Welcome to mirror list, hosted at ThFree Co, Russian Federation.

git.blender.org/blender.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorBrecht Van Lommel <brecht@blender.org>2021-09-20 18:59:20 +0300
committerBrecht Van Lommel <brecht@blender.org>2021-09-21 15:55:54 +0300
commit08031197250aeecbaca3803254e6f25b8c7b7b37 (patch)
tree6fe7ab045f0dc0a423d6557c4073f34309ef4740 /intern/cycles/kernel/integrator/integrator_shade_volume.h
parentfa6b1007bad065440950cd67deb16a04f368856f (diff)
Cycles: merge of cycles-x branch, a major update to the renderer
This includes much improved GPU rendering performance, viewport interactivity, new shadow catcher, revamped sampling settings, subsurface scattering anisotropy, new GPU volume sampling, improved PMJ sampling pattern, and more. Some features have also been removed or changed, breaking backwards compatibility. Including the removal of the OpenCL backend, for which alternatives are under development. Release notes and code docs: https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycles https://wiki.blender.org/wiki/Source/Render/Cycles Credits: * Sergey Sharybin * Brecht Van Lommel * Patrick Mours (OptiX backend) * Christophe Hery (subsurface scattering anisotropy) * William Leeson (PMJ sampling pattern) * Alaska (various fixes and tweaks) * Thomas Dinges (various fixes) For the full commit history, see the cycles-x branch. This squashes together all the changes since intermediate changes would often fail building or tests. Ref T87839, T87837, T87836 Fixes T90734, T89353, T80267, T80267, T77185, T69800
Diffstat (limited to 'intern/cycles/kernel/integrator/integrator_shade_volume.h')
-rw-r--r--intern/cycles/kernel/integrator/integrator_shade_volume.h1015
1 files changed, 1015 insertions, 0 deletions
diff --git a/intern/cycles/kernel/integrator/integrator_shade_volume.h b/intern/cycles/kernel/integrator/integrator_shade_volume.h
new file mode 100644
index 00000000000..4a864b1e6ce
--- /dev/null
+++ b/intern/cycles/kernel/integrator/integrator_shade_volume.h
@@ -0,0 +1,1015 @@
+/*
+ * Copyright 2011-2021 Blender Foundation
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#pragma once
+
+#include "kernel/kernel_accumulate.h"
+#include "kernel/kernel_emission.h"
+#include "kernel/kernel_light.h"
+#include "kernel/kernel_passes.h"
+#include "kernel/kernel_path_state.h"
+#include "kernel/kernel_shader.h"
+
+#include "kernel/integrator/integrator_intersect_closest.h"
+#include "kernel/integrator/integrator_volume_stack.h"
+
+CCL_NAMESPACE_BEGIN
+
+#ifdef __VOLUME__
+
+/* Events for probalistic scattering */
+
+typedef enum VolumeIntegrateEvent {
+ VOLUME_PATH_SCATTERED = 0,
+ VOLUME_PATH_ATTENUATED = 1,
+ VOLUME_PATH_MISSED = 2
+} VolumeIntegrateEvent;
+
+typedef struct VolumeIntegrateResult {
+ /* Throughput and offset for direct light scattering. */
+ bool direct_scatter;
+ float3 direct_throughput;
+ float direct_t;
+ ShaderVolumePhases direct_phases;
+
+ /* Throughput and offset for indirect light scattering. */
+ bool indirect_scatter;
+ float3 indirect_throughput;
+ float indirect_t;
+ ShaderVolumePhases indirect_phases;
+} VolumeIntegrateResult;
+
+/* Ignore paths that have volume throughput below this value, to avoid unnecessary work
+ * and precision issues.
