Welcome to mirror list, hosted at ThFree Co, Russian Federation.

utils.py « mesh_tissue - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b43310843e6b82f27a2d28321173c1519bd194f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
# SPDX-License-Identifier: GPL-2.0-or-later

import bpy, bmesh
import threading
import numpy as np
import multiprocessing
from multiprocessing import Process, Pool
from mathutils import Vector, Matrix
from math import *
try: from .numba_functions import *
except: pass

from . import config

def use_numba_tess():
    tissue_addon = bpy.context.preferences.addons[__package__]
    if 'use_numba_tess' in tissue_addon.preferences.keys():
        return tissue_addon.preferences['use_numba_tess']
    else:
        return True

def tissue_time(start_time, name, levels=0):
    tissue_addon = bpy.context.preferences.addons[__package__]
    end_time = time.time()
    if 'print_stats' in tissue_addon.preferences.keys():
        ps = tissue_addon.preferences['print_stats']
    else:
        ps = 1
    if levels < ps:
        if "Tissue: " in name: head = ""
        else: head = "        "
        if start_time:
            print('{}{}{} in {:.4f} sec'.format(head, "|   "*levels, name, end_time - start_time))
        else:
            print('{}{}{}'.format(head, "|   "*levels, name))
    return end_time


# ------------------------------------------------------------------
# MATH
# ------------------------------------------------------------------

def _np_broadcast(arrays):
    shapes = [arr.shape for arr in arrays]
    for i in range(len(shapes[0])):
        ish = [sh[i] for sh in shapes]
        max_len = max(ish)
        for j in range(len(arrays)):
            leng = ish[j]
            if leng == 1: arrays[j] = np.repeat(arrays[j], max_len, axis=i)
    for arr in arrays:
        arr = arr.flatten()
    #vt = v0 + (v1 - v0) * t
    return arrays

def lerp(a, b, t):
    return a + (b - a) * t

def _lerp2(v1, v2, v3, v4, v):
    v12 = v1.lerp(v2,v.x) # + (v2 - v1) * v.x
    v34 = v3.lerp(v4,v.x) # + (v4 - v3) * v.x
    return v12.lerp(v34, v.y)# + (v34 - v12) * v.y

def lerp2(v1, v2, v3, v4, v):
    v12 = v1 + (v2 - v1) * v.x
    v34 = v3 + (v4 - v3) * v.x
    v = v12 + (v34 - v12) * v.y
    return v

def lerp3(v1, v2, v3, v4, v):
    loc = lerp2(v1.co, v2.co, v3.co, v4.co, v)
    nor = lerp2(v1.normal, v2.normal, v3.normal, v4.normal, v)
    nor.normalize()
    return loc + nor * v.z

import sys
def np_lerp2(v00, v10, v01, v11, vx, vy, mode=''):
    if 'numba' in sys.modules and use_numba_tess():
        if mode == 'verts':
            co2 = numba_interp_points(v00, v10, v01, v11, vx, vy)
        elif mode == 'shapekeys':
            co2 = numba_interp_points_sk(v00, v10, v01, v11, vx, vy)
        else:
            co2 = numba_lerp2(v00, v10, v01, v11, vx, vy)
    else:
        co0 = v00 + (v10 - v00) * vx
        co1 = v01 + (v11 - v01) * vx
        co2 = co0 + (co1 - co0) * vy
    return co2

def calc_thickness(co2,n2,vz,a,weight):
    if 'numba' in sys.modules and use_numba_tess():
        if len(co2.shape) == 3:
            if type(a) != np.ndarray:
                a = np.ones(len(co2)).reshape((-1,1,1))
            if type(weight) != np.ndarray:
                weight = np.ones(len(co2)).reshape((-1,1,1))
            co3 = numba_calc_thickness_area_weight(co2,n2,vz,a,weight)
        elif len(co2.shape) == 4:
            n_patches = co2.shape[0]
            n_sk = co2.shape[1]
            n_verts = co2.shape[2]
            if type(a) != np.ndarray:
                a = np.ones(n_patches).reshape((n_patches,1,1,1))
            if type(weight) != np.ndarray:
                weight = np.ones(n_patches).reshape((n_patches,1,1,1))
            na = a.shape[1]-1
            nw = weight.shape[1]-1
            co3 = np.empty((n_sk,n_patches,n_verts,3))
            for i in range(n_sk):
                co3[i] = numba_calc_thickness_area_weight(co2[:,i],n2[:,i],vz[:,i],a[:,min(i,na)],weight[:,min(i,nw)])
            co3 = co3.swapaxes(0,1)
    else:
        use_area = type(a) == np.ndarray
        use_weight = type(weight) == np.ndarray
        if use_area:
            if use_weight:
                co3 = co2 + n2 * vz * a * weight
            else:
                co3 = co2 + n2 * vz * a
        else:
            if use_weight:
                co3 = co2 + n2 * vz * weight
            else:
                co3 = co2 + n2 * vz
    return co3

def combine_and_flatten(arrays):
    if 'numba' in sys.modules:
        new_list = numba_combine_and_flatten(arrays)
    else:
        new_list = np.concatenate(arrays, axis=0)
        new_list = new_list.flatten().tolist()
    return new_list

def np_interp2(grid, vx, vy):
    grid_shape = grid.shape[-2:]
    levels = len(grid.shape)-2
    nu = grid_shape[0]
    nv = grid_shape[1]
    u = np.arange(nu)/(nu-1)
    v = np.arange(nv)/(nv-1)
    u_shape = [1]*levels + [nu]
    v_shape = [1]*levels + [nv]

    co0 = np.interp()
    co1 = np.interp()
    co2 = np.interp()
    return co2

def flatten_vector(vec, x, y):
    """
    Find planar vector according to two axis.
    :arg vec: Input vector.
    :type vec: :class:'mathutils.Vector'
    :arg x: First axis.
    :type x: :class:'mathutils.Vector'
    :arg y: Second axis.
    :type y: :class:'mathutils.Vector'
    :return: Projected 2D Vector.
    :rtype: :class:'mathutils.Vector'
    """
    vx = vec.project(x)
    vy = vec.project(y)
    mult = 1 if vx.dot(x) > 0 else -1
    vx = mult*vx.length
    mult = 1 if vy.dot(y) > 0 else -1
    vy = mult*vy.length
    return Vector((vx, vy))

def vector_rotation(vec):
    """
    Find vector rotation according to X axis.
    :arg vec: Input vector.
    :type vec: :class:'mathutils.Vector'
    :return: Angle in radians.
    :rtype: float
    """
    v0 = Vector((1,0))
    ang = Vector.angle_signed(vec, v0)
    if ang < 0: ang = 2*pi + ang
    return ang

