Welcome to mirror list, hosted at ThFree Co, Russian Federation.

scenography.py « render_povray - git.blender.org/blender-addons.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 1a5142f6ea9deedffc901f6bc901afa5dbab8f5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# SPDX-License-Identifier: GPL-2.0-or-later

# <pep8 compliant>

"""With respect to camera frame and optics distortions, also export environment

with world, sky, atmospheric effects such as rainbows or smoke """

import bpy

import os
from imghdr import what  # imghdr is a python lib to identify image file types
from math import atan, pi, sqrt, degrees
from . import voxel_lib  # for smoke rendering
from .model_primitives import write_object_modifiers


# -------- find image texture # used for export_world -------- #


def image_format(img_f):
    """Identify input image filetypes to transmit to POV."""
    # First use the below explicit extensions to identify image file prospects
    ext = {
        "JPG": "jpeg",
        "JPEG": "jpeg",
        "GIF": "gif",
        "TGA": "tga",
        "IFF": "iff",
        "PPM": "ppm",
        "PNG": "png",
        "SYS": "sys",
        "TIFF": "tiff",
        "TIF": "tiff",
        "EXR": "exr",
        "HDR": "hdr",
    }.get(os.path.splitext(img_f)[-1].upper(), "")
    # Then, use imghdr to really identify the filetype as it can be different
    if not ext:
        # maybe add a check for if path exists here?
        print(" WARNING: texture image has no extension")  # too verbose

        ext = what(img_f)  # imghdr is a python lib to identify image file types
    return ext


def img_map(ts):
    """Translate mapping type from Blender UI to POV syntax and return that string."""
    image_map = ""
    texdata = bpy.data.textures[ts.texture]
    if ts.mapping == "FLAT":
        image_map = "map_type 0 "
    elif ts.mapping == "SPHERE":
        image_map = "map_type 1 "
    elif ts.mapping == "TUBE":
        image_map = "map_type 2 "

    # map_type 3 and 4 in development (?) (ENV in pov 3.8)
    # for POV-Ray, currently they just seem to default back to Flat (type 0)
    # elif ts.mapping=="?":
    #    image_map = " map_type 3 "
    # elif ts.mapping=="?":
    #    image_map = " map_type 4 "
    if ts.use_interpolation:  # Available if image sampling class reactivated?
        image_map += " interpolate 2 "
    if texdata.extension == "CLIP":
        image_map += " once "
    # image_map += "}"
    # if ts.mapping=='CUBE':
    #    image_map+= "warp { cubic } rotate <-90,0,180>"
    # no direct cube type mapping. Though this should work in POV 3.7
    # it doesn't give that good results(best suited to environment maps?)
    # if image_map == "":
    #    print(" No texture image  found ")
    return image_map


def img_map_transforms(ts):
    """Translate mapping transformations from Blender UI to POV syntax and return that string."""
    # XXX TODO: unchecked textures give error of variable referenced before assignment XXX
    # POV-Ray "scale" is not a number of repetitions factor, but ,its
    # inverse, a standard scale factor.
    # 0.5 Offset is needed relatively to scale because center of the
    # scale is 0.5,0.5 in blender and 0,0 in POV
    # Strange that the translation factor for scale is not the same as for
    # translate.
    # TODO: verify both matches with other blender renderers / internal in previous versions.
    image_map_transforms = ""
    image_map_transforms = "scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % (
        ts.scale[0],
        ts.scale[1],
        ts.scale[2],
        ts.offset[0],
        ts.offset[1],
        ts.offset[2],
    )
    # image_map_transforms = (" translate <-0.5,-0.5,0.0> scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % \
    # ( 1.0 / ts.scale.x,
    # 1.0 / ts.scale.y,
    # 1.0 / ts.scale.z,
    # (0.5 / ts.scale.x) + ts.offset.x,
    # (0.5 / ts.scale.y) + ts.offset.y,
    # ts.offset.z))
    # image_map_transforms = (
    # "translate <-0.5,-0.5,0> "
    # "scale <-1,-1,1> * <%.4g,%.4g,%.4g> "
    # "translate <0.5,0.5,0> + <%.4g,%.4g,%.4g>" % \
    # (1.0 / ts.scale.x,
    # 1.0 / ts.scale.y,
    # 1.0 / ts.scale.z,
    # ts.offset.x,
    # ts.offset.y,
    # ts.offset.z)
    # )
    return image_map_transforms


