co2.shape
        n_patches = shape[0]
        n_verts = shape[1]
        n_co = shape[2]
        nn = n2.shape[1]-1
        na = a.shape[1]-1
        nw = weight.shape[1]-1
        co3 = np.zeros((n_patches,n_verts,n_co))
        for i in prange(n_patches):
            for j in prange(n_verts):
                for k in prange(n_co):
                    co3[i,j,k] = co2[i,j,k] + n2[i,min(j,nn),k] * vz[0,j,0] * a[i,min(j,na),0] * weight[i,min(j,nw),0]
        return co3
    '''
    @njit(parallel=True)
    def numba_calc_thickness_area(co2,n2,vz,a):
        shape = co2.shape
        n_patches = shape[0]
        n_verts = shape[1]
        n_co = shape[2]
        #co3 = [0.0]*n_patches*n_verts*n_co #np.zeros((n_patches,n_verts,n_co))
        co3 = np.zeros((n_patches,n_verts,n_co))
        for i in prange(n_patches):
            for j in prange(n_verts):
                for k in prange(n_co):
                    #co3[i,j,k] = co2[i,j,k] + n2[i,j,k] * vz[0,j,0] * a[i,j,0]
                    co3[i,j,k] = co2[i,j,k] + n2[i,min(j,nor_len),k] * vz[0,j,0] * a[i,j,0]
        return co3
    '''
    @njit(parallel=True)
    def numba_calc_thickness_weight(co2,n2,vz,weight):
        shape = co2.shape
        n_patches = shape[0]
        n_verts = shape[1]
        n_co = shape[2]
        nn = n2.shape[1]-1
        nw = weight.shape[1]-1
        co3 = np.zeros((n_patches,n_verts,n_co))
        for i in prange(n_patches):
            for j in prange(n_verts):
                for k in prange(n_co):
                    co3[i,j,k] = co2[i,j,k] + n2[i,min(j,nn),k] * vz[0,j,0] * weight[i,min(j,nw),0]
        return co3

    @njit(parallel=True)
    def numba_calc_thickness(co2,n2,vz):
        shape = co2.shape
        n_patches = shape[0]
        n_verts = shape[1]
        n_co = shape[2]
        nn = n2.shape[1]-1
        co3 = np.zeros((n_patches,n_verts,n_co))
        for i in prange(n_patches):
            for j in prange(n_verts):
                for k in prange(n_co):
                    co3[i,j,k] = co2[i,j,k] + n2[i,min(j,nn),k] * vz[0,j,0]
        return co3

    @njit(parallel=True)
    def numba_interp_points(v00, v10, v01, v11, vx, vy):
        n_patches = v00.shape[0]
        n_verts = vx.shape[1]
        n_verts0 = v00.shape[1]
        n_co = v00.shape[2]
        vxy = np.zeros((n_patches,n_verts,n_co))
        for i in prange(n_patches):
            for j in prange(n_verts):
                j0 = min(j,n_verts0-1)
                for k in prange(n_co):
                    co0 = v00[i,j0,k] + (v10[i,j0,k] - v00[i,j0,k]) * vx[0,j,0]
                    co1 = v01[i,j0,k] + (v11[i,j0,k] - v01[i,j0,k]) * vx[0,j,0]
                    vxy[i,j,k] = co0 + (co1 - co0) * vy[0,j,0]
        return vxy

    @njit(parallel=True)
    def numba_interp_points_sk(v00, v10, v01, v11, vx, vy):
        n_patches = v00.shape[0]
        n_sk = v00.shape[1]
        n_verts = v00.shape[2]
        n_co = v00.shape[3]
        vxy = np.zeros((n_patches,n_sk,n_verts,n_co))
        for i in prange(n_patches):
            for sk in prange(n_sk):
                for j in prange(n_verts):
                    for k in prange(n_co):
                        co0 = v00[i,sk,j,k] + (v10[i,sk,j,k] - v00[i,sk,j,k]) * vx[0,sk,j,0]
                        co1 = v01[i,sk,j,k] + (v11[i,sk,j,k] - v01[i,sk,j,k]) * vx[0,sk,j,0]
                        vxy[i,sk,j,k] = co0 + (co1 - co0) * vy[0,sk,j,0]
        return vxy

    @njit
    def numba_lerp(v0, v1, x):
        return v0 + (v1 - v0) * x

    @njit
    def numba_lerp2(v00, v10, v01, v11, vx, vy):
        co0 = numba_lerp(v00, v10, vx)
        co1 = numba_lerp(v01, v11, vx)
        co2 = numba_lerp(co0, co1, vy)
        return co2

    @njit(parallel=True)
    def numba_lerp2_________________(v00, v10, v01, v11, vx, vy):
        ni = len(v00)
        nj = len(v00[0])
        nk = len(v00[0][0])
        co2 = np.zeros((ni,nj,nk))
        for i in prange(ni):
            for j in prange(nj):
                for k in prange(nk):
                    _v00 = v00[i,j,k]
                    _v01 = v01[i,j,k]
                    _v10 = v10[i,j,k]
                    _v11 = v11[i,j,k]
                    co0 = _v00 + (_v10 - _v00) * vx[i,j,k]
                    co1 = _v01 + (_v11 - _v01) * vx[i,j,k]
                    co2[i,j,k] = co0 + (co1 - co0) * vy[i,j,k]
        return co2

    @njit(parallel=True)
    def numba_lerp2_4(v00, v10, v01, v11, vx, vy):
        ni = len(v00)
        nj = len(v00[0])
        nk = len(v00[0][0])
        nw = len(v00[0][0][0])
        co2 = np.zeros((ni,nj,nk,nw))
        for i in prange(ni):
            for j in prange(nj):
                for k in prange(nk):
                    for w in prange(nw):
                        _v00 = v00[i,j,k]
                        _v01 = v01[i,j,k]
                        _v10 = v10[i,j,k]
                        _v11 = v11[i,j,k]
                        co0 = _v00 + (_v10 - _v00) * vx[i,j,k]
                        co1 = _v01 + (_v11 - _v01) * vx[i,j,k]
                        co2[i,j,k] = co0 + (co1 - co0) * vy[i,j,k]
        return co2


#except:
#    print("Tissue: Numba cannot be installed. Try to restart Blender.")
#    pass