# ------------------------------------------------------------------
# SCENE
# ------------------------------------------------------------------

def set_animatable_fix_handler(self, context):
    '''
    Prevent Blender Crashes with handlers
    '''
    old_handlers = []
    blender_handlers = bpy.app.handlers.render_init
    for h in blender_handlers:
        if "turn_off_animatable" in str(h):
            old_handlers.append(h)
    for h in old_handlers: blender_handlers.remove(h)
    blender_handlers.append(turn_off_animatable)
    return

def turn_off_animatable(scene):
    '''
    Prevent Blender Crashes with handlers
    '''
    for o in [o for o in bpy.data.objects if o.type == 'MESH']:
        o.tissue_tessellate.bool_run = False
        #if not o.reaction_diffusion_settings.bool_cache:
        #    o.reaction_diffusion_settings.run = False
        #except: pass
    return

# ------------------------------------------------------------------
# OBJECTS
# ------------------------------------------------------------------

def convert_object_to_mesh(ob, apply_modifiers=True, preserve_status=True):
    try: ob.name
    except: return None
    if ob.type != 'MESH':
        if not apply_modifiers:
            mod_visibility = [m.show_viewport for m in ob.modifiers]
            for m in ob.modifiers: m.show_viewport = False
        #ob.modifiers.update()
        #dg = bpy.context.evaluated_depsgraph_get()
        #ob_eval = ob.evaluated_get(dg)
        #me = bpy.data.meshes.new_from_object(ob_eval, preserve_all_data_layers=True, depsgraph=dg)
        me = simple_to_mesh(ob)
        new_ob = bpy.data.objects.new(ob.data.name, me)
        new_ob.location, new_ob.matrix_world = ob.location, ob.matrix_world
        if not apply_modifiers:
            for m,vis in zip(ob.modifiers,mod_visibility): m.show_viewport = vis
    else:
        if apply_modifiers:
            new_ob = ob.copy()
            new_me = simple_to_mesh(ob)
            new_ob.modifiers.clear()
            new_ob.data = new_me
        else:
            new_ob = ob.copy()
            new_ob.data = ob.data.copy()
            new_ob.modifiers.clear()
    bpy.context.collection.objects.link(new_ob)
    if preserve_status:
        new_ob.select_set(False)
    else:
        for o in bpy.context.view_layer.objects: o.select_set(False)
        new_ob.select_set(True)
        bpy.context.view_layer.objects.active = new_ob
    return new_ob

def simple_to_mesh(ob, depsgraph=None):
    '''
    Convert object to mesh applying Modifiers and Shape Keys
    '''
    #global evaluatedDepsgraph
    if depsgraph == None:
        if config.evaluatedDepsgraph == None:
            dg = bpy.context.evaluated_depsgraph_get()
        else: dg = config.evaluatedDepsgraph
    else:
        dg = depsgraph
    ob_eval = ob.evaluated_get(dg)
    me = bpy.data.meshes.new_from_object(ob_eval, preserve_all_data_layers=True, depsgraph=dg)
    me.calc_normals()
    return me

def _join_objects(context, objects, link_to_scene=True, make_active=True):
    C = context
    bm = bmesh.new()

    materials = {}
    faces_materials = []
    if config.evaluatedDepsgraph == None:
        dg = C.evaluated_depsgraph_get()
    else: dg = config.evaluatedDepsgraph

    for o in objects:
        bm.from_object(o, dg)
        # add object's material to the dictionary
        for m in o.data.materials:
            if m not in materials: materials[m] = len(materials)
        for f in o.data.polygons:
            index = f.material_index
            mat = o.material_slots[index].material
            new_index = materials[mat]
            faces_materials.append(new_index)
    bm.verts.ensure_lookup_table()
    bm.edges.ensure_lookup_table()
    bm.faces.ensure_lookup_table()
    # assign new indexes
    for index, f in zip(faces_materials, bm.faces): f.material_index = index
    # create object
    me = bpy.data.meshes.new('joined')
    bm.to_mesh(me)
    me.update()
    ob = bpy.data.objects.new('joined', me)
    if link_to_scene: C.collection.objects.link(ob)
    # make active
    if make_active:
        for o in C.view_layer.objects: o.select_set(False)
        ob.select_set(True)
        C.view_layer.objects.active = ob
    # add materials
    for m in materials.keys(): ob.data.materials.append(m)

    return ob

def join_objects(context, objects):
    generated_data = [o.data for o in objects]
    context.view_layer.update()
    for o in context.view_layer.objects:
        o.select_set(o in objects)
    bpy.ops.object.join()
    new_ob = context.view_layer.objects.active
    new_ob.select_set(True)
    for me in generated_data:
        if me != new_ob.data:
            bpy.data.meshes.remove(me)
    return new_ob

def join_objects(objects):
    override = bpy.context.copy()
    new_ob = objects[0]
    override['active_object'] = new_ob
    override['selected_editable_objects'] = objects
    bpy.ops.object.join(override)
    return new_ob

def repeat_mesh(me, n):
    '''
    Return Mesh data adding and applying an array without offset (Slower)
    '''
    bm = bmesh.new()
    for i in range(n): bm.from_mesh(me)
    new_me = me.copy()
    bm.to_mesh(new_me)
    bm.free()
    return new_me

def array_mesh(ob, n):
    '''
    Return Mesh data adding and applying an array without offset
    '''
    arr = ob.modifiers.new('Repeat','ARRAY')
    arr.relative_offset_displace[0] = 0
    arr.count = n
    #bpy.ops.object.modifier_apply({'active_object':ob},modifier='Repeat')
    #me = ob.data
    ob.modifiers.update()

    dg = bpy.context.evaluated_depsgraph_get()
    me = simple_to_mesh(ob, depsgraph=dg)
    ob.modifiers.remove(arr)
    return me

def array_mesh_object(ob, n):
    '''
    Return Mesh data adding and applying an array without offset
    '''
    arr = ob.modifiers.new('Repeat','ARRAY')
    arr.relative_offset_displace[0] = 0
    arr.count = n
    ob.modifiers.update()
    override = bpy.context.copy()
    override['active_object'] = ob
    override = {'active_object': ob}
    bpy.ops.object.modifier_apply(override, modifier=arr.name)
    return ob


def get_mesh_before_subs(ob):
    not_allowed  = ('FLUID_SIMULATION', 'ARRAY', 'BEVEL', 'BOOLEAN', 'BUILD',
                    'DECIMATE', 'EDGE_SPLIT', 'MASK', 'MIRROR', 'REMESH',
                    'SCREW', 'SOLIDIFY', 'TRIANGULATE', 'WIREFRAME', 'SKIN',
                    'EXPLODE', 'PARTICLE_INSTANCE', 'PARTICLE_SYSTEM', 'SMOKE')
    subs = 0
    hide_mods = []
    mods_visibility = []
    for m in ob.modifiers:
        hide_mods.append(m)
        mods_visibility.append(m.show_viewport)
        if m.type in ('SUBSURF','MULTIRES'):
            hide_mods = [m]
            subs = m.levels
        elif m.type in not_allowed:
            subs = 0
            hide_mods = []
            mods_visibility = []
    for m in hide_mods: m.show_viewport = False
    me = simple_to_mesh(ob)
    for m, vis in zip(hide_mods,mods_visibility): m.show_viewport = vis
    return me, subs

