Welcome to mirror list, hosted at ThFree Co, Russian Federation.

pdt_functions.py « precision_drawing_tools - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 9352b66f7e6f42d205d4850acec7eb2bc88fd01e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# SPDX-License-Identifier: GPL-2.0-or-later

# -----------------------------------------------------------------------
# Author: Alan Odom (Clockmender), Rune Morling (ermo) Copyright (c) 2019
# -----------------------------------------------------------------------
#
# Common Functions used in more than one place in PDT Operations

import bpy
import bmesh
import gpu
import numpy as np
from mathutils import Vector, Quaternion
from gpu_extras.batch import batch_for_shader
from math import cos, sin, pi
from .pdt_msg_strings import (
    PDT_ERR_VERT_MODE,
    PDT_ERR_SEL_2_V_1_E,
    PDT_ERR_SEL_2_OBJS,
    PDT_ERR_NO_ACT_OBJ,
    PDT_ERR_SEL_1_EDGEM,
)
from . import pdt_exception
PDT_ShaderError = pdt_exception.ShaderError


def debug(msg, prefix=""):
    """Print a debug message to the console if PDT's or Blender's debug flags are set.

    Note:
        The printed message will be of the form:

        {prefix}{caller file name:line number}| {msg}

    Args:
        msg: Incoming message to display
        prefix: Always Blank

    Returns:
        Nothing.
    """

    pdt_debug = bpy.context.preferences.addons[__package__].preferences.debug
    if  bpy.app.debug or bpy.app.debug_python or pdt_debug:
        import traceback

        def extract_filename(fullpath):
            """Return only the filename part of fullpath (excluding its path).

            Args:
                fullpath: Filename's full path

            Returns:
                filename.
            """
            # Expected to end up being a string containing only the filename
            # (i.e. excluding its preceding '/' separated path)
            filename = fullpath.split('/')[-1]
            #print(filename)
            # something went wrong
            if len(filename) < 1:
                return fullpath
            # since this is a string, just return it
            return filename

        # stack frame corresponding to the line where debug(msg) was called
        #print(traceback.extract_stack()[-2])
        laststack = traceback.extract_stack()[-2]
        #print(laststack[0])
        # laststack[0] is the caller's full file name, laststack[1] is the line number
        print(f"{prefix}{extract_filename(laststack[0])}:{laststack[1]}| {msg}")

def oops(self, context):
    """Error Routine.

    Note:
        Displays error message in a popup.

    Args:
        context: Blender bpy.context instance.

    Returns:
        Nothing.
    """

    scene = context.scene
    pg = scene.pdt_pg
    self.layout.label(text=pg.error)


def set_mode(mode_pl):
    """Sets Active Axes for View Orientation.

    Note:
        Sets indices of axes for locational vectors:
        a3 is normal to screen, or depth
        "XY": a1 = x, a2 = y, a3 = z
        "XZ": a1 = x, a2 = z, a3 = y
        "YZ": a1 = y, a2 = z, a3 = x

    Args:
        mode_pl: Plane Selector variable as input

    Returns:
        3 Integer indices.
    """

    order = {
        "XY": (0, 1, 2),
        "XZ": (0, 2, 1),
        "YZ": (1, 2, 0),
        "LO": (0, 1, 2),
    }
    return order[mode_pl]


def set_axis(mode_pl):
    """Sets Active Axes for View Orientation.

    Note:
        Sets indices for axes from taper vectors
        Axis order: Rotate Axis, Move Axis, Height Axis

    Args:
        mode_pl: Taper Axis Selector variable as input

    Returns:
        3 Integer Indicies.
    """

    order = {
        "RX-MY": (0, 1, 2),
        "RX-MZ": (0, 2, 1),
        "RY-MX": (1, 0, 2),
        "RY-MZ": (1, 2, 0),
        "RZ-MX": (2, 0, 1),
        "RZ-MY": (2, 1, 0),
    }
    return order[mode_pl]


def check_selection(num, bm, obj):
    """Check that the Object's select_history has sufficient entries.