def img_map_bg(wts):
    """Translate world mapping from Blender UI to POV syntax and return that string."""
    tex = bpy.data.textures[wts.texture]
    image_mapBG = ""
    # texture_coords refers to the mapping of world textures:
    if wts.texture_coords in ["VIEW", "GLOBAL"]:
        image_mapBG = " map_type 0 "
    elif wts.texture_coords == "ANGMAP":
        image_mapBG = " map_type 1 "
    elif wts.texture_coords == "TUBE":
        image_mapBG = " map_type 2 "

    if tex.use_interpolation:
        image_mapBG += " interpolate 2 "
    if tex.extension == "CLIP":
        image_mapBG += " once "
    # image_mapBG += "}"
    # if wts.mapping == 'CUBE':
    #   image_mapBG += "warp { cubic } rotate <-90,0,180>"
    # no direct cube type mapping. Though this should work in POV 3.7
    # it doesn't give that good results(best suited to environment maps?)
    # if image_mapBG == "":
    #    print(" No background texture image  found ")
    return image_mapBG


def path_image(image):
    """Conform a path string to POV syntax to avoid POV errors."""
    return bpy.path.abspath(image.filepath, library=image.library).replace("\\", "/")
    # .replace("\\","/") to get only forward slashes as it's what POV prefers,
    # even on windows


# end find image texture
# -----------------------------------------------------------------------------


def export_camera(file, scene, global_matrix, render, tab_write):
    """Translate camera from Blender UI to POV syntax and write to exported file."""
    camera = scene.camera

    # DH disabled for now, this isn't the correct context
    active_object = None  # bpy.context.active_object # does not always work  MR
    matrix = global_matrix @ camera.matrix_world
    focal_point = camera.data.dof.focus_distance

    # compute resolution
    q_size = render.resolution_x / render.resolution_y
    tab_write(file, "#declare camLocation  = <%.6f, %.6f, %.6f>;\n" % matrix.translation[:])
    tab_write(
        file,
        (
            "#declare camLookAt = <%.6f, %.6f, %.6f>;\n"
            % tuple(degrees(e) for e in matrix.to_3x3().to_euler())
        ),
    )

    tab_write(file, "camera {\n")
    if scene.pov.baking_enable and active_object and active_object.type == "MESH":
        tab_write(file, "mesh_camera{ 1 3\n")  # distribution 3 is what we want here
        tab_write(file, "mesh{%s}\n" % active_object.name)
        tab_write(file, "}\n")
        tab_write(file, "location <0,0,.01>")
        tab_write(file, "direction <0,0,-1>")

    else:
        if camera.data.type == "ORTHO":
            # XXX todo: track when SensorHeightRatio was added to see if needed (not used)
            sensor_height_ratio = (
                render.resolution_x * camera.data.ortho_scale / render.resolution_y
            )
            tab_write(file, "orthographic\n")
            # Blender angle is radian so should be converted to degrees:
            # % (camera.data.angle * (180.0 / pi) )
            # but actually argument is not compulsory after angle in pov ortho mode
            tab_write(file, "angle\n")
            tab_write(file, "right <%6f, 0, 0>\n" % -camera.data.ortho_scale)
            tab_write(file, "location  <0, 0, 0>\n")
            tab_write(file, "look_at  <0, 0, -1>\n")
            tab_write(file, "up <0, %6f, 0>\n" % (camera.data.ortho_scale / q_size))

        elif camera.data.type == "PANO":
            tab_write(file, "panoramic\n")
            tab_write(file, "location  <0, 0, 0>\n")
            tab_write(file, "look_at  <0, 0, -1>\n")
            tab_write(file, "right <%s, 0, 0>\n" % -q_size)
            tab_write(file, "up <0, 1, 0>\n")
            tab_write(file, "angle  %f\n" % (360.0 * atan(16.0 / camera.data.lens) / pi))
        elif camera.data.type == "PERSP":
            # Standard camera otherwise would be default in pov
            tab_write(file, "location  <0, 0, 0>\n")
            tab_write(file, "look_at  <0, 0, -1>\n")
            tab_write(file, "right <%s, 0, 0>\n" % -q_size)
            tab_write(file, "up <0, 1, 0>\n")
            tab_write(
                file,
                "angle  %f\n"
                % (2 * atan(camera.data.sensor_width / 2 / camera.data.lens) * 180.0 / pi),
            )

        tab_write(
            file,
            "rotate  <%.6f, %.6f, %.6f>\n" % tuple(degrees(e) for e in matrix.to_3x3().to_euler()),
        )