# ------------------------------------------------------------------
# MESH FUNCTIONS
# ------------------------------------------------------------------

def calc_verts_area(me):
    n_verts = len(me.vertices)
    n_faces = len(me.polygons)
    vareas = np.zeros(n_verts)
    vcount = np.zeros(n_verts)
    parea = [0]*n_faces
    pverts = [0]*n_faces*4
    me.polygons.foreach_get('area', parea)
    me.polygons.foreach_get('vertices', pverts)
    parea = np.array(parea)
    pverts = np.array(pverts).reshape((n_faces, 4))
    for a, verts in zip(parea,pverts):
        vareas[verts] += a
        vcount[verts] += 1
    return vareas / vcount

def calc_verts_area_bmesh(me):
    bm = bmesh.new()
    bm.from_mesh(me)
    bm.verts.ensure_lookup_table()
    verts_area = np.zeros(len(me.vertices))
    for v in bm.verts:
        area = 0
        faces = v.link_faces
        for f in faces:
            area += f.calc_area()
        verts_area[v.index] = area if area == 0 else area/len(faces)
    bm.free()
    return verts_area

import time

def get_patches____(me_low, me_high, sides, subs, bool_selection, bool_material_id, material_id):
    nv = len(me_low.vertices)       # number of vertices
    ne = len(me_low.edges)          # number of edges
    nf = len(me_low.polygons)       # number of polygons
    n = 2**subs + 1            # number of vertices along each patch edge
    nev = ne * n               # number of vertices along the subdivided edges
    nevi = nev - 2*ne          # internal vertices along subdividede edges

    n0 = 2**(subs-1) - 1

    # filtered polygonal faces
    poly_sides = np.array([len(p.vertices) for p in me_low.polygons])
    mask = poly_sides == sides
    if bool_material_id:
        mask_material = [1]*nf
        me_low.polygons.foreach_get('material_index',mask_material)
        mask_material = np.array(mask_material) == material_id
        mask = np.logical_and(mask,mask_material)
    if bool_selection:
        mask_selection = [True]*nf
        me_low.polygons.foreach_get('select',mask_selection)
        mask_selection = np.array(mask_selection)
        mask = np.logical_and(mask,mask_selection)
    polys = np.array(me_low.polygons)[mask]
    mult = n0**2 + n0
    ps = poly_sides * mult + 1
    ps = np.insert(ps,0,nv + nevi, axis=0)[:-1]
    ips = ps.cumsum()[mask]                    # incremental polygon sides
    nf = len(polys)

    # when subdivided quad faces follows a different pattern
    if sides == 4:
        n_patches = nf
    else:
        n_patches = nf*sides

    if sides == 4:
        patches = np.zeros((nf,n,n),dtype='int')
        verts = [[vv for vv in p.vertices] for p in polys if len(p.vertices) == sides]
        verts = np.array(verts).reshape((-1,sides))

        # filling corners

        patches[:,0,0] = verts[:,0]
        patches[:,n-1,0] = verts[:,1]
        patches[:,n-1,n-1] = verts[:,2]
        patches[:,0,n-1] = verts[:,3]

        if subs != 0:
            shift_verts = np.roll(verts, -1, axis=1)[:,:,None]
            edge_keys = np.concatenate((shift_verts, verts[:,:,None]), axis=2)
            edge_keys.sort()

            edge_verts = np.array(me_low.edge_keys) # edges keys
            edges_index = np.zeros((ne,ne),dtype='int')
            edges_index[edge_verts[:,0],edge_verts[:,1]] = np.arange(ne)

            evi = np.arange(nevi) + nv
            evi = evi.reshape(ne,n-2)           # edges inner verts
            straight = np.arange(n-2)+1
            inverted = np.flip(straight)
            inners = np.array([[j*(n-2)+i for j in range(n-2)] for i in range(n-2)])

            ek1 = np.array(me_high.edge_keys)   # edges keys
            ids0 = np.arange(ne)*(n-1)      # edge keys highres
            keys0 = ek1[ids0]               # first inner edge
            keys1 = ek1[ids0 + n-2]         # last inner edge
            keys = np.concatenate((keys0,keys1))
            pick_verts = np.array((inverted,straight))

            patch_index = np.arange(nf)[:,None,None]

            # edge 0
            e0 = edge_keys[:,0]                             # get edge key (faces, 2)
            edge_id = edges_index[e0[:,0],e0[:,1]]          # edge index
            edge_verts = evi[edge_id]                       # indexes of inner vertices
            test = np.concatenate((verts[:,0,None], edge_verts[:,0,None]),axis=1)
            dir = (test[:,None] == keys).all(2).any(1).astype('int8')
            #dir = np.full(verts[:,0].shape, 0, dtype='int8')
            ids = pick_verts[dir][:,None,:]                           # indexes order along the side
            patches[patch_index,ids,0] = edge_verts[:,None,:]                   # assign indexes
            #patches[:,msk] = inverted # np.flip(patches[msk])

            # edge 1
            e0 = edge_keys[:,1]                             # get edge key (faces, 2)
            edge_id = edges_index[e0[:,0],e0[:,1]]          # edge index
            edge_verts = evi[edge_id]                       # indexes of inner vertices
            test = np.concatenate((verts[:,1,None], edge_verts[:,0,None]),axis=1)
            dir = (test[:,None] == keys).all(2).any(1).astype('int8')
            ids = pick_verts[dir][:,:,None]                           # indexes order along the side
            patches[patch_index,n-1,ids] = edge_verts[:,:,None]                   # assign indexes

            # edge 2
            e0 = edge_keys[:,2]                             # get edge key (faces, 2)
            edge_id = edges_index[e0[:,0],e0[:,1]]          # edge index
            edge_verts = evi[edge_id]                       # indexes of inner vertices
            test = np.concatenate((verts[:,3,None], edge_verts[:,0,None]),axis=1)
            dir = (test[:,None] == keys).all(2).any(1).astype('int8')
            ids = pick_verts[dir][:,None,:]                           # indexes order along the side
            patches[patch_index,ids,n-1] = edge_verts[:,None,:]                   # assign indexes

            # edge 3
            e0 = edge_keys[:,3]                             # get edge key (faces, 2)
            edge_id = edges_index[e0[:,0],e0[:,1]]          # edge index
            edge_verts = evi[edge_id]                       # indexes of inner vertices
            test = np.concatenate((verts[:,0,None], edge_verts[:,0,None]),axis=1)
            dir = (test[:,None] == keys).all(2).any(1).astype('int8')
            ids = pick_verts[dir][:,:,None]                           # indexes order along the side
            patches[patch_index,0,ids] = edge_verts[:,:,None]                   # assign indexes