+ * todo: this value could be tweaked or turned into a probability to avoid unnecessary
+ * work in volumes and subsurface scattering. */
+# define VOLUME_THROUGHPUT_EPSILON 1e-6f
+
+/* Volume shader properties
+ *
+ * extinction coefficient = absorption coefficient + scattering coefficient
+ * sigma_t = sigma_a + sigma_s */
+
+typedef struct VolumeShaderCoefficients {
+ float3 sigma_t;
+ float3 sigma_s;
+ float3 emission;
+} VolumeShaderCoefficients;
+
+/* Evaluate shader to get extinction coefficient at P. */
+ccl_device_inline bool shadow_volume_shader_sample(INTEGRATOR_STATE_ARGS,
+ ShaderData *ccl_restrict sd,
+ float3 *ccl_restrict extinction)
+{
+ shader_eval_volume(INTEGRATOR_STATE_PASS, sd, PATH_RAY_SHADOW, [=](const int i) {
+ return integrator_state_read_shadow_volume_stack(INTEGRATOR_STATE_PASS, i);
+ });
+
+ if (!(sd->flag & SD_EXTINCTION)) {
+ return false;
+ }
+
+ const float density = object_volume_density(kg, sd->object);
+ *extinction = sd->closure_transparent_extinction * density;
+ return true;
+}
+
+/* Evaluate shader to get absorption, scattering and emission at P. */
+ccl_device_inline bool volume_shader_sample(INTEGRATOR_STATE_ARGS,
+ ShaderData *ccl_restrict sd,
+ VolumeShaderCoefficients *coeff)
+{
+ const int path_flag = INTEGRATOR_STATE(path, flag);
+ shader_eval_volume(INTEGRATOR_STATE_PASS, sd, path_flag, [=](const int i) {
+ return integrator_state_read_volume_stack(INTEGRATOR_STATE_PASS, i);
+ });
+
+ if (!(sd->flag & (SD_EXTINCTION | SD_SCATTER | SD_EMISSION))) {
+ return false;
+ }
+
+ coeff->sigma_s = zero_float3();
+ coeff->sigma_t = (sd->flag & SD_EXTINCTION) ? sd->closure_transparent_extinction : zero_float3();
+ coeff->emission = (sd->flag & SD_EMISSION) ? sd->closure_emission_background : zero_float3();
+
+ if (sd->flag & SD_SCATTER) {
+ for (int i = 0; i < sd->num_closure; i++) {
+ const ShaderClosure *sc = &sd->closure[i];
+
+ if (CLOSURE_IS_VOLUME(sc->type)) {
+ coeff->sigma_s += sc->weight;
+ }
+ }
+ }
+
+ const float density = object_volume_density(kg, sd->object);
+ coeff->sigma_s *= density;
+ coeff->sigma_t *= density;
+ coeff->emission *= density;
+
+ return true;
+}
+
+ccl_device_forceinline void volume_step_init(const KernelGlobals *kg,
+ const RNGState *rng_state,
+ const float object_step_size,
+ float t,
+ float *step_size,
+ float *step_shade_offset,
+ float *steps_offset,
+ int *max_steps)
+{
+ if (object_step_size == FLT_MAX) {
+ /* Homogeneous volume. */
+ *step_size = t;
+ *step_shade_offset = 0.0f;
+ *steps_offset = 1.0f;
+ *max_steps = 1;
+ }
+ else {
+ /* Heterogeneous volume. */
+ *max_steps = kernel_data.integrator.volume_max_steps;
+ float step = min(object_step_size, t);
+
+ /* compute exact steps in advance for malloc */
+ if (t > *max_steps * step) {
+ step = t / (float)*max_steps;
+ }
+
+ *step_size = step;
+
+ /* Perform shading at this offset within a step, to integrate over
+ * over the entire step segment. */
+ *step_shade_offset = path_state_rng_1D_hash(kg, rng_state, 0x1e31d8a4);
+
+ /* Shift starting point of all segment by this random amount to avoid
+ * banding artifacts from the volume bounding shape. */
+ *steps_offset = path_state_rng_1D_hash(kg, rng_state, 0x3d22c7b3);
+ }
+}
+
+/* Volume Shadows
+ *
+ * These functions are used to attenuate shadow rays to lights. Both absorption
+ * and scattering will block light, represented by the extinction coefficient. */
+
+# if 0
+/* homogeneous volume: assume shader evaluation at the starts gives
+ * the extinction coefficient for the entire line segment */
+ccl_device void volume_shadow_homogeneous(INTEGRATOR_STATE_ARGS,
+ Ray *ccl_restrict ray,
+ ShaderData *ccl_restrict sd,
+ float3 *ccl_restrict throughput)
+{
+ float3 sigma_t = zero_float3();
+
+ if (shadow_volume_shader_sample(INTEGRATOR_STATE_PASS, sd, &sigma_t)) {
+ *throughput *= volume_color_transmittance(sigma_t, ray->t);
+ }
+}
+# endif
+
+/* heterogeneous volume: integrate stepping through the volume until we
+ * reach the end, get absorbed entirely, or run out of iterations */
+ccl_device void volume_shadow_heterogeneous(INTEGRATOR_STATE_ARGS,
+ Ray *ccl_restrict ray,
+ ShaderData *ccl_restrict sd,
+ float3 *ccl_restrict throughput,
+ const float object_step_size)
+{
+ /* Load random number state. */
+ RNGState rng_state;
+ shadow_path_state_rng_load(INTEGRATOR_STATE_PASS, &rng_state);
+
+ float3 tp = *throughput;
+
+ /* Prepare for stepping.