        tab_write(file, "translate <%.6f, %.6f, %.6f>\n" % matrix.translation[:])
        if camera.data.dof.use_dof and (focal_point != 0 or camera.data.dof.focus_object):
            tab_write(
                file, "aperture %.3g\n" % (1 / (camera.data.dof.aperture_fstop * 10000) * 1000)
            )
            tab_write(
                file,
                "blur_samples %d %d\n"
                % (camera.data.pov.dof_samples_min, camera.data.pov.dof_samples_max),
            )
            tab_write(file, "variance 1/%d\n" % camera.data.pov.dof_variance)
            tab_write(file, "confidence %.3g\n" % camera.data.pov.dof_confidence)
            if camera.data.dof.focus_object:
                focal_ob = scene.objects[camera.data.dof.focus_object.name]
                matrix_blur = global_matrix @ focal_ob.matrix_world
                tab_write(file, "focal_point <%.4f,%.4f,%.4f>\n" % matrix_blur.translation[:])
            else:
                tab_write(file, "focal_point <0, 0, %f>\n" % focal_point)
    if camera.data.pov.normal_enable:
        tab_write(
            file,
            "normal {%s %.4f turbulence %.4f scale %.4f}\n"
            % (
                camera.data.pov.normal_patterns,
                camera.data.pov.cam_normal,
                camera.data.pov.turbulence,
                camera.data.pov.scale,
            ),
        )
    tab_write(file, "}\n")


exported_lights_count = 0


def export_lights(lamps, file, scene, global_matrix, tab_write):
    """Translate lights from Blender UI to POV syntax and write to exported file."""

    from .render import write_matrix, tab_write

    # Incremented after each lamp export to declare its target
    # currently used for Fresnel diffuse shader as their slope vector:
    global exported_lights_count
    # Get all lamps and keep their count in a global variable
    for exported_lights_count, ob in enumerate(lamps, start=1):
        lamp = ob.data

        matrix = global_matrix @ ob.matrix_world

        # Color is no longer modified by energy
        # any way to directly get bpy_prop_array as tuple?
        color = tuple(lamp.color)

        tab_write(file, "light_source {\n")
        tab_write(file, "< 0,0,0 >\n")
        tab_write(file, "color srgb<%.3g, %.3g, %.3g>\n" % color)

        if lamp.type == "POINT":
            pass
        elif lamp.type == "SPOT":
            tab_write(file, "spotlight\n")

            # Falloff is the main radius from the centre line
            tab_write(file, "falloff %.2f\n" % (degrees(lamp.spot_size) / 2.0))  # 1 TO 179 FOR BOTH
            tab_write(
                file, "radius %.6f\n" % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend))
            )

            # Blender does not have a tightness equivalent, 0 is most like blender default.
            tab_write(file, "tightness 0\n")  # 0:10f

            tab_write(file, "point_at  <0, 0, -1>\n")
            if lamp.pov.use_halo:
                tab_write(file, "looks_like{\n")
                tab_write(file, "sphere{<0,0,0>,%.6f\n" % lamp.distance)
                tab_write(file, "hollow\n")
                tab_write(file, "material{\n")
                tab_write(file, "texture{\n")
                tab_write(file, "pigment{rgbf<1,1,1,%.4f>}\n" % (lamp.pov.halo_intensity * 5.0))
                tab_write(file, "}\n")
                tab_write(file, "interior{\n")
                tab_write(file, "media{\n")
                tab_write(file, "emission 1\n")
                tab_write(file, "scattering {1, 0.5}\n")
                tab_write(file, "density{\n")
                tab_write(file, "spherical\n")
                tab_write(file, "color_map{\n")
                tab_write(file, "[0.0 rgb <0,0,0>]\n")
                tab_write(file, "[0.5 rgb <1,1,1>]\n")
                tab_write(file, "[1.0 rgb <1,1,1>]\n")
                tab_write(file, "}\n")
                tab_write(file, "}\n")
                tab_write(file, "}\n")
                tab_write(file, "}\n")
                tab_write(file, "}\n")
                tab_write(file, "}\n")
                tab_write(file, "}\n")
        elif lamp.type == "SUN":
            tab_write(file, "parallel\n")
            tab_write(file, "point_at  <0, 0, -1>\n")  # *must* be after 'parallel'

        elif lamp.type == "AREA":
            tab_write(file, "fade_distance %.6f\n" % (lamp.distance / 2.0))
            # Area lights have no falloff type, so always use blenders lamp quad equivalent
            # for those?
            tab_write(file, "fade_power %d\n" % 2)
            size_x = lamp.size
            samples_x = lamp.pov.shadow_ray_samples_x
            if lamp.shape == "SQUARE":
                size_y = size_x
                samples_y = samples_x
            else:
                size_y = lamp.size_y
                samples_y = lamp.pov.shadow_ray_samples_y

            tab_write(
                file,
                "area_light <%.6f,0,0>,<0,%.6f,0> %d, %d\n"
                % (size_x, size_y, samples_x, samples_y),
            )
            tab_write(file, "area_illumination\n")
            if lamp.pov.shadow_ray_sample_method == "CONSTANT_JITTERED":
                if lamp.pov.use_jitter:
                    tab_write(file, "jitter\n")
            else:
                tab_write(file, "adaptive 1\n")
                tab_write(file, "jitter\n")