            # fill inners
            patches[:,1:-1,1:-1] = inners[None,:,:] + ips[:,None,None]

    #end_time = time.time()
    #print('Tissue: Got Patches in {:.4f} sec'.format(end_time-start_time))

    return patches, mask

def tessellate_prepare_component(ob1, props):
    mode = props['mode']
    bounds_x = props['bounds_x']
    bounds_y = props['bounds_y']
    scale_mode = props['scale_mode']
    normals_mode = props['normals_mode']
    zscale = props['zscale']
    offset = props['offset']
    use_origin_offset = props['use_origin_offset']
    bool_shapekeys = props['bool_shapekeys']

    thres = 0.005

    me1 = ob1.data

    # Component statistics
    n_verts = len(me1.vertices)

    # Component bounding box
    min_c = Vector((0, 0, 0))
    max_c = Vector((0, 0, 0))
    first = True
    for v in me1.vertices:
        vert = v.co
        if vert[0] < min_c[0] or first:
            min_c[0] = vert[0]
        if vert[1] < min_c[1] or first:
            min_c[1] = vert[1]
        if vert[2] < min_c[2] or first:
            min_c[2] = vert[2]
        if vert[0] > max_c[0] or first:
            max_c[0] = vert[0]
        if vert[1] > max_c[1] or first:
            max_c[1] = vert[1]
        if vert[2] > max_c[2] or first:
            max_c[2] = vert[2]
        first = False
    bb = max_c - min_c

    # adaptive XY
    verts1 = []
    for v in me1.vertices:
        if mode == 'BOUNDS':
            vert = v.co - min_c  # (ob1.matrix_world * v.co) - min_c
            if use_origin_offset: vert[2] = v.co[2]
            vert[0] = vert[0] / bb[0] if bb[0] != 0 else 0.5
            vert[1] = vert[1] / bb[1] if bb[1] != 0 else 0.5
            if scale_mode == 'CONSTANT' or normals_mode in ('OBJECT', 'SHAPEKEYS'):
                if not use_origin_offset:
                    vert[2] = vert[2] / bb[2] if bb[2] != 0 else 0
                    vert[2] = vert[2] - 0.5 + offset * 0.5
            else:
                if not use_origin_offset:
                    vert[2] = vert[2] + (-0.5 + offset * 0.5) * bb[2]
            vert[2] *= zscale
        elif mode == 'LOCAL':
            vert = v.co.xyz
            vert[2] *= zscale
            #vert[2] = (vert[2] - min_c[2] + (-0.5 + offset * 0.5) * bb[2]) * zscale
        elif mode == 'GLOBAL':
            vert = ob1.matrix_world @ v.co
            vert[2] *= zscale
            try:
                for sk in me1.shape_keys.key_blocks:
                    sk.data[v.index].co = ob1.matrix_world @ sk.data[v.index].co
            except: pass
        v.co = vert

    # ShapeKeys
    if bool_shapekeys and ob1.data.shape_keys:
        for sk in ob1.data.shape_keys.key_blocks:
            source = sk.data
            _sk_uv_quads = [0]*len(verts1)
            _sk_uv = [0]*len(verts1)
            for i, sk_v in enumerate(source):
                if mode == 'BOUNDS':
                    sk_vert = sk_v.co - min_c
                    if use_origin_offset: sk_vert[2] = sk_v.co[2]
                    sk_vert[0] = (sk_vert[0] / bb[0] if bb[0] != 0 else 0.5)
                    sk_vert[1] = (sk_vert[1] / bb[1] if bb[1] != 0 else 0.5)
                    if scale_mode == 'CONSTANT' or normals_mode in ('OBJECT', 'SHAPEKEYS'):
                        if not use_origin_offset:
                            sk_vert[2] = (sk_vert[2] / bb[2] if bb[2] != 0 else sk_vert[2])
                            sk_vert[2] = sk_vert[2] - 0.5 + offset * 0.5
                    else:
                        if not use_origin_offset:
                            sk_vert[2] = sk_vert[2] + (- 0.5 + offset * 0.5) * bb[2]
                    sk_vert[2] *= zscale
                elif mode == 'LOCAL':
                    sk_vert = sk_v.co
                    sk_vert[2] *= zscale
                elif mode == 'GLOBAL':
                    sk_vert = sk_v.co
                    sk_vert[2] *= zscale
                sk_v.co = sk_vert

    if mode != 'BOUNDS' and (bounds_x != 'EXTEND' or bounds_y != 'EXTEND'):
        ob1.active_shape_key_index = 0
        bm = bmesh.new()
        bm.from_mesh(me1)
        # Bound X
        planes_co = []
        planes_no = []
        bounds = []
        if bounds_x != 'EXTEND':
            planes_co += [(0,0,0), (1,0,0)]
            planes_no += [(-1,0,0), (1,0,0)]
            bounds += [bounds_x, bounds_x]
        if bounds_y != 'EXTEND':
            planes_co += [(0,0,0), (0,1,0)]
            planes_no += [(0,-1,0), (0,1,0)]
            bounds += [bounds_y, bounds_y]
        for co, norm, bound in zip(planes_co, planes_no, bounds):
            count = 0
            while True:
                moved = 0
                original_edges = list(bm.edges)
                geom = list(bm.verts) + list(bm.edges) + list(bm.faces)
                bisect = bmesh.ops.bisect_plane(bm, geom=geom, dist=0,
                    plane_co=co, plane_no=norm, use_snap_center=False,
                    clear_outer=bound=='CLIP', clear_inner=False
                    )
                geom = bisect['geom']
                cut_edges = [g for g in bisect['geom_cut'] if type(g)==bmesh.types.BMEdge]
                cut_verts = [g for g in bisect['geom_cut'] if type(g)==bmesh.types.BMVert]

                if bound!='CLIP':
                    for e in cut_edges:
                        seam = True
                        # Prevent glitches
                        for e1 in original_edges:
                            match_00 = (e.verts[0].co-e1.verts[0].co).length < thres
                            match_11 = (e.verts[1].co-e1.verts[1].co).length < thres
                            match_01 = (e.verts[0].co-e1.verts[1].co).length < thres
                            match_10 = (e.verts[1].co-e1.verts[0].co).length < thres
                            if (match_00 and match_11) or (match_01 and match_10):
                                seam = False
                                break
                        e.seam = seam

                if bound == 'CYCLIC':
                    geom_verts = []
                    if norm == (-1,0,0):
                        geom_verts = [v for v in bm.verts if v.co.x < 0]
                    if norm == (1,0,0):
                        geom_verts = [v for v in bm.verts if v.co.x > 1]
                    if norm == (0,-1,0):
                        geom_verts = [v for v in bm.verts if v.co.y < 0]
                    if norm == (0,1,0):
                        geom_verts = [v for v in bm.verts if v.co.y > 1]
                    if len(geom_verts) > 0:
                        geom = bmesh.ops.region_extend(bm, geom=geom_verts,
                            use_contract=False, use_faces=False, use_face_step=True
                            )
                        geom = bmesh.ops.split(bm, geom=geom['geom'], use_only_faces=False)
                        vec = Vector(norm)
                        move_verts = [g for g in geom['geom'] if type(g)==bmesh.types.BMVert]
                        bmesh.ops.translate(bm, vec=-vec, verts=move_verts)
                        for key in bm.verts.layers.shape.keys():
                            sk = bm.verts.layers.shape.get(key)
                            for v in move_verts:
                                v[sk] -= vec
                        moved += len(move_verts)
                count += 1
                if moved == 0 or count > 1000: break
        bm.to_mesh(me1)

    com_area = bb[0]*bb[1]
    return ob1, com_area

def get_quads(me, bool_selection):
    nf = len(me.polygons)