+ * For shadows we do not offset all segments, since the starting point is
+ * already a random distance inside the volume. It also appears to create
+ * banding artifacts for unknown reasons. */
+ int max_steps;
+ float step_size, step_shade_offset, unused;
+ volume_step_init(kg,
+ &rng_state,
+ object_step_size,
+ ray->t,
+ &step_size,
+ &step_shade_offset,
+ &unused,
+ &max_steps);
+ const float steps_offset = 1.0f;
+
+ /* compute extinction at the start */
+ float t = 0.0f;
+
+ float3 sum = zero_float3();
+
+ for (int i = 0; i < max_steps; i++) {
+ /* advance to new position */
+ float new_t = min(ray->t, (i + steps_offset) * step_size);
+ float dt = new_t - t;
+
+ float3 new_P = ray->P + ray->D * (t + dt * step_shade_offset);
+ float3 sigma_t = zero_float3();
+
+ /* compute attenuation over segment */
+ sd->P = new_P;
+ if (shadow_volume_shader_sample(INTEGRATOR_STATE_PASS, sd, &sigma_t)) {
+ /* Compute expf() only for every Nth step, to save some calculations
+ * because exp(a)*exp(b) = exp(a+b), also do a quick VOLUME_THROUGHPUT_EPSILON
+ * check then. */
+ sum += (-sigma_t * dt);
+ if ((i & 0x07) == 0) { /* ToDo: Other interval? */
+ tp = *throughput * exp3(sum);
+
+ /* stop if nearly all light is blocked */
+ if (tp.x < VOLUME_THROUGHPUT_EPSILON && tp.y < VOLUME_THROUGHPUT_EPSILON &&
+ tp.z < VOLUME_THROUGHPUT_EPSILON)
+ break;
+ }
+ }
+
+ /* stop if at the end of the volume */
+ t = new_t;
+ if (t == ray->t) {
+ /* Update throughput in case we haven't done it above */
+ tp = *throughput * exp3(sum);
+ break;
+ }
+ }
+
+ *throughput = tp;
+}
+
+/* Equi-angular sampling as in:
+ * "Importance Sampling Techniques for Path Tracing in Participating Media" */
+
+ccl_device float volume_equiangular_sample(const Ray *ccl_restrict ray,
+ const float3 light_P,
+ const float xi,
+ float *pdf)
+{
+ const float t = ray->t;
+ const float delta = dot((light_P - ray->P), ray->D);
+ const float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
+ if (UNLIKELY(D == 0.0f)) {
+ *pdf = 0.0f;
+ return 0.0f;
+ }
+ const float theta_a = -atan2f(delta, D);
+ const float theta_b = atan2f(t - delta, D);
+ const float t_ = D * tanf((xi * theta_b) + (1 - xi) * theta_a);
+ if (UNLIKELY(theta_b == theta_a)) {
+ *pdf = 0.0f;
+ return 0.0f;
+ }
+ *pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
+
+ return min(t, delta + t_); /* min is only for float precision errors */
+}
+
+ccl_device float volume_equiangular_pdf(const Ray *ccl_restrict ray,
+ const float3 light_P,
+ const float sample_t)
+{
+ const float delta = dot((light_P - ray->P), ray->D);
+ const float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
+ if (UNLIKELY(D == 0.0f)) {
+ return 0.0f;
+ }
+
+ const float t = ray->t;
+ const float t_ = sample_t - delta;
+
+ const float theta_a = -atan2f(delta, D);
+ const float theta_b = atan2f(t - delta, D);
+ if (UNLIKELY(theta_b == theta_a)) {
+ return 0.0f;
+ }
+
+ const float pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
+
+ return pdf;
+}
+
+ccl_device float volume_equiangular_cdf(const Ray *ccl_restrict ray,
+ const float3 light_P,
+ const float sample_t)
+{
+ float delta = dot((light_P - ray->P), ray->D);
+ float D = safe_sqrtf(len_squared(light_P - ray->P) - delta * delta);
+ if (UNLIKELY(D == 0.0f)) {
+ return 0.0f;
+ }
+
+ const float t = ray->t;
+ const float t_ = sample_t - delta;
+
+ const float theta_a = -atan2f(delta, D);
+ const float theta_b = atan2f(t - delta, D);
+ if (UNLIKELY(theta_b == theta_a)) {
+ return 0.0f;
+ }
+
+ const float theta_sample = atan2f(t_, D);