        # No shadow checked either at global or light level:
        if not scene.pov.use_shadows or (lamp.pov.shadow_method == "NOSHADOW"):
            tab_write(file, "shadowless\n")

        # Sun shouldn't be attenuated. Area lights have no falloff attribute so they
        # are put to type 2 attenuation a little higher above.
        if lamp.type not in {"SUN", "AREA"}:
            if lamp.falloff_type == "INVERSE_SQUARE":
                tab_write(file, "fade_distance %.6f\n" % (sqrt(lamp.distance / 2.0)))
                tab_write(file, "fade_power %d\n" % 2)  # Use blenders lamp quad equivalent
            elif lamp.falloff_type == "INVERSE_LINEAR":
                tab_write(file, "fade_distance %.6f\n" % (lamp.distance / 2.0))
                tab_write(file, "fade_power %d\n" % 1)  # Use blenders lamp linear
            elif lamp.falloff_type == "CONSTANT":
                tab_write(file, "fade_distance %.6f\n" % (lamp.distance / 2.0))
                tab_write(file, "fade_power %d\n" % 3)
                # Use blenders lamp constant equivalent no attenuation.
            # Using Custom curve for fade power 3 for now.
            elif lamp.falloff_type == "CUSTOM_CURVE":
                tab_write(file, "fade_power %d\n" % 4)

        write_matrix(file, matrix)

        tab_write(file, "}\n")

        # v(A,B) rotates vector A about origin by vector B.
        file.write(
            "#declare lampTarget%s= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);\n"
            % (
                exported_lights_count,
                -ob.location.x,
                -ob.location.y,
                -ob.location.z,
                ob.rotation_euler.x,
                ob.rotation_euler.y,
                ob.rotation_euler.z,
            )
        )


def export_world(file, world, scene, global_matrix, tab_write):
    """write world as POV background and sky_sphere to exported file"""
    render = scene.pov
    agnosticrender = scene.render
    camera = scene.camera
    # matrix = global_matrix @ camera.matrix_world  # view dependant for later use NOT USED
    if not world:
        return

    # These lines added to get sky gradient (visible with PNG output)

    # For simple flat background:
    if not world.pov.use_sky_blend:
        # No alpha with Sky option:
        if render.alpha_mode == "SKY" and not agnosticrender.film_transparent:
            tab_write(
                file, "background {rgbt<%.3g, %.3g, %.3g, 0>}\n" % (world.pov.horizon_color[:])
            )

        elif render.alpha_mode == "STRAIGHT" or agnosticrender.film_transparent:
            tab_write(
                file, "background {rgbt<%.3g, %.3g, %.3g, 1>}\n" % (world.pov.horizon_color[:])
            )
        else:
            # Non fully transparent background could premultiply alpha and avoid
            # anti-aliasing display issue
            tab_write(
                file,
                "background {rgbft<%.3g, %.3g, %.3g, %.3g, 0>}\n"
                % (
                    world.pov.horizon_color[0],
                    world.pov.horizon_color[1],
                    world.pov.horizon_color[2],
                    render.alpha_filter,
                ),
            )

    world_tex_count = 0
    # For Background image textures
    for t in world.pov_texture_slots:  # risk to write several sky_spheres but maybe ok.
        if t:
            tex = bpy.data.textures[t.texture]
        if tex.type is not None:
            world_tex_count += 1
            # XXX No enable checkbox for world textures yet (report it?)
            # if t and tex.type == 'IMAGE' and t.use:
            if tex.type == "IMAGE":
                image_filename = path_image(tex.image)
                if tex.image.filepath != image_filename:
                    tex.image.filepath = image_filename
                if image_filename != "" and t.use_map_blend:
                    textures_blend = image_filename
                    # colvalue = t.default_value
                    t_blend = t