    verts = []
    materials = []
    mask = []
    for poly in me.polygons:
        p = list(poly.vertices)
        sides = len(p)
        if sides == 3:
            verts.append([[p[0], p[-1]], [p[1], p[2]]])
            materials.append(poly.material_index)
            mask.append(poly.select if bool_selection else True)
        elif sides == 4:
            verts.append([[p[0], p[3]], [p[1], p[2]]])
            materials.append(poly.material_index)
            mask.append(poly.select if bool_selection else True)
        else:
            while True:
                new_poly = [[p[-2], p.pop(-1)], [p[1], p.pop(0)]]
                verts.append(new_poly)
                materials.append(poly.material_index)
                mask.append(poly.select if bool_selection else True)
                if len(p) < 3: break
    mask = np.array(mask)
    materials = np.array(materials)[mask]
    verts = np.array(verts)[mask]
    return verts, mask, materials

def get_patches(me_low, me_high, sides, subs, bool_selection): #, bool_material_id, material_id):
    nv = len(me_low.vertices)       # number of vertices
    ne = len(me_low.edges)          # number of edges
    nf = len(me_low.polygons)       # number of polygons
    n = 2**subs + 1
    nev = ne * n               # number of vertices along the subdivided edges
    nevi = nev - 2*ne          # internal vertices along subdividede edges

    n0 = 2**(subs-1) - 1

    # filtered polygonal faces
    poly_sides = [0]*nf
    me_low.polygons.foreach_get('loop_total',poly_sides)
    poly_sides = np.array(poly_sides)
    mask = poly_sides == sides

    if bool_selection:
        mask_selection = [True]*nf
        me_low.polygons.foreach_get('select',mask_selection)
        mask = np.array(mask_selection)

    materials = [1]*nf
    me_low.polygons.foreach_get('material_index',materials)
    materials = np.array(materials)[mask]

    polys = np.array(me_low.polygons)[mask]
    mult = n0**2 + n0
    ps = poly_sides * mult + 1
    ps = np.insert(ps,0,nv + nevi, axis=0)[:-1]
    ips = ps.cumsum()[mask]                    # incremental polygon sides
    nf = len(polys)

    # when subdivided quad faces follows a different pattern
    if sides == 4:
        n_patches = nf
    else:
        n_patches = nf*sides

    if sides == 4:
        patches = np.empty((nf,n,n),dtype='int')
        verts = [list(p.vertices) for p in polys if len(p.vertices) == sides]
        verts = np.array(verts).reshape((-1,sides))

        # filling corners

        patches[:,0,0] = verts[:,0]
        patches[:,n-1,0] = verts[:,1]
        patches[:,n-1,n-1] = verts[:,2]
        patches[:,0,n-1] = verts[:,3]

        if subs != 0:
            shift_verts = np.roll(verts, -1, axis=1)[:,:,None]
            edge_keys = np.concatenate((shift_verts, verts[:,:,None]), axis=2)
            edge_keys.sort()

            edge_verts = np.array(me_low.edge_keys)         # edges keys
            edges_index = np.empty((ne,ne),dtype='int')
            edges_index[edge_verts[:,0],edge_verts[:,1]] = np.arange(ne)

            evi = np.arange(nevi) + nv
            evi = evi.reshape(ne,n-2)           # edges inner verts
            straight = np.arange(n-2)+1
            inverted = np.flip(straight)
            inners = np.array([[j*(n-2)+i for j in range(n-2)] for i in range(n-2)])

            ek1 = me_high.edge_keys             # edges keys
            ek1 = np.array(ek1)                             # edge keys highres
            keys0 = ek1[np.arange(ne)*(n-1)]                # first inner edge
            keys1 = ek1[np.arange(ne)*(n-1)+n-2]            # last inner edge
            edges_dir = np.zeros((nev,nev),dtype='bool')    # Better memory usage
            #edges_dir = np.zeros((nev,nev),dtype='int8')     ### Memory usage not efficient, dictionary as alternative?
            edges_dir[keys0[:,0], keys0[:,1]] = 1
            edges_dir[keys1[:,0], keys1[:,1]] = 1
            pick_verts = np.array((inverted,straight))

            patch_index = np.arange(nf)[:,None,None]

            # edge 0
            e0 = edge_keys[:,0]                             # get edge key (faces, 2)
            edge_id = edges_index[e0[:,0],e0[:,1]]          # edge index
            edge_verts = evi[edge_id]                       # indexes of inner vertices
            dir = edges_dir[verts[:,0], edge_verts[:,0]]    # check correct direction
            ids = pick_verts[dir.astype('int8')][:,None,:]                           # indexes order along the side
            patches[patch_index,ids,0] = edge_verts[:,None,:]                   # assign indexes

            # edge 1
            e0 = edge_keys[:,1]                             # get edge key (faces, 2)
            edge_id = edges_index[e0[:,0],e0[:,1]]          # edge index
            edge_verts = evi[edge_id]                       # indexes of inner vertices
            dir = edges_dir[verts[:,1], edge_verts[:,0]]       # check correct direction
            ids = pick_verts[dir.astype('int8')][:,:,None]                           # indexes order along the side
            patches[patch_index,n-1,ids] = edge_verts[:,:,None]                   # assign indexes

            # edge 2
            e0 = edge_keys[:,2]                             # get edge key (faces, 2)
            edge_id = edges_index[e0[:,0],e0[:,1]]          # edge index
            edge_verts = evi[edge_id]                       # indexes of inner vertices
            dir = edges_dir[verts[:,3], edge_verts[:,0]]       # check correct direction
            ids = pick_verts[dir.astype('int8')][:,None,:]                           # indexes order along the side
            patches[patch_index,ids,n-1] = edge_verts[:,None,:]                   # assign indexes

            # edge 3
            e0 = edge_keys[:,3]                             # get edge key (faces, 2)
            edge_id = edges_index[e0[:,0],e0[:,1]]          # edge index
            edge_verts = evi[edge_id]                       # indexes of inner vertices
            dir = edges_dir[verts[:,0], edge_verts[:,0]]       # check correct direction
            ids = pick_verts[dir.astype('int8')][:,:,None]                           # indexes order along the side
            patches[patch_index,0,ids] = edge_verts[:,:,None]                   # assign indexes