    Note:
        If selection history is not Verts, clears selection and history.

    Args:
        num: The number of entries required for each operation
        bm: The Bmesh from the Object
        obj: The Object

    Returns:
        list of 3D points as Vectors.
    """

    if len(bm.select_history) < num:
        return None
    active_vertex = bm.select_history[-1]
    if isinstance(active_vertex, bmesh.types.BMVert):
        vector_a = active_vertex.co
        if num == 1:
            return vector_a
        if num == 2:
            vector_b = bm.select_history[-2].co
            return vector_a, vector_b
        if num == 3:
            vector_b = bm.select_history[-2].co
            vector_c = bm.select_history[-3].co
            return vector_a, vector_b, vector_c
        if num == 4:
            vector_b = bm.select_history[-2].co
            vector_c = bm.select_history[-3].co
            vector_d = bm.select_history[-4].co
            return vector_a, vector_b, vector_c, vector_d
    else:
        for f in bm.faces:
            f.select_set(False)
        for e in bm.edges:
            e.select_set(False)
        for v in bm.verts:
            v.select_set(False)
        bmesh.update_edit_mesh(obj.data)
        bm.select_history.clear()
    return None


def update_sel(bm, verts, edges, faces):
    """Updates Vertex, Edge and Face Selections following a function.

    Args:
        bm: Object Bmesh
        verts: New Selection for Vertices
        edges: The Edges on which to operate
        faces: The Faces on which to operate

    Returns:
        Nothing.
    """
    for f in bm.faces:
        f.select_set(False)
    for e in bm.edges:
        e.select_set(False)
    for v in bm.verts:
        v.select_set(False)
    for v in verts:
        v.select_set(True)
    for e in edges:
        e.select_set(True)
    for f in faces:
        f.select_set(True)


def view_coords(x_loc, y_loc, z_loc):
    """Converts input Vector values to new Screen Oriented Vector.

    Args:
        x_loc: X coordinate from vector
        y_loc: Y coordinate from vector
        z_loc: Z coordinate from vector

    Returns:
        Vector adjusted to View's Inverted Transformation Matrix.
    """

    areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
    if len(areas) > 0:
        view_matrix = areas[0].spaces.active.region_3d.view_matrix
        view_matrix = view_matrix.to_3x3().normalized().inverted()
        view_location = Vector((x_loc, y_loc, z_loc))
        new_view_location = view_matrix @ view_location
        return new_view_location

    return Vector((0, 0, 0))


def view_coords_i(x_loc, y_loc, z_loc):
    """Converts Screen Oriented input Vector values to new World Vector.

    Note:
        Converts View transformation Matrix to Rotational Matrix

    Args:
        x_loc: X coordinate from vector
        y_loc: Y coordinate from vector
        z_loc: Z coordinate from vector

    Returns:
        Vector adjusted to View's Transformation Matrix.
    """

    areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
    if len(areas) > 0:
        view_matrix = areas[0].spaces.active.region_3d.view_matrix
        view_matrix = view_matrix.to_3x3().normalized()
        view_location = Vector((x_loc, y_loc, z_loc))
        new_view_location = view_matrix @ view_location
        return new_view_location

    return Vector((0, 0, 0))


def view_dir(dis_v, ang_v):
    """Converts Distance and Angle to View Oriented Vector.

    Note:
        Converts View Transformation Matrix to Rotational Matrix (3x3)
        Angles are Converts to Radians from degrees.

    Args:
        dis_v: Scene PDT distance
        ang_v: Scene PDT angle

    Returns:
        World Vector.
    """

    areas = [a for a in bpy.context.screen.areas if a.type == "VIEW_3D"]
    if len(areas) > 0:
        view_matrix = areas[0].spaces.active.region_3d.view_matrix
        view_matrix = view_matrix.to_3x3().normalized().inverted()
        view_location = Vector((0, 0, 0))
        view_location.x = dis_v * cos(ang_v * pi / 180)
        view_location.y = dis_v * sin(ang_v * pi / 180)
        new_view_location = view_matrix @ view_location
        return new_view_location

    return Vector((0, 0, 0))


def euler_to_quaternion(roll, pitch, yaw):
    """Converts Euler Rotation to Quaternion Rotation.