                # Commented below was an idea to make the Background image oriented as camera
                # taken here:
                # http://news.pov.org/pov.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.pov.org%3E/
                # Replace 4/3 by the ratio of each image found by some custom or existing
                # function
                # mapping_blend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees" \
                #                "(atan((camLocation - camLookAt).x/(camLocation - " \
                #                "camLookAt).y)) rotate x*degrees(atan((camLocation - " \
                #                "camLookAt).y/(camLocation - camLookAt).z)) rotate y*" \
                #                "degrees(atan((camLocation - camLookAt).z/(camLocation - " \
                #                "camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % \
                #                (t_blend.offset.x / 10 , t_blend.offset.y / 10 ,
                #                 t_blend.offset.z / 10, t_blend.scale.x ,
                #                 t_blend.scale.y , t_blend.scale.z))
                # using camera rotation valuesdirectly from blender seems much easier
                if t_blend.texture_coords == "ANGMAP":
                    mapping_blend = ""
                else:
                    # POV-Ray "scale" is not a number of repetitions factor, but its
                    # inverse, a standard scale factor.
                    # 0.5 Offset is needed relatively to scale because center of the
                    # UV scale is 0.5,0.5 in blender and 0,0 in POV
                    # Further Scale by 2 and translate by -1 are
                    # required for the sky_sphere not to repeat

                    mapping_blend = (
                        "scale 2 scale <%.4g,%.4g,%.4g> translate -1 "
                        "translate <%.4g,%.4g,%.4g> rotate<0,0,0> "
                        % (
                            (1.0 / t_blend.scale.x),
                            (1.0 / t_blend.scale.y),
                            (1.0 / t_blend.scale.z),
                            0.5 - (0.5 / t_blend.scale.x) - t_blend.offset.x,
                            0.5 - (0.5 / t_blend.scale.y) - t_blend.offset.y,
                            t_blend.offset.z,
                        )
                    )

                    # The initial position and rotation of the pov camera is probably creating
                    # the rotation offset should look into it someday but at least background
                    # won't rotate with the camera now.
                # Putting the map on a plane would not introduce the skysphere distortion and
                # allow for better image scale matching but also some waay to chose depth and
                # size of the plane relative to camera.
                tab_write(file, "sky_sphere {\n")
                tab_write(file, "pigment {\n")
                tab_write(
                    file,
                    'image_map{%s "%s" %s}\n'
                    % (image_format(textures_blend), textures_blend, img_map_bg(t_blend)),
                )
                tab_write(file, "}\n")
                tab_write(file, "%s\n" % mapping_blend)
                # The following layered pigment opacifies to black over the texture for
                # transmit below 1 or otherwise adds to itself
                tab_write(file, "pigment {rgb 0 transmit %s}\n" % tex.intensity)
                tab_write(file, "}\n")
                # tab_write(file, "scale 2\n")
                # tab_write(file, "translate -1\n")

    # For only Background gradient

    if world_tex_count == 0 and world.pov.use_sky_blend:
        tab_write(file, "sky_sphere {\n")
        tab_write(file, "pigment {\n")
        # maybe Should follow the advice of POV doc about replacing gradient
        # for skysphere..5.5
        tab_write(file, "gradient y\n")
        tab_write(file, "color_map {\n")

        if render.alpha_mode == "TRANSPARENT":
            tab_write(
                file,
                "[0.0 rgbft<%.3g, %.3g, %.3g, %.3g, 0>]\n"
                % (
                    world.pov.horizon_color[0],
                    world.pov.horizon_color[1],
                    world.pov.horizon_color[2],
                    render.alpha_filter,
                ),
            )
            tab_write(
                file,
                "[1.0 rgbft<%.3g, %.3g, %.3g, %.3g, 0>]\n"
                % (
                    world.pov.zenith_color[0],
                    world.pov.zenith_color[1],
                    world.pov.zenith_color[2],
                    render.alpha_filter,
                ),
            )
        if agnosticrender.film_transparent or render.alpha_mode == "STRAIGHT":
            tab_write(file, "[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n" % (world.pov.horizon_color[:]))
            # aa premult not solved with transmit 1
            tab_write(file, "[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n" % (world.pov.zenith_color[:]))
        else:
            tab_write(file, "[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n" % (world.pov.horizon_color[:]))
            tab_write(file, "[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n" % (world.pov.zenith_color[:]))
        tab_write(file, "}\n")
        tab_write(file, "}\n")
        tab_write(file, "}\n")
        # Sky_sphere alpha (transmit) is not translating into image alpha the same
        # way as 'background'

    # if world.pov.light_settings.use_indirect_light:
    #    scene.pov.radio_enable=1

    # Maybe change the above to a function copyInternalRenderer settings when
    # user pushes a button, then:
    # scene.pov.radio_enable = world.pov.light_settings.use_indirect_light
    # and other such translations but maybe this would not be allowed either?