            # fill inners
            patches[:,1:-1,1:-1] = inners[None,:,:] + ips[:,None,None]

    return patches, mask, materials

def get_vertices_numpy(mesh):
    '''
    Create a numpy array with the vertices of a given mesh
    '''
    n_verts = len(mesh.vertices)
    verts = [0]*n_verts*3
    mesh.vertices.foreach_get('co', verts)
    verts = np.array(verts).reshape((n_verts,3))
    return verts

def get_vertices_and_normals_numpy(mesh):
    '''
    Create two numpy arrays with the vertices and the normals of a given mesh
    '''
    n_verts = len(mesh.vertices)
    verts = [0]*n_verts*3
    normals = [0]*n_verts*3
    mesh.vertices.foreach_get('co', verts)
    mesh.vertices.foreach_get('normal', normals)
    verts = np.array(verts).reshape((n_verts,3))
    normals = np.array(normals).reshape((n_verts,3))
    return verts, normals

def get_normals_numpy(mesh):
    '''
    Create a numpy array with the normals of a given mesh
    '''
    n_verts = len(mesh.vertices)
    normals = [0]*n_verts*3
    mesh.vertices.foreach_get('normal', normals)
    normals = np.array(normals).reshape((n_verts,3))
    return normals

def get_edges_numpy(mesh):
    '''
    Create a numpy array with the edges of a given mesh
    '''
    n_edges = len(mesh.edges)
    edges = [0]*n_edges*2
    mesh.edges.foreach_get('vertices', edges)
    edges = np.array(edges).reshape((n_edges,2)).astype('int')
    return edges

def get_edges_id_numpy(mesh):
    n_edges = len(mesh.edges)
    edges = [0]*n_edges*2
    mesh.edges.foreach_get('vertices', edges)
    edges = np.array(edges).reshape((n_edges,2))
    indexes = np.arange(n_edges).reshape((n_edges,1))
    edges = np.concatenate((edges,indexes), axis=1)
    return edges

def get_polygons_select_numpy(mesh):
    n_polys = len(mesh.polygons)
    selections = [0]*n_polys*2
    mesh.polygons.foreach_get('select', selections)
    selections = np.array(selections)
    return selections

def get_attribute_numpy(elements_list, attribute='select', mult=1):
    '''
    Generate a numpy array getting attribute from a list of element using
    the foreach_get() function.
    '''
    n_elements = len(elements_list)
    values = [0]*n_elements*mult
    elements_list.foreach_get(attribute, values)
    values = np.array(values)
    if mult > 1: values = values.reshape((n_elements,mult))
    return values

def get_vertices(mesh):
    n_verts = len(mesh.vertices)
    verts = [0]*n_verts*3
    mesh.vertices.foreach_get('co', verts)
    verts = np.array(verts).reshape((n_verts,3))
    verts = [Vector(v) for v in verts]
    return verts

def get_faces(mesh):
    faces = [[v for v in f.vertices] for f in mesh.polygons]
    return faces

def get_faces_numpy(mesh):
    faces = [[v for v in f.vertices] for f in mesh.polygons]
    return np.array(faces)

def get_faces_edges_numpy(mesh):
    faces = [v.edge_keys for f in mesh.polygons]
    return np.array(faces)

def find_curves(edges, n_verts):
    verts_dict = {key:[] for key in range(n_verts)}
    for e in edges:
        verts_dict[e[0]].append(e[1])
        verts_dict[e[1]].append(e[0])
    curves = []
    while True:
        if len(verts_dict) == 0: break
        # next starting point
        v = list(verts_dict.keys())[0]
        # neighbors
        v01 = verts_dict[v]
        if len(v01) == 0:
            verts_dict.pop(v)
            continue
        curve = []
        if len(v01) > 1: curve.append(v01[1])    # add neighbors
        curve.append(v)         # add starting point
        curve.append(v01[0])    # add neighbors
        verts_dict.pop(v)
        # start building curve
        while True:
            #last_point = curve[-1]
            #if last_point not in verts_dict: break

            # try to change direction if needed
            if curve[-1] in verts_dict: pass
            elif curve[0] in verts_dict: curve.reverse()
            else: break

            # neighbors points
            last_point = curve[-1]
            v01 = verts_dict[last_point]

            # curve end
            if len(v01) == 1:
                verts_dict.pop(last_point)
                if curve[0] in verts_dict: continue
                else: break

            # chose next point
            new_point = None
            if v01[0] == curve[-2]: new_point = v01[1]
            elif v01[1] == curve[-2]: new_point = v01[0]
            #else: break

            #if new_point != curve[1]:
            curve.append(new_point)
            verts_dict.pop(last_point)
            if curve[0] == curve[-1]:
                verts_dict.pop(new_point)
                break
        curves.append(curve)
    return curves

def curve_from_points(points, name='Curve'):
    curve = bpy.data.curves.new(name,'CURVE')
    for c in points:
        s = curve.splines.new('POLY')
        s.points.add(len(c))
        for i,p in enumerate(c): s.points[i].co = p.xyz + [1]
    ob_curve = bpy.data.objects.new(name,curve)
    return ob_curve

def curve_from_pydata(points, radii, indexes, name='Curve', skip_open=False, merge_distance=1, set_active=True, only_data=False):
    curve = bpy.data.curves.new(name,'CURVE')
    curve.dimensions = '3D'
    use_rad = True
    for c in indexes:
        bool_cyclic = c[0] == c[-1]
        if bool_cyclic: c.pop(-1)
        # cleanup
        pts = np.array([points[i] for i in c])
        try:
            rad = np.array([radii[i] for i in c])
        except:
            use_rad = False
            rad = 1
        if merge_distance > 0:
            pts1 = np.roll(pts,1,axis=0)
            dist = np.linalg.norm(pts1-pts, axis=1)
            count = 0
            n = len(dist)
            mask = np.ones(n).astype('bool')
            for i in range(n):
                count += dist[i]
                if count > merge_distance: count = 0
                else: mask[i] = False
            pts = pts[mask]
            if use_rad: rad = rad[mask]

        if skip_open and not bool_cyclic: continue
        s = curve.splines.new('POLY')
        n_pts = len(pts)
        s.points.add(n_pts-1)
        w = np.ones(n_pts).reshape((n_pts,1))
        co = np.concatenate((pts,w),axis=1).reshape((n_pts*4))
        s.points.foreach_set('co',co)
        if use_rad: s.points.foreach_set('radius',rad)
        s.use_cyclic_u = bool_cyclic
    if only_data:
        return curve
    else:
        ob_curve = bpy.data.objects.new(name,curve)
        bpy.context.collection.objects.link(ob_curve)
        if set_active:
            bpy.context.view_layer.objects.active = ob_curve
        return ob_curve

def update_curve_from_pydata(curve, points, normals, radii, indexes, merge_distance=1, pattern=[1,0], depth=0.1, offset=0):
    curve.splines.clear()
    use_rad = True
    for ic, c in enumerate(indexes):
        bool_cyclic = c[0] == c[-1]
        if bool_cyclic: c.pop(-1)