    Args:
        roll: Roll in Euler rotation
        pitch: Pitch in Euler rotation
        yaw: Yaw in Euler rotation

    Returns:
        Quaternion Rotation.
    """

    # fmt: off
    quat_x = (np.sin(roll/2) * np.cos(pitch/2) * np.cos(yaw/2)
              - np.cos(roll/2) * np.sin(pitch/2) * np.sin(yaw/2))
    quat_y = (np.cos(roll/2) * np.sin(pitch/2) * np.cos(yaw/2)
              + np.sin(roll/2) * np.cos(pitch/2) * np.sin(yaw/2))
    quat_z = (np.cos(roll/2) * np.cos(pitch/2) * np.sin(yaw/2)
              - np.sin(roll/2) * np.sin(pitch/2) * np.cos(yaw/2))
    quat_w = (np.cos(roll/2) * np.cos(pitch/2) * np.cos(yaw/2)
              + np.sin(roll/2) * np.sin(pitch/2) * np.sin(yaw/2))
    # fmt: on
    return Quaternion((quat_w, quat_x, quat_y, quat_z))


def arc_centre(vector_a, vector_b, vector_c):
    """Calculates Centre of Arc from 3 Vector Locations using standard Numpy routine

    Args:
        vector_a: Active vector location
        vector_b: Second vector location
        vector_c: Third vector location

    Returns:
        Vector representing Arc Centre and Float representing Arc Radius.
    """

    coord_a = np.array([vector_a.x, vector_a.y, vector_a.z])
    coord_b = np.array([vector_b.x, vector_b.y, vector_b.z])
    coord_c = np.array([vector_c.x, vector_c.y, vector_c.z])
    line_a = np.linalg.norm(coord_c - coord_b)
    line_b = np.linalg.norm(coord_c - coord_a)
    line_c = np.linalg.norm(coord_b - coord_a)
    # fmt: off
    line_s = (line_a+line_b+line_c) / 2
    radius = (
        line_a*line_b*line_c/4
        / np.sqrt(line_s
                  * (line_s-line_a)
                  * (line_s-line_b)
                  * (line_s-line_c))
        )
    base_1 = line_a*line_a * (line_b*line_b + line_c*line_c - line_a*line_a)
    base_2 = line_b*line_b * (line_a*line_a + line_c*line_c - line_b*line_b)
    base_3 = line_c*line_c * (line_a*line_a + line_b*line_b - line_c*line_c)
    # fmt: on
    intersect_coord = np.column_stack((coord_a, coord_b, coord_c))
    intersect_coord = intersect_coord.dot(np.hstack((base_1, base_2, base_3)))
    intersect_coord /= base_1 + base_2 + base_3
    return Vector((intersect_coord[0], intersect_coord[1], intersect_coord[2])), radius


def intersection(vertex_a, vertex_b, vertex_c, vertex_d, plane):
    """Calculates Intersection Point of 2 Imagined Lines from 4 Vectors.

    Note:
       Calculates Converging Intersect Location and indication of
       whether the lines are convergent using standard Numpy Routines

    Args:
        vertex_a: Active vector location of first line
        vertex_b: Second vector location of first line
        vertex_c: Third vector location of 2nd line
        vertex_d: Fourth vector location of 2nd line
        plane: Working Plane 4 Vector Locations representing 2 lines and Working Plane