    # -----------------------------------------------------------------------------

    mist = world.mist_settings

    if mist.use_mist:
        tab_write(file, "fog {\n")
        if mist.falloff == "LINEAR":
            tab_write(file, "distance %.6f\n" % ((mist.start + mist.depth) * 0.368))
        elif mist.falloff in ["QUADRATIC", "INVERSE_QUADRATIC"]:  # n**2 or squrt(n)?
            tab_write(file, "distance %.6f\n" % ((mist.start + mist.depth) ** 2 * 0.368))
        tab_write(
            file,
            "color rgbt<%.3g, %.3g, %.3g, %.3g>\n"
            % (*world.pov.horizon_color, (1.0 - mist.intensity)),
        )
        # tab_write(file, "fog_offset %.6f\n" % mist.start) #create a pov property to prepend
        # tab_write(file, "fog_alt %.6f\n" % mist.height) #XXX right?
        # tab_write(file, "turbulence 0.2\n")
        # tab_write(file, "turb_depth 0.3\n")
        tab_write(file, "fog_type 1\n")  # type2 for height
        tab_write(file, "}\n")
    if scene.pov.media_enable:
        tab_write(file, "media {\n")
        tab_write(
            file,
            "scattering { %d, rgb %.12f*<%.4g, %.4g, %.4g>\n"
            % (
                int(scene.pov.media_scattering_type),
                scene.pov.media_diffusion_scale,
                *(scene.pov.media_diffusion_color[:]),
            ),
        )
        if scene.pov.media_scattering_type == "5":
            tab_write(file, "eccentricity %.3g\n" % scene.pov.media_eccentricity)
        tab_write(file, "}\n")
        tab_write(
            file,
            "absorption %.12f*<%.4g, %.4g, %.4g>\n"
            % (scene.pov.media_absorption_scale, *(scene.pov.media_absorption_color[:])),
        )
        tab_write(file, "\n")
        tab_write(file, "samples %.d\n" % scene.pov.media_samples)
        tab_write(file, "}\n")


# -----------------------------------------------------------------------------
def export_rainbows(rainbows, file, scene, global_matrix, tab_write):
    """write all POV rainbows primitives to exported file"""

    from .render import write_matrix, tab_write

    pov_mat_name = "Default_texture"
    for ob in rainbows:
        povdataname = ob.data.name  # enough? XXX not used nor matrix fn?
        angle = degrees(ob.data.spot_size / 2.5)  # radians in blender (2
        width = ob.data.spot_blend * 10
        distance = ob.data.shadow_buffer_clip_start
        # eps=0.0000001
        # angle = br/(cr+eps) * 10 #eps is small epsilon variable to avoid dividing by zero
        # width = ob.dimensions[2] #now let's say width of rainbow is the actual proxy height
        # formerly:
        # cz-bz # let's say width of the rainbow is height of the cone (interfacing choice

        # v(A,B) rotates vector A about origin by vector B.
        # and avoid a 0 length vector by adding 1

        # file.write("#declare %s_Target= vrotate(<%.6g,%.6g,%.6g>,<%.4g,%.4g,%.4g>);\n" % \
        # (povdataname, -(ob.location.x+0.1), -(ob.location.y+0.1), -(ob.location.z+0.1),
        # ob.rotation_euler.x, ob.rotation_euler.y, ob.rotation_euler.z))

        direction = (  # XXX currently not used (replaced by track to?)
            ob.location.x,
            ob.location.y,
            ob.location.z,
        )  # not taking matrix into account
        rmatrix = global_matrix @ ob.matrix_world

        # ob.rotation_euler.to_matrix().to_4x4() * mathutils.Vector((0,0,1))
        # XXX Is result of the below offset by 90 degrees?
        up = ob.matrix_world.to_3x3()[1].xyz  # * global_matrix

        # XXX TO CHANGE:
        # formerly:
        # tab_write(file, "#declare %s = rainbow {\n"%povdataname)

        # clumsy for now but remove the rainbow from instancing
        # system because not an object. use lamps later instead of meshes