        # cleanup
        pts = np.array([points[i] for i in c if i != None])
        nor = np.array([normals[i] for i in c if i != None])
        try:
            rad = np.array([radii[i] for i in c if i != None])
        except:
            use_rad = False
            rad = 1
        if merge_distance > 0:
            pts1 = np.roll(pts,1,axis=0)
            dist = np.linalg.norm(pts1-pts, axis=1)
            count = 0
            n = len(dist)
            mask = np.ones(n).astype('bool')
            for i in range(n):
                count += dist[i]
                if count > merge_distance: count = 0
                else: mask[i] = False
            pts = pts[mask]
            nor = nor[mask]
            if use_rad: rad = rad[mask]
        #if skip_open and not bool_cyclic: continue
        n_pts = len(pts)
        series = np.arange(n_pts)
        patt1 = series + (series-series%pattern[1])/pattern[1]*pattern[0]+pattern[0]
        patt1 = patt1[patt1<n_pts].astype('int')
        patt0 = series + (series-series%pattern[0])/pattern[0]*pattern[1]
        patt0 = patt0[patt0<n_pts].astype('int')
        nor[patt0] *= 0.5*depth*(1 + offset)
        nor[patt1] *= 0.5*depth*(-1 + offset)
        if pattern[0]*pattern[1] != 0: pts += nor
        s = curve.splines.new('POLY')
        s.points.add(n_pts-1)
        w = np.ones(n_pts).reshape((n_pts,1))
        co = np.concatenate((pts,w),axis=1).reshape((n_pts*4))
        s.points.foreach_set('co',co)
        if use_rad: s.points.foreach_set('radius',rad)
        s.use_cyclic_u = bool_cyclic

def loops_from_bmesh(edges):
    """
    Return one or more loops given some starting edges.
    :arg edges: Edges used as seeds.
    :type edges: List of :class:'bmesh.types.BMEdge'
    :return: Elements in each loop (Verts, Edges), where:
        - Verts - List of Lists of :class:'bmesh.types.BMVert'
        - Edges - List of Lists of :class:'bmesh.types.BMEdge'
    :rtype: tuple
    """
    todo_edges = list(edges)
    #todo_edges = [e.index for e in bm.edges]
    vert_loops = []
    edge_loops = []
    while len(todo_edges) > 0:
        edge = todo_edges[0]
        vert_loop, edge_loop = run_edge_loop(edge)
        for e in edge_loop:
            try: todo_edges.remove(e)
            except: pass
        edge_loops.append(edge_loop)
        vert_loops.append(vert_loop)
        #if len(todo_edges) == 0: break
    return vert_loops, edge_loops

def run_edge_loop_direction(edge,vert):
    """
    Return vertices and edges along a loop in a specific direction.
    :arg edge: Edges used as seed.
    :type edges: :class:'bmesh.types.BMEdge'
    :arg edge: Vertex of the Edge used for the direction.
    :type vert: :class:'bmesh.types.BMVert'
    :return: Elements in the loop (Verts, Edges), where:
        - Verts - List of :class:'bmesh.types.BMVert'
        - Edges - List of :class:'bmesh.types.BMEdge'
    :rtype: tuple
    """
    edge0 = edge
    edge_loop = [edge]
    vert_loop = [vert]
    while True:
        link_edges = list(vert.link_edges)
        link_edges.remove(edge)
        n_edges = len(link_edges)
        if n_edges == 1:
            edge = link_edges[0]
        elif n_edges < 4:
            link_faces = edge.link_faces
            if len(link_faces) == 0: break
            edge = None
            for e in link_edges:
                link_faces1 = e.link_faces
                if len(link_faces) == len(link_faces1):
                    common_faces = [f for f in link_faces1 if f in link_faces]
                    if len(common_faces) == 0:
                        edge = e
                        break
        else: break
        if edge == None: break
        edge_loop.append(edge)
        vert = edge.other_vert(vert)
        vert_loop.append(vert)
        if edge == edge0: break
    return vert_loop, edge_loop

def run_edge_loop(edge):
    """
    Return vertices and edges along a loop in both directions.
    :arg edge: Edges used as seed.
    :type edges: :class:'bmesh.types.BMEdge'
    :return: Elements in the loop (Verts, Edges), where:
        - Verts - List of :class:'bmesh.types.BMVert'
        - Edges - List of :class:'bmesh.types.BMEdge'
    :rtype: tuple
    """
    vert0 = edge.verts[0]
    vert_loop0, edge_loop0 = run_edge_loop_direction(edge, vert0)
    if len(edge_loop0) == 1 or edge_loop0[0] != edge_loop0[-1]:
        vert1 = edge.verts[1]
        vert_loop1, edge_loop1 = run_edge_loop_direction(edge, vert1)
        edge_loop0.reverse()
        vert_loop0.reverse()
        edge_loop = edge_loop0[:-1] + edge_loop1
        vert_loop = vert_loop0 + vert_loop1
    else:
        edge_loop = edge_loop0[1:]
        vert_loop = vert_loop0
    return vert_loop, edge_loop

def curve_from_vertices(indexes, verts, name='Curve'):
    """
    Curve data from given vertices.
    :arg indexes: List of Lists of indexes of the vertices.
    :type indexes: List of Lists of int
    :arg verts: List of vertices.
    :type verts: List of :class:'bpy.types.MeshVertex'
    :arg name: Name of the Curve data.
    :type name: str
    :return: Generated Curve data
    :rtype: :class:'bpy.types.Curve'
    """
    curve = bpy.data.curves.new(name,'CURVE')
    for c in indexes:
        s = curve.splines.new('POLY')
        s.points.add(len(c))
        for i,p in enumerate(c):
            s.points[i].co = verts[p].co.xyz + [1]
            #s.points[i].tilt = degrees(asin(verts[p].co.z))
    ob_curve = bpy.data.objects.new(name,curve)
    return ob_curve

def nurbs_from_vertices(indexes, co, radii=[], name='Curve', set_active=True, interpolation='POLY'):
    curve = bpy.data.curves.new(name,'CURVE')
    curve.dimensions = '3D'
    curve.resolution_u = 2
    curve.bevel_depth = 0.01
    curve.bevel_resolution = 0
    for pts in indexes:
        s = curve.splines.new(interpolation)
        n_pts = len(pts)
        s.points.add(n_pts-1)
        w = np.ones(n_pts).reshape((n_pts,1))
        curve_co = np.concatenate((co[pts],w),axis=1).reshape((n_pts*4))
        s.points.foreach_set('co',curve_co)
        try:
            s.points.foreach_set('radius',radii[pts])
        except: pass
        s.use_endpoint_u = True

    ob_curve = bpy.data.objects.new(name,curve)
    bpy.context.collection.objects.link(ob_curve)
    if set_active:
        bpy.context.view_layer.objects.active = ob_curve
        ob_curve.select_set(True)
    return ob_curve

# ------------------------------------------------------------------
# VERTEX GROUPS AND WEIGHT
# ------------------------------------------------------------------

def get_weight(vertex_group, n_verts):
    """
    Read weight values from given Vertex Group.
    :arg vertex_group: Vertex Group.
    :type vertex_group: :class:'bpy.types.VertexGroup'
    :arg n_verts: Number of Vertices (output list size).
    :type n_verts: int
    :return: Read weight values.
    :rtype: list
    """
    weight = [0]*n_verts
    for i in range(n_verts):
        try: weight[i] = vertex_group.weight(i)
        except: pass
    return weight

def get_weight_numpy(vertex_group, n_verts):
    """
    Read weight values from given Vertex Group.
    :arg vertex_group: Vertex Group.
    :type vertex_group: :class:'bpy.types.VertexGroup'
    :arg n_verts: Number of Vertices (output list size).
    :type n_verts: int
    :return: Read weight values as numpy array.
    :rtype: :class:'numpy.ndarray'
    """
    weight = [0]*n_verts
    for i in range(n_verts):
        try: weight[i] = vertex_group.weight(i)
        except: pass
    return np.array(weight)