+ const float cdf = (theta_sample - theta_a) / (theta_b - theta_a);
+
+ return cdf;
+}
+
+/* Distance sampling */
+
+ccl_device float volume_distance_sample(
+ float max_t, float3 sigma_t, int channel, float xi, float3 *transmittance, float3 *pdf)
+{
+ /* xi is [0, 1[ so log(0) should never happen, division by zero is
+ * avoided because sample_sigma_t > 0 when SD_SCATTER is set */
+ float sample_sigma_t = volume_channel_get(sigma_t, channel);
+ float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
+ float sample_transmittance = volume_channel_get(full_transmittance, channel);
+
+ float sample_t = min(max_t, -logf(1.0f - xi * (1.0f - sample_transmittance)) / sample_sigma_t);
+
+ *transmittance = volume_color_transmittance(sigma_t, sample_t);
+ *pdf = safe_divide_color(sigma_t * *transmittance, one_float3() - full_transmittance);
+
+ /* todo: optimization: when taken together with hit/miss decision,
+ * the full_transmittance cancels out drops out and xi does not
+ * need to be remapped */
+
+ return sample_t;
+}
+
+ccl_device float3 volume_distance_pdf(float max_t, float3 sigma_t, float sample_t)
+{
+ float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
+ float3 transmittance = volume_color_transmittance(sigma_t, sample_t);
+
+ return safe_divide_color(sigma_t * transmittance, one_float3() - full_transmittance);
+}
+
+/* Emission */
+
+ccl_device float3 volume_emission_integrate(VolumeShaderCoefficients *coeff,
+ int closure_flag,
+ float3 transmittance,
+ float t)
+{
+ /* integral E * exp(-sigma_t * t) from 0 to t = E * (1 - exp(-sigma_t * t))/sigma_t
+ * this goes to E * t as sigma_t goes to zero
+ *
+ * todo: we should use an epsilon to avoid precision issues near zero sigma_t */
+ float3 emission = coeff->emission;
+
+ if (closure_flag & SD_EXTINCTION) {
+ float3 sigma_t = coeff->sigma_t;
+
+ emission.x *= (sigma_t.x > 0.0f) ? (1.0f - transmittance.x) / sigma_t.x : t;
+ emission.y *= (sigma_t.y > 0.0f) ? (1.0f - transmittance.y) / sigma_t.y : t;
+ emission.z *= (sigma_t.z > 0.0f) ? (1.0f - transmittance.z) / sigma_t.z : t;
+ }
+ else
+ emission *= t;
+
+ return emission;
+}
+
+/* Volume Integration */
+
+typedef struct VolumeIntegrateState {
+ /* Volume segment extents. */
+ float start_t;
+ float end_t;
+
+ /* If volume is absorption-only up to this point, and no probabilistic
+ * scattering or termination has been used yet. */
+ bool absorption_only;
+
+ /* Random numbers for scattering. */
+ float rscatter;
+ float rphase;
+
+ /* Multiple importance sampling. */
+ VolumeSampleMethod direct_sample_method;
+ bool use_mis;
+ float distance_pdf;
+ float equiangular_pdf;
+} VolumeIntegrateState;
+
+ccl_device_forceinline void volume_integrate_step_scattering(
+ const ShaderData *sd,
+ const Ray *ray,
+ const float3 equiangular_light_P,
+ const VolumeShaderCoefficients &ccl_restrict coeff,
+ const float3 transmittance,
+ VolumeIntegrateState &ccl_restrict vstate,
+ VolumeIntegrateResult &ccl_restrict result)
+{
+ /* Pick random color channel, we use the Veach one-sample
+ * model with balance heuristic for the channels. */
+ const float3 albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
+ float3 channel_pdf;
+ const int channel = volume_sample_channel(
+ albedo, result.indirect_throughput, vstate.rphase, &channel_pdf);
+
+ /* Equiangular sampling for direct lighting. */
+ if (vstate.direct_sample_method == VOLUME_SAMPLE_EQUIANGULAR && !result.direct_scatter) {
+ if (result.direct_t >= vstate.start_t && result.direct_t <= vstate.end_t) {