        # del data_ref[dataname]
        tab_write(file, "rainbow {\n")

        tab_write(file, "angle %.4f\n" % angle)
        tab_write(file, "width %.4f\n" % width)
        tab_write(file, "distance %.4f\n" % distance)
        tab_write(file, "arc_angle %.4f\n" % ob.pov.arc_angle)
        tab_write(file, "falloff_angle %.4f\n" % ob.pov.falloff_angle)
        tab_write(file, "direction <%.4f,%.4f,%.4f>\n" % rmatrix.translation[:])
        tab_write(file, "up <%.4f,%.4f,%.4f>\n" % (up[0], up[1], up[2]))
        tab_write(file, "color_map {\n")
        tab_write(file, "[0.000  color srgbt<1.0, 0.5, 1.0, 1.0>]\n")
        tab_write(file, "[0.130  color srgbt<0.5, 0.5, 1.0, 0.9>]\n")
        tab_write(file, "[0.298  color srgbt<0.2, 0.2, 1.0, 0.7>]\n")
        tab_write(file, "[0.412  color srgbt<0.2, 1.0, 1.0, 0.4>]\n")
        tab_write(file, "[0.526  color srgbt<0.2, 1.0, 0.2, 0.4>]\n")
        tab_write(file, "[0.640  color srgbt<1.0, 1.0, 0.2, 0.4>]\n")
        tab_write(file, "[0.754  color srgbt<1.0, 0.5, 0.2, 0.6>]\n")
        tab_write(file, "[0.900  color srgbt<1.0, 0.2, 0.2, 0.7>]\n")
        tab_write(file, "[1.000  color srgbt<1.0, 0.2, 0.2, 1.0>]\n")
        tab_write(file, "}\n")

        # tab_write(file, "texture {%s}\n"%pov_mat_name)
        write_object_modifiers(ob, file)
        # tab_write(file, "rotate x*90\n")
        # matrix = global_matrix @ ob.matrix_world
        # write_matrix(file, matrix)
        tab_write(file, "}\n")
        # continue #Don't render proxy mesh, skip to next object


def export_smoke(file, smoke_obj_name, smoke_path, comments, global_matrix):
    """export Blender smoke type fluids to pov media using df3 library"""

    from .render import write_matrix, tab_write

    flowtype = -1  # XXX todo: not used yet? should trigger emissive for fire type
    depsgraph = bpy.context.evaluated_depsgraph_get()
    smoke_obj = bpy.data.objects[smoke_obj_name].evaluated_get(depsgraph)
    domain = None
    smoke_modifier = None
    # Search smoke domain target for smoke modifiers
    for mod in smoke_obj.modifiers:
        if mod.type == "FLUID":
            if mod.fluid_type == "DOMAIN":
                domain = smoke_obj
                smoke_modifier = mod

            elif mod.fluid_type == "FLOW":
                if mod.flow_settings.flow_type == "BOTH":
                    flowtype = 2
                elif mod.flow_settings.flow_type == "FIRE":
                    flowtype = 1
                elif mod.flow_settings.flow_type == "SMOKE":
                    flowtype = 0
    eps = 0.000001  # XXX not used currently. restore from corner case ... zero div?
    if domain is not None:
        mod_set = smoke_modifier.domain_settings
        channeldata = []
        for v in mod_set.density_grid:
            channeldata.append(v.real)
            print(v.real)
        # -------- Usage in voxel texture:
        # channeldata = []
        # if channel == 'density':
        # for v in mod_set.density_grid:
        # channeldata.append(v.real)

        # if channel == 'fire':
        # for v in mod_set.flame_grid:
        # channeldata.append(v.real)

        resolution = mod_set.resolution_max
        big_res = [
            mod_set.domain_resolution[0],
            mod_set.domain_resolution[1],
            mod_set.domain_resolution[2],
        ]

        if mod_set.use_noise:
            big_res[0] = big_res[0] * (mod_set.noise_scale + 1)
            big_res[1] = big_res[1] * (mod_set.noise_scale + 1)
            big_res[2] = big_res[2] * (mod_set.noise_scale + 1)
        # else:
        # p = []
        # -------- gather smoke domain settings
        # BBox = domain.bound_box
        # p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
        # p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
        # mod_set = smoke_modifier.domain_settings
        # resolution = mod_set.resolution_max
        # smokecache = mod_set.point_cache
        # ret = read_cache(smokecache, mod_set.use_noise, mod_set.noise_scale + 1, flowtype)
        # res_x = ret[0]
        # res_y = ret[1]
        # res_z = ret[2]
        # density = ret[3]
        # fire = ret[4]

        # if res_x * res_y * res_z > 0:
        # -------- new cache format
        # big_res = []
        # big_res.append(res_x)
        # big_res.append(res_y)
        # big_res.append(res_z)
        # else:
        # max = domain.dimensions[0]
        # if (max - domain.dimensions[1]) < -eps:
        # max = domain.dimensions[1]