def bmesh_get_weight_numpy(group_index, layer, verts):
    weight = np.zeros(len(verts))
    for i, v in enumerate(verts):
        dvert = v[layer]
        if group_index in dvert:
            weight[i] = dvert[group_index]
            #dvert[group_index] = 0.5
    return weight

def bmesh_set_weight_numpy(group_index, layer, verts, weight):
    for i, v in enumerate(verts):
        dvert = v[layer]
        if group_index in dvert:
            dvert[group_index] = weight[i]
    return verts

def bmesh_set_weight_numpy(bm, group_index, weight):
    layer = bm.verts.layers.deform.verify()
    for i, v in enumerate(bm.verts):
        dvert = v[layer]
        #if group_index in dvert:
        dvert[group_index] = weight[i]
    return bm

def set_weight_numpy(vg, weight):
    for i, w in enumerate(weight):
        vg.add([i], w, 'REPLACE')
    return vg

def uv_from_bmesh(bm, uv_index=None):
    if uv_index:
        uv_lay = bm.loops.layers.uv[uv_index]
    else:
        uv_lay = bm.loops.layers.uv.active
    uv_co = [0]*len(bm.verts)

    for face in bm.faces:
        for vert,loop in zip(face.verts, face.loops):
            uv_co[vert.index] = loop[uv_lay].uv
    return uv_co

def get_uv_edge_vectors(me, uv_map = 0, only_positive=False):
    count = 0
    uv_vectors = {}
    for i, f in enumerate(me.polygons):
        f_verts = len(f.vertices)
        for j0 in range(f_verts):
            j1 = (j0+1)%f_verts
            uv0 = me.uv_layers[uv_map].data[count+j0].uv
            uv1 = me.uv_layers[uv_map].data[count+j1].uv
            delta_uv = (uv1-uv0).normalized()
            if only_positive:
                delta_uv.x = abs(delta_uv.x)
                delta_uv.y = abs(delta_uv.y)
            edge_key = tuple(sorted([f.vertices[j0], f.vertices[j1]]))
            uv_vectors[edge_key] = delta_uv
        count += f_verts
    uv_vectors = [uv_vectors[tuple(sorted(e.vertices))] for e in me.edges]
    return uv_vectors

def mesh_diffusion(me, values, iter, diff=0.2, uv_dir=0):
    values = np.array(values)
    n_verts = len(me.vertices)

    n_edges = len(me.edges)
    edge_verts = [0]*n_edges*2
    #me.edges.foreach_get("vertices", edge_verts)

    count = 0
    edge_verts = []
    uv_factor = {}
    uv_ang = (0.5 + uv_dir*0.5)*pi/2
    uv_vec = Vector((cos(uv_ang), sin(uv_ang)))
    for i, f in enumerate(me.polygons):
        f_verts = len(f.vertices)
        for j0 in range(f_verts):
            j1 = (j0+1)%f_verts
            if uv_dir != 0:
                uv0 = me.uv_layers[0].data[count+j0].uv
                uv1 = me.uv_layers[0].data[count+j1].uv
                delta_uv = (uv1-uv0).normalized()
                delta_uv.x = abs(delta_uv.x)
                delta_uv.y = abs(delta_uv.y)
                dir = uv_vec.dot(delta_uv)
            else:
                dir = 1
            #dir = abs(dir)
            #uv_factor.append(dir)
            edge_key = [f.vertices[j0], f.vertices[j1]]
            edge_key.sort()
            uv_factor[tuple(edge_key)] = dir
        count += f_verts
    id0 = []
    id1 = []
    uv_mult = []
    for ek, val in uv_factor.items():
        id0.append(ek[0])
        id1.append(ek[1])
        uv_mult.append(val)
    id0 = np.array(id0)
    id1 = np.array(id1)
    uv_mult = np.array(uv_mult)

    #edge_verts = np.array(edge_verts)
    #arr = np.arange(n_edges)*2

    #id0 = edge_verts[arr]     # first vertex indices for each edge
    #id1 = edge_verts[arr+1]   # second vertex indices for each edge
    for ii in range(iter):
        lap = np.zeros(n_verts)
        if uv_dir != 0:
            lap0 =  (values[id1] -  values[id0])*uv_mult   # laplacian increment for first vertex of each edge
        else:
            lap0 =  (values[id1] -  values[id0])
        np.add.at(lap, id0, lap0)
        np.add.at(lap, id1, -lap0)
        values += diff*lap
    return values

def mesh_diffusion_vector(me, vectors, iter, diff, uv_dir=0):
    vectors = np.array(vectors)
    x = vectors[:,0]
    y = vectors[:,1]
    z = vectors[:,2]
    x = mesh_diffusion(me, x, iter, diff, uv_dir)
    y = mesh_diffusion(me, y, iter, diff, uv_dir)
    z = mesh_diffusion(me, z, iter, diff, uv_dir)
    vectors[:,0] = x
    vectors[:,1] = y
    vectors[:,2] = z
    return vectors

# ------------------------------------------------------------------
# MODIFIERS
# ------------------------------------------------------------------

def mod_preserve_topology(mod):
    same_topology_modifiers = ('DATA_TRANSFER','NORMAL_EDIT','WEIGHTED_NORMAL',
        'UV_PROJECT','UV_WARP','VERTEX_WEIGHT_EDIT','VERTEX_WEIGHT_MIX',
        'VERTEX_WEIGHT_PROXIMITY','ARMATURE','CAST','CURVE','DISPLACE','HOOK',
        'LAPLACIANDEFORM','LATTICE','MESH_DEFORM','SHRINKWRAP','SIMPLE_DEFORM',
        'SMOOTH','CORRECTIVE_SMOOTH','LAPLACIANSMOOTH','SURFACE_DEFORM','WARP',
        'WAVE','CLOTH','COLLISION','DYNAMIC_PAINT','SOFT_BODY'
        )
    return mod.type in same_topology_modifiers

def mod_preserve_shape(mod):
    same_shape_modifiers = ('DATA_TRANSFER','NORMAL_EDIT','WEIGHTED_NORMAL',
        'UV_PROJECT','UV_WARP','VERTEX_WEIGHT_EDIT','VERTEX_WEIGHT_MIX',
        'VERTEX_WEIGHT_PROXIMITY','DYNAMIC_PAINT'
        )
    return mod.type in same_shape_modifiers


def recurLayerCollection(layerColl, collName):
    '''
    Recursively transverse layer_collection for a particular name.
    '''
    found = None
    if (layerColl.name == collName):
        return layerColl
    for layer in layerColl.children:
        found = recurLayerCollection(layer, collName)
        if found:
            return found

def auto_layer_collection():
    '''
    Automatically change active layer collection.
    '''
    layer = bpy.context.view_layer.active_layer_collection
    layer_collection = bpy.context.view_layer.layer_collection
    if layer.hide_viewport or layer.collection.hide_viewport:
        collections = bpy.context.object.users_collection
        for c in collections:
            lc = recurLayerCollection(layer_collection, c.name)
            if not c.hide_viewport and not lc.hide_viewport:
                bpy.context.view_layer.active_layer_collection = lc