Welcome to mirror list, hosted at ThFree Co, Russian Federation.

utils_projection.py « snap_context « modules - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d3970b462213e5064bebabc8a4d6a7d15786a097 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# ##### BEGIN GPL LICENSE BLOCK #####
#
#  This program is free software; you can redistribute it and/or
#  modify it under the terms of the GNU General Public License
#  as published by the Free Software Foundation; either version 3
#  of the License, or (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.
#
# ##### END GPL LICENSE BLOCK #####


from mathutils import Vector
from mathutils.geometry import intersect_point_line


def depth_get(co, ray_start, ray_dir):
    dvec = co - ray_start
    return dvec.dot(ray_dir)


def region_2d_to_orig_and_view_vector(region, rv3d, coord):
    viewinv = rv3d.view_matrix.inverted()
    persinv = rv3d.perspective_matrix.inverted()

    dx = (2.0 * coord[0] / region.width) - 1.0
    dy = (2.0 * coord[1] / region.height) - 1.0

    if rv3d.is_perspective:
        origin_start = viewinv.translation.copy()

        out = Vector((dx, dy, -0.5))

        w = out.dot(persinv[3].xyz) + persinv[3][3]

        view_vector = ((persinv * out) / w) - origin_start
    else:
        view_vector = -viewinv.col[2].xyz

        origin_start = ((persinv.col[0].xyz * dx) +
                        (persinv.col[1].xyz * dy) +
                        viewinv.translation)

    view_vector.normalize()
    return view_vector, origin_start


def project_co_v3(sctx, co):
    proj_co = sctx.proj_mat * co.to_4d()
    proj_co.xy /= proj_co.w

    win_half = sctx.winsize * 0.5
    proj_co[0] = (proj_co[0] + 1.0) * win_half[0]
    proj_co[1] = (proj_co[1] + 1.0) * win_half[1]

    return proj_co.xy



def intersect_boundbox_threshold(sctx, MVP, ray_origin_local, ray_direction_local, bbmin, bbmax):
    local_bvmin = Vector()
    local_bvmax = Vector()
    tmin = Vector()
    tmax = Vector()

    if (ray_direction_local[0] < 0.0):
        local_bvmin[0] = bbmax[0]
        local_bvmax[0] = bbmin[0]
    else:
        local_bvmin[0] = bbmin[0]
        local_bvmax[0] = bbmax[0]

    if (ray_direction_local[1] < 0.0):
        local_bvmin[1] = bbmax[1]
        local_bvmax[1] = bbmin[1]
    else:
        local_bvmin[1] = bbmin[1]
        local_bvmax[1] = bbmax[1]

    if (ray_direction_local[2] < 0.0):
        local_bvmin[2] = bbmax[2]
        local_bvmax[2] = bbmin[2]
    else:
        local_bvmin[2] = bbmin[2]
        local_bvmax[2] = bbmax[2]

    if (ray_direction_local[0]):
        tmin[0] = (local_bvmin[0] - ray_origin_local[0]) / ray_direction_local[0]
        tmax[0] = (local_bvmax[0] - ray_origin_local[0]) / ray_direction_local[0]
    else:
        tmin[0] = tmax[0] = sctx.depth_range[1]

    if (ray_direction_local[1]):
        tmin[1] = (local_bvmin[1] - ray_origin_local[1]) / ray_direction_local[1]
        tmax[1] = (local_bvmax[1] - ray_origin_local[1]) / ray_direction_local[1]
    else:
        tmin[1] = tmax[1] = sctx.depth_range[1]

    if (ray_direction_local[2]):
        tmin[2] = (local_bvmin[2] - ray_origin_local[2]) / ray_direction_local[2]
        tmax[2] = (local_bvmax[2] - ray_origin_local[2]) / ray_direction_local[2]
    else:
        tmin[2] = tmax[2] = sctx.depth_range[1]

    # `va` and `vb` are the coordinates of the AABB edge closest to the ray #
    va = Vector()
    vb = Vector()
    # `rtmin` and `rtmax` are the minimum and maximum distances of the ray hits on the AABB #

    if ((tmax[0] <= tmax[1]) and (tmax[0] <= tmax[2])):
        rtmax = tmax[0]
        va[0] = vb[0] = local_bvmax[0]
        main_axis = 3
    elif ((tmax[1] <= tmax[0]) and (tmax[1] <= tmax[2])):
        rtmax = tmax[1]
        va[1] = vb[1] = local_bvmax[1]
        main_axis = 2
    else:
        rtmax = tmax[2]
        va[2] = vb[2] = local_bvmax[2]
        main_axis = 1

    if ((tmin[0] >= tmin[1]) and (tmin[0] >= tmin[2])):
        rtmin = tmin[0]
        va[0] = vb[0] = local_bvmin[0]
        main_axis -= 3

    elif ((tmin[1] >= tmin[0]) and (tmin[1] >= tmin[2])):
        rtmin = tmin[1]
        va[1] = vb[1] = local_bvmin[1]
        main_axis -= 1

    else:
        rtmin = tmin[2]
        va[2] = vb[2] = local_bvmin[2]
        main_axis -= 2

    if (main_axis < 0):
        main_axis += 3

#ifdef IGNORE_BEHIND_RAY
    depth_max = depth_get(local_bvmax, ray_origin_local, ray_direction_local)
    if (depth_max < sctx.depth_range[0]):
        return False
#endif

    if (rtmin <= rtmax):
        # if rtmin < rtmax, ray intersect `AABB` #
        return True

    if (ray_direction_local[main_axis] < 0.0):
        va[main_axis] = local_bvmax[main_axis]
        vb[main_axis] = local_bvmin[main_axis]

    else:
        va[main_axis] = local_bvmin[main_axis]
        vb[main_axis] = local_bvmax[main_axis]

    win_half = sctx.winsize * 0.5

    scale = abs(local_bvmax[main_axis] - local_bvmin[main_axis])

    va2d = Vector((
        (MVP[0].xyz.dot(va) + MVP[0][3]),
        (MVP[1].xyz.dot(va) + MVP[1][3]),
    ))

    vb2d = Vector((
        (va2d[0] + MVP[0][main_axis] * scale),
        (va2d[1] + MVP[1][main_axis] * scale),
    ))

    depth_a = MVP[3].xyz.dot(va) + MVP[3][3]
    depth_b = depth_a + MVP[3][main_axis] * scale

    va2d /= depth_a
    vb2d /= depth_b

    va2d[0] = (va2d[0] + 1.0) * win_half[0]
    va2d[1] = (va2d[1] + 1.0) * win_half[1]
    vb2d[0] = (vb2d[0] + 1.0) * win_half[0]
    vb2d[1] = (vb2d[1] + 1.0) * win_half[1]

    p, fac = intersect_point_line(sctx.mval, va2d, vb2d)
    if fac < 0.0:
        return (sctx.mval - va2d).length_squared < sctx._dist_px_sq
    elif fac > 1.0:
        return (sctx.mval - vb2d).length_squared < sctx._dist_px_sq
    else:
        return (sctx.mval - p).length_squared < sctx._dist_px_sq


def intersect_ray_segment_fac(v0, v1, ray_direction, ray_origin):
    a = v1 - v0
    t = v0 - ray_origin
    n = a.cross(ray_direction)
    nlen = n.length_squared

    # if (nlen == 0.0f) the lines are parallel, has no nearest point, only distance squared.*/
    if nlen == 0.0:
        # Calculate the distance to the nearest point to origin then #
        return a.dot(ray_direction) < 0
    else:
        c = n - t
        cray = c.cross(ray_direction)
        return cray.dot(n) / nlen