+ const float new_dt = result.direct_t - vstate.start_t;
+ const float3 new_transmittance = volume_color_transmittance(coeff.sigma_t, new_dt);
+
+ result.direct_scatter = true;
+ result.direct_throughput *= coeff.sigma_s * new_transmittance / vstate.equiangular_pdf;
+ shader_copy_volume_phases(&result.direct_phases, sd);
+
+ /* Multiple importance sampling. */
+ if (vstate.use_mis) {
+ const float distance_pdf = vstate.distance_pdf *
+ dot(channel_pdf, coeff.sigma_t * new_transmittance);
+ const float mis_weight = 2.0f * power_heuristic(vstate.equiangular_pdf, distance_pdf);
+ result.direct_throughput *= mis_weight;
+ }
+ }
+ else {
+ result.direct_throughput *= transmittance;
+ vstate.distance_pdf *= dot(channel_pdf, transmittance);
+ }
+ }
+
+ /* Distance sampling for indirect and optional direct lighting. */
+ if (!result.indirect_scatter) {
+ /* decide if we will scatter or continue */
+ const float sample_transmittance = volume_channel_get(transmittance, channel);
+
+ if (1.0f - vstate.rscatter >= sample_transmittance) {
+ /* compute sampling distance */
+ const float sample_sigma_t = volume_channel_get(coeff.sigma_t, channel);
+ const float new_dt = -logf(1.0f - vstate.rscatter) / sample_sigma_t;
+ const float new_t = vstate.start_t + new_dt;
+
+ /* transmittance and pdf */
+ const float3 new_transmittance = volume_color_transmittance(coeff.sigma_t, new_dt);
+ const float distance_pdf = dot(channel_pdf, coeff.sigma_t * new_transmittance);
+
+ /* throughput */
+ result.indirect_scatter = true;
+ result.indirect_t = new_t;
+ result.indirect_throughput *= coeff.sigma_s * new_transmittance / distance_pdf;
+ shader_copy_volume_phases(&result.indirect_phases, sd);
+
+ if (vstate.direct_sample_method != VOLUME_SAMPLE_EQUIANGULAR) {
+ /* If using distance sampling for direct light, just copy parameters
+ * of indirect light since we scatter at the same point then. */
+ result.direct_scatter = true;
+ result.direct_t = result.indirect_t;
+ result.direct_throughput = result.indirect_throughput;
+ shader_copy_volume_phases(&result.direct_phases, sd);
+
+ /* Multiple importance sampling. */
+ if (vstate.use_mis) {
+ const float equiangular_pdf = volume_equiangular_pdf(ray, equiangular_light_P, new_t);
+ const float mis_weight = power_heuristic(vstate.distance_pdf * distance_pdf,
+ equiangular_pdf);
+ result.direct_throughput *= 2.0f * mis_weight;
+ }
+ }
+ }
+ else {
+ /* throughput */
+ const float pdf = dot(channel_pdf, transmittance);
+ result.indirect_throughput *= transmittance / pdf;
+ if (vstate.direct_sample_method != VOLUME_SAMPLE_EQUIANGULAR) {
+ vstate.distance_pdf *= pdf;
+ }
+
+ /* remap rscatter so we can reuse it and keep thing stratified */
+ vstate.rscatter = 1.0f - (1.0f - vstate.rscatter) / sample_transmittance;
+ }
+ }
+}
+
+/* heterogeneous volume distance sampling: integrate stepping through the
+ * volume until we reach the end, get absorbed entirely, or run out of
+ * iterations. this does probabilistically scatter or get transmitted through
+ * for path tracing where we don't want to branch. */
+ccl_device_forceinline void volume_integrate_heterogeneous(
+ INTEGRATOR_STATE_ARGS,
+ Ray *ccl_restrict ray,
+ ShaderData *ccl_restrict sd,
+ const RNGState *rng_state,
+ ccl_global float *ccl_restrict render_buffer,
+ const float object_step_size,
+ const VolumeSampleMethod direct_sample_method,
+ const float3 equiangular_light_P,
+ VolumeIntegrateResult &result)
+{
+ PROFILING_INIT(kg, PROFILING_SHADE_VOLUME_INTEGRATE);
+
+ /* Prepare for stepping.