    Returns:
        Intersection Vector and Boolean for convergent state.
    """

    if plane == "LO":
        vertex_offset = vertex_b - vertex_a
        vertex_b = view_coords_i(vertex_offset.x, vertex_offset.y, vertex_offset.z)
        vertex_offset = vertex_d - vertex_a
        vertex_d = view_coords_i(vertex_offset.x, vertex_offset.y, vertex_offset.z)
        vertex_offset = vertex_c - vertex_a
        vertex_c = view_coords_i(vertex_offset.x, vertex_offset.y, vertex_offset.z)
        vector_ref = Vector((0, 0, 0))
        coord_a = (vertex_c.x, vertex_c.y)
        coord_b = (vertex_d.x, vertex_d.y)
        coord_c = (vertex_b.x, vertex_b.y)
        coord_d = (vector_ref.x, vector_ref.y)
    else:
        a1, a2, a3 = set_mode(plane)
        coord_a = (vertex_c[a1], vertex_c[a2])
        coord_b = (vertex_d[a1], vertex_d[a2])
        coord_c = (vertex_a[a1], vertex_a[a2])
        coord_d = (vertex_b[a1], vertex_b[a2])
    v_stack = np.vstack([coord_a, coord_b, coord_c, coord_d])
    h_stack = np.hstack((v_stack, np.ones((4, 1))))
    line_a = np.cross(h_stack[0], h_stack[1])
    line_b = np.cross(h_stack[2], h_stack[3])
    x_loc, y_loc, z_loc = np.cross(line_a, line_b)
    if z_loc == 0:
        return Vector((0, 0, 0)), False
    new_x_loc = x_loc / z_loc
    new_z_loc = y_loc / z_loc
    if plane == "LO":
        new_y_loc = 0
    else:
        new_y_loc = vertex_a[a3]
    # Order Vector Delta
    if plane == "XZ":
        vector_delta = Vector((new_x_loc, new_y_loc, new_z_loc))
    elif plane == "XY":
        vector_delta = Vector((new_x_loc, new_z_loc, new_y_loc))
    elif plane == "YZ":
        vector_delta = Vector((new_y_loc, new_x_loc, new_z_loc))
    else:
        # Must be Local View Plane
        vector_delta = view_coords(new_x_loc, new_z_loc, new_y_loc) + vertex_a
    return vector_delta, True


def get_percent(obj, flip_percent, per_v, data, scene):
    """Calculates a Percentage Distance between 2 Vectors.

    Note:
        Calculates a point that lies a set percentage between two given points
        using standard Numpy Routines.

        Works for either 2 vertices for an object in Edit mode
        or 2 selected objects in Object mode.

    Args:
        obj: The Object under consideration
        flip_percent: Setting this to True measures the percentage starting from the second vector
        per_v: Percentage Input Value
        data: pg.flip, pg.percent scene variables & Operational Mode
        scene: Context Scene

    Returns:
        World Vector.
    """

    pg = scene.pdt_pg

    if obj.mode == "EDIT":
        bm = bmesh.from_edit_mesh(obj.data)
        verts = [v for v in bm.verts if v.select]
        if len(verts) == 2:
            vector_a = verts[0].co
            vector_b = verts[1].co
            if vector_a is None:
                pg.error = PDT_ERR_VERT_MODE
                bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
                return None
        else:
            pg.error = PDT_ERR_SEL_2_V_1_E + str(len(verts)) + " Vertices"
            bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
            return None
        coord_a = np.array([vector_a.x, vector_a.y, vector_a.z])
        coord_b = np.array([vector_b.x, vector_b.y, vector_b.z])
    if obj.mode == "OBJECT":
        objs = bpy.context.view_layer.objects.selected
        if len(objs) != 2:
            pg.error = PDT_ERR_SEL_2_OBJS + str(len(objs)) + ")"
            bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
            return None
        coord_a = np.array(
            [
                objs[-1].matrix_world.decompose()[0].x,
                objs[-1].matrix_world.decompose()[0].y,
                objs[-1].matrix_world.decompose()[0].z,
            ]
        )
        coord_b = np.array(
            [
                objs[-2].matrix_world.decompose()[0].x,
                objs[-2].matrix_world.decompose()[0].y,
                objs[-2].matrix_world.decompose()[0].z,
            ]
        )
    coord_c = coord_b - coord_a
    coord_d = np.array([0, 0, 0])
    _per_v = per_v
    if (flip_percent and data != "MV") or data == "MV":
        _per_v = 100 - per_v
    coord_out = (coord_d+coord_c) * (_per_v / 100) + coord_a
    return Vector((coord_out[0], coord_out[1], coord_out[2]))


def obj_check(obj, scene, operation):
    """Check Object & Selection Validity.