        # if (max - domain.dimensions[2]) < -eps:
        # max = domain.dimensions[2]

        # big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
        # int(round(resolution * domain.dimensions[1] / max, 0)),
        # int(round(resolution * domain.dimensions[2] / max, 0))]

        # if mod_set.use_noise:
        # big_res = [big_res[0] * (mod_set.noise_scale + 1),
        # big_res[1] * (mod_set.noise_scale + 1),
        # big_res[2] * (mod_set.noise_scale + 1)]

        # if channel == 'density':
        # channeldata = density

        # if channel == 'fire':
        # channeldata = fire

        # sc_fr = '%s/%s/%s/%05d' % (
        # efutil.export_path,
        # efutil.scene_filename(),
        # bpy.context.scene.name,
        # bpy.context.scene.frame_current
        # )
        #               if not os.path.exists( sc_fr ):
        #                   os.makedirs(sc_fr)
        #
        #               smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
        #               smoke_path = '/'.join([sc_fr, smoke_filename])
        #
        #               with open(smoke_path, 'wb') as smoke_file:
        #                   # Binary densitygrid file format
        #                   #
        #                   # File header
        #                   smoke_file.write(b'SMOKE')        #magic number
        #                   smoke_file.write(struct.pack('<I', big_res[0]))
        #                   smoke_file.write(struct.pack('<I', big_res[1]))
        #                   smoke_file.write(struct.pack('<I', big_res[2]))
        # Density data
        #                   smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
        #
        #               LuxLog('Binary SMOKE file written: %s' % (smoke_path))

        # return big_res[0], big_res[1], big_res[2], channeldata

        mydf3 = voxel_lib.df3(big_res[0], big_res[1], big_res[2])
        sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
        for x in range(sim_sizeX):
            for y in range(sim_sizeY):
                for z in range(sim_sizeZ):
                    mydf3.set(x, y, z, channeldata[((z * sim_sizeY + y) * sim_sizeX + x)])
        try:
            mydf3.exportDF3(smoke_path)
        except ZeroDivisionError:
            print("Show smoke simulation in 3D view before export")
        print("Binary smoke.df3 file written in preview directory")
        if comments:
            file.write("\n//--Smoke--\n\n")

        # Note: We start with a default unit cube.
        #       This is mandatory to read correctly df3 data - otherwise we could just directly use
        #       bbox coordinates from the start, and avoid scale/translate operations at the end...
        file.write("box{<0,0,0>, <1,1,1>\n")
        file.write("    pigment{ rgbt 1 }\n")
        file.write("    hollow\n")
        file.write("    interior{ //---------------------\n")
        file.write("        media{ method 3\n")
        file.write("               emission <1,1,1>*1\n")  # 0>1 for dark smoke to white vapour
        file.write("               scattering{ 1, // Type\n")
        file.write("                  <1,1,1>*0.1\n")
        file.write("                } // end scattering\n")
        file.write('                density{density_file df3 "%s"\n' % smoke_path)
        file.write("                        color_map {\n")
        file.write("                        [0.00 rgb 0]\n")
        file.write("                        [0.05 rgb 0]\n")
        file.write("                        [0.20 rgb 0.2]\n")
        file.write("                        [0.30 rgb 0.6]\n")
        file.write("                        [0.40 rgb 1]\n")
        file.write("                        [1.00 rgb 1]\n")
        file.write("                       } // end color_map\n")
        file.write("               } // end of density\n")
        file.write("               samples %i // higher = more precise\n" % resolution)
        file.write("         } // end of media --------------------------\n")
        file.write("    } // end of interior\n")

        # START OF TRANSFORMATIONS

        # Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
        # loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
        bbox = smoke_obj.bound_box
        dim = [
            abs(bbox[6][0] - bbox[0][0]),
            abs(bbox[6][1] - bbox[0][1]),
            abs(bbox[6][2] - bbox[0][2]),
        ]

        # We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
        file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))

        # We offset our cube such that (0,0,0) coordinate matches Blender's object center.
        file.write("translate<%.6g,%.6g,%.6g>\n" % (bbox[0][0], bbox[0][1], bbox[0][2]))

        # We apply object's transformations to get final loc/rot/size in world space!
        # Note: we could combine the two previous transformations with this matrix directly...
        write_matrix(file, global_matrix @ smoke_obj.matrix_world)

        # END OF TRANSFORMATIONS

        file.write("}\n")

        # file.write("               interpolate 1\n")
        # file.write("               frequency 0\n")
        # file.write("   }\n")
        # file.write("}\n")