+ * Using a different step offset for the first step avoids banding artifacts. */
+ int max_steps;
+ float step_size, step_shade_offset, steps_offset;
+ volume_step_init(kg,
+ rng_state,
+ object_step_size,
+ ray->t,
+ &step_size,
+ &step_shade_offset,
+ &steps_offset,
+ &max_steps);
+
+ /* Initialize volume integration state. */
+ VolumeIntegrateState vstate ccl_optional_struct_init;
+ vstate.start_t = 0.0f;
+ vstate.end_t = 0.0f;
+ vstate.absorption_only = true;
+ vstate.rscatter = path_state_rng_1D(kg, rng_state, PRNG_SCATTER_DISTANCE);
+ vstate.rphase = path_state_rng_1D(kg, rng_state, PRNG_PHASE_CHANNEL);
+
+ /* Multiple importance sampling: pick between equiangular and distance sampling strategy. */
+ vstate.direct_sample_method = direct_sample_method;
+ vstate.use_mis = (direct_sample_method == VOLUME_SAMPLE_MIS);
+ if (vstate.use_mis) {
+ if (vstate.rscatter < 0.5f) {
+ vstate.rscatter *= 2.0f;
+ vstate.direct_sample_method = VOLUME_SAMPLE_DISTANCE;
+ }
+ else {
+ vstate.rscatter = (vstate.rscatter - 0.5f) * 2.0f;
+ vstate.direct_sample_method = VOLUME_SAMPLE_EQUIANGULAR;
+ }
+ }
+ vstate.equiangular_pdf = 0.0f;
+ vstate.distance_pdf = 1.0f;
+
+ /* Initialize volume integration result. */
+ const float3 throughput = INTEGRATOR_STATE(path, throughput);
+ result.direct_throughput = throughput;
+ result.indirect_throughput = throughput;
+
+ /* Equiangular sampling: compute distance and PDF in advance. */
+ if (vstate.direct_sample_method == VOLUME_SAMPLE_EQUIANGULAR) {
+ result.direct_t = volume_equiangular_sample(
+ ray, equiangular_light_P, vstate.rscatter, &vstate.equiangular_pdf);
+ }
+
+# ifdef __DENOISING_FEATURES__
+ const bool write_denoising_features = (INTEGRATOR_STATE(path, flag) &
+ PATH_RAY_DENOISING_FEATURES);
+ float3 accum_albedo = zero_float3();
+# endif
+ float3 accum_emission = zero_float3();
+
+ for (int i = 0; i < max_steps; i++) {
+ /* Advance to new position */
+ vstate.end_t = min(ray->t, (i + steps_offset) * step_size);
+ const float shade_t = vstate.start_t + (vstate.end_t - vstate.start_t) * step_shade_offset;
+ sd->P = ray->P + ray->D * shade_t;
+
+ /* compute segment */
+ VolumeShaderCoefficients coeff ccl_optional_struct_init;
+ if (volume_shader_sample(INTEGRATOR_STATE_PASS, sd, &coeff)) {
+ const int closure_flag = sd->flag;
+
+ /* Evaluate transmittance over segment. */
+ const float dt = (vstate.end_t - vstate.start_t);
+ const float3 transmittance = (closure_flag & SD_EXTINCTION) ?