    Args:
        obj: Active Object
        scene: Active Scene
        operation: The Operation e.g. Create New Vertex

    Returns:
        Object Bmesh
        Validity Boolean.
    """

    pg = scene.pdt_pg
    _operation = operation.upper()

    if obj is None:
        pg.error = PDT_ERR_NO_ACT_OBJ
        bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
        return None, False
    if obj.mode == "EDIT":
        bm = bmesh.from_edit_mesh(obj.data)
        if _operation == "S":
            if len(bm.edges) < 1:
                pg.error = f"{PDT_ERR_SEL_1_EDGEM} {len(bm.edges)})"
                bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
                return None, False
            return bm, True
        if len(bm.select_history) >= 1:
            vector_a = None
            if _operation not in {"D", "E", "F", "G", "N", "S"}:
                vector_a = check_selection(1, bm, obj)
            else:
                verts = [v for v in bm.verts if v.select]
                if len(verts) > 0:
                    vector_a = verts[0]
            if vector_a is None:
                pg.error = PDT_ERR_VERT_MODE
                bpy.context.window_manager.popup_menu(oops, title="Error", icon="ERROR")
                return None, False
        return bm, True
    return None, True


def dis_ang(values, flip_angle, plane, scene):
    """Set Working Axes when using Direction command.

    Args:
        values: Input Arguments
        flip_angle: Whether to flip the angle
        plane: Working Plane
        scene: Current Scene

    Returns:
        Directional Offset as a Vector.
    """

    pg = scene.pdt_pg
    dis_v = float(values[0])
    ang_v = float(values[1])
    if flip_angle:
        if ang_v > 0:
            ang_v = ang_v - 180
        else:
            ang_v = ang_v + 180
        pg.angle = ang_v
    if plane == "LO":
        vector_delta = view_dir(dis_v, ang_v)
    else:
        a1, a2, _ = set_mode(plane)
        vector_delta = Vector((0, 0, 0))
        # fmt: off
        vector_delta[a1] = vector_delta[a1] + (dis_v * cos(ang_v * pi/180))
        vector_delta[a2] = vector_delta[a2] + (dis_v * sin(ang_v * pi/180))
        # fmt: on
    return vector_delta


# Shader for displaying the Pivot Point as Graphics.
#
SHADER = gpu.shader.from_builtin("3D_UNIFORM_COLOR") if not bpy.app.background else None


def draw_3d(coords, gtype, rgba, context):
    """Draw Pivot Point Graphics.

    Note:
        Draws either Lines Points, or Tris using defined shader

    Args:
        coords: Input Coordinates List
        gtype: Graphic Type
        rgba: Colour in RGBA format
        context: Blender bpy.context instance.

    Returns:
        Nothing.
    """

    batch = batch_for_shader(SHADER, gtype, {"pos": coords})

    try:
        if coords is not None:
            gpu.state.blend_set('ALPHA')
            SHADER.bind()
            SHADER.uniform_float("color", rgba)
            batch.draw(SHADER)
    except:
        raise PDT_ShaderError


def draw_callback_3d(self, context):
    """Create Coordinate List for Pivot Point Graphic.

    Note:
        Creates coordinates for Pivot Point Graphic consisting of 6 Tris
        and one Point colour coded Red; X axis, Green; Y axis, Blue; Z axis
        and a yellow point based upon screen scale

    Args:
        context: Blender bpy.context instance.

    Returns:
        Nothing.
    """

    scene = context.scene
    pg = scene.pdt_pg
    region_width = context.region.width
    x_loc = pg.pivot_loc.x
    y_loc = pg.pivot_loc.y
    z_loc = pg.pivot_loc.z
    # Scale it from view
    areas = [a for a in context.screen.areas if a.type == "VIEW_3D"]
    if len(areas) > 0:
        scale_factor = abs(areas[0].spaces.active.region_3d.window_matrix.decompose()[2][1])
    # Check for orhtographic view and resize
    #if areas[0].spaces.active.region_3d.is_orthographic_side_view:
    #    dim_a = region_width / sf / 60000 * pg.pivot_size
    #else:
    #    dim_a = region_width / sf / 5000 * pg.pivot_size
    dim_a = region_width / scale_factor / 50000 * pg.pivot_size
    dim_b = dim_a * 0.65
    dim_c = dim_a * 0.05 + (pg.pivot_width * dim_a * 0.02)
    dim_o = dim_c / 3

    # fmt: off
    # X Axis
    coords = [
        (x_loc, y_loc, z_loc),
        (x_loc+dim_b, y_loc-dim_o, z_loc),
        (x_loc+dim_b, y_loc+dim_o, z_loc),
        (x_loc+dim_a, y_loc, z_loc),
        (x_loc+dim_b, y_loc+dim_c, z_loc),
        (x_loc+dim_b, y_loc-dim_c, z_loc),
    ]
    # fmt: on
    colour = (1.0, 0.0, 0.0, pg.pivot_alpha)
    draw_3d(coords, "TRIS", colour, context)
    coords = [(x_loc, y_loc, z_loc), (x_loc+dim_a, y_loc, z_loc)]
    draw_3d(coords, "LINES", colour, context)
    # fmt: off
    # Y Axis
    coords = [
        (x_loc, y_loc, z_loc),
        (x_loc-dim_o, y_loc+dim_b, z_loc),
        (x_loc+dim_o, y_loc+dim_b, z_loc),
        (x_loc, y_loc+dim_a, z_loc),
        (x_loc+dim_c, y_loc+dim_b, z_loc),
        (x_loc-dim_c, y_loc+dim_b, z_loc),
    ]
    # fmt: on
    colour = (0.0, 1.0, 0.0, pg.pivot_alpha)
    draw_3d(coords, "TRIS", colour, context)
    coords = [(x_loc, y_loc, z_loc), (x_loc, y_loc + dim_a, z_loc)]
    draw_3d(coords, "LINES", colour, context)
    # fmt: off
    # Z Axis
    coords = [
        (x_loc, y_loc, z_loc),
        (x_loc-dim_o, y_loc, z_loc+dim_b),
        (x_loc+dim_o, y_loc, z_loc+dim_b),
        (x_loc, y_loc, z_loc+dim_a),
        (x_loc+dim_c, y_loc, z_loc+dim_b),
        (x_loc-dim_c, y_loc, z_loc+dim_b),
    ]
    # fmt: on
    colour = (0.2, 0.5, 1.0, pg.pivot_alpha)
    draw_3d(coords, "TRIS", colour, context)
    coords = [(x_loc, y_loc, z_loc), (x_loc, y_loc, z_loc + dim_a)]
    draw_3d(coords, "LINES", colour, context)
    # Centre
    coords = [(x_loc, y_loc, z_loc)]
    colour = (1.0, 1.0, 0.0, pg.pivot_alpha)
    draw_3d(coords, "POINTS", colour, context)


def scale_set(self, context):
    """Sets Scale by dividing Pivot Distance by System Distance.

    Note:
        Sets Pivot Point Scale Factors by Measurement
        Uses pg.pivotdis & pg.distance scene variables

    Args:
        context: Blender bpy.context instance.

    Returns:
        Status Set.
    """

    scene = context.scene
    pg = scene.pdt_pg
    sys_distance = pg.distance
    scale_distance = pg.pivot_dis
    if scale_distance > 0:
        scale_factor = scale_distance / sys_distance
        pg.pivot_scale = Vector((scale_factor, scale_factor, scale_factor))