+ volume_color_transmittance(coeff.sigma_t, dt) :
+ one_float3();
+
+ /* Emission. */
+ if (closure_flag & SD_EMISSION) {
+ /* Only write emission before indirect light scatter position, since we terminate
+ * stepping at that point if we have already found a direct light scatter position. */
+ if (!result.indirect_scatter) {
+ const float3 emission = volume_emission_integrate(
+ &coeff, closure_flag, transmittance, dt);
+ accum_emission += emission;
+ }
+ }
+
+ if (closure_flag & SD_EXTINCTION) {
+ if ((closure_flag & SD_SCATTER) || !vstate.absorption_only) {
+# ifdef __DENOISING_FEATURES__
+ /* Accumulate albedo for denoising features. */
+ if (write_denoising_features && (closure_flag & SD_SCATTER)) {
+ const float3 albedo = safe_divide_color(coeff.sigma_s, coeff.sigma_t);
+ accum_albedo += result.indirect_throughput * albedo * (one_float3() - transmittance);
+ }
+# endif
+
+ /* Scattering and absorption. */
+ volume_integrate_step_scattering(
+ sd, ray, equiangular_light_P, coeff, transmittance, vstate, result);
+ }
+ else {
+ /* Absorption only. */
+ result.indirect_throughput *= transmittance;
+ result.direct_throughput *= transmittance;
+ }
+
+ /* Stop if nearly all light blocked. */
+ if (!result.indirect_scatter) {
+ if (max3(result.indirect_throughput) < VOLUME_THROUGHPUT_EPSILON) {
+ result.indirect_throughput = zero_float3();
+ break;
+ }
+ }
+ else if (!result.direct_scatter) {
+ if (max3(result.direct_throughput) < VOLUME_THROUGHPUT_EPSILON) {
+ break;
+ }
+ }
+ }
+
+ /* If we have scattering data for both direct and indirect, we're done. */
+ if (result.direct_scatter && result.indirect_scatter) {
+ break;
+ }
+ }
+
+ /* Stop if at the end of the volume. */
+ vstate.start_t = vstate.end_t;
+ if (vstate.start_t == ray->t) {
+ break;
+ }
+ }
+
+ /* Write accumulated emisison. */
+ if (!is_zero(accum_emission)) {
+ kernel_accum_emission(
+ INTEGRATOR_STATE_PASS, result.indirect_throughput, accum_emission, render_buffer);
+ }
+
+# ifdef __DENOISING_FEATURES__
+ /* Write denoising features. */
+ if (write_denoising_features) {
+ kernel_write_denoising_features_volume(
+ INTEGRATOR_STATE_PASS, accum_albedo, result.indirect_scatter, render_buffer);
+ }
+# endif /* __DENOISING_FEATURES__ */
+}
+
+# ifdef __EMISSION__
+/* Path tracing: sample point on light and evaluate light shader, then
+ * queue shadow ray to be traced. */
+ccl_device_forceinline bool integrate_volume_sample_light(INTEGRATOR_STATE_ARGS,
+ const ShaderData *ccl_restrict sd,
+ const RNGState *ccl_restrict rng_state,
+ LightSample *ccl_restrict ls)
+{
+ /* Test if there is a light or BSDF that needs direct light. */
+ if (!kernel_data.integrator.use_direct_light) {
+ return false;
+ }
+
+ /* Sample position on a light. */
+ const int path_flag = INTEGRATOR_STATE(path, flag);
+ const uint bounce = INTEGRATOR_STATE(path, bounce);
+ float light_u, light_v;
+ path_state_rng_2D(kg, rng_state, PRNG_LIGHT_U, &light_u, &light_v);
+
+ light_distribution_sample_from_volume_segment(
+ kg, light_u, light_v, sd->time, sd->P, bounce, path_flag, ls);
+
+ if (ls->shader & SHADER_EXCLUDE_SCATTER) {
+ return false;
+ }
+
+ return true;
+}
+
+/* Path tracing: sample point on light and evaluate light shader, then
+ * queue shadow ray to be traced. */
+ccl_device_forceinline void integrate_volume_direct_light(INTEGRATOR_STATE_ARGS,
+ const ShaderData *ccl_restrict sd,
+ const RNGState *ccl_restrict rng_state,
+ const float3 P,
+ const ShaderVolumePhases *ccl_restrict
+ phases,
+ const float3 throughput,
+ LightSample *ccl_restrict ls)
+{
+ PROFILING_INIT(kg, PROFILING_SHADE_VOLUME_DIRECT_LIGHT);
+
+ if (!kernel_data.integrator.use_direct_light) {
+ return;
+ }
+
+ /* Sample position on the same light again, now from the shading
+ * point where we scattered.
+ *
+ * TODO: decorrelate random numbers and use light_sample_new_position to
+ * avoid resampling the CDF. */
+ {
+ const int path_flag = INTEGRATOR_STATE(path, flag);
+ const uint bounce = INTEGRATOR_STATE(path, bounce);
+ float light_u, light_v;
+ path_state_rng_2D(kg, rng_state, PRNG_LIGHT_U, &light_u, &light_v);
+
+ if (!light_distribution_sample_from_position(
+ kg, light_u, light_v, sd->time, P, bounce, path_flag, ls)) {
+ return;
+ }
+ }
+
+ /* Evaluate light shader.
+ *
+ * TODO: can we reuse sd memory? In theory we can move this after
+ * integrate_surface_bounce, evaluate the BSDF, and only then evaluate
+ * the light shader. This could also move to its own kernel, for
+ * non-constant light sources. */
+ ShaderDataTinyStorage emission_sd_storage;
+ ShaderData *emission_sd = AS_SHADER_DATA(&emission_sd_storage);
+ const float3 light_eval = light_sample_shader_eval(
+ INTEGRATOR_STATE_PASS, emission_sd, ls, sd->time);
+ if (is_zero(light_eval)) {
+ return;
+ }
+
+ /* Evaluate BSDF. */
+ BsdfEval phase_eval ccl_optional_struct_init;
+ const float phase_pdf = shader_volume_phase_eval(kg, sd, phases, ls->D, &phase_eval);
+
+ if (ls->shader & SHADER_USE_MIS) {
+ float mis_weight = power_heuristic(ls->pdf, phase_pdf);
+ bsdf_eval_mul(&phase_eval, mis_weight);
+ }
+
+ bsdf_eval_mul3(&phase_eval, light_eval / ls->pdf);
+
+ /* Path termination. */
+ const float terminate = path_state_rng_light_termination(kg, rng_state);
+ if (light_sample_terminate(kg, ls, &phase_eval, terminate)) {
+ return;
+ }
+
+ /* Create shadow ray. */
+ Ray ray ccl_optional_struct_init;
+ light_sample_to_volume_shadow_ray(kg, sd, ls, P, &ray);
+ const bool is_light = light_sample_is_light(ls);
+
+ /* Write shadow ray and associated state to global memory. */
+ integrator_state_write_shadow_ray(INTEGRATOR_STATE_PASS, &ray);
+
+ /* Copy state from main path to shadow path. */
+ const uint16_t bounce = INTEGRATOR_STATE(path, bounce);
+ const uint16_t transparent_bounce = INTEGRATOR_STATE(path, transparent_bounce);
+ uint32_t shadow_flag = INTEGRATOR_STATE(path, flag);
+ shadow_flag |= (is_light) ? PATH_RAY_SHADOW_FOR_LIGHT : 0;
+ shadow_flag |= PATH_RAY_VOLUME_PASS;
+ const float3 throughput_phase = throughput * bsdf_eval_sum(&phase_eval);
+
+ if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
+ const float3 diffuse_glossy_ratio = (bounce == 0) ?
+ one_float3() :
+ INTEGRATOR_STATE(path, diffuse_glossy_ratio);
+ INTEGRATOR_STATE_WRITE(shadow_path, diffuse_glossy_ratio) = diffuse_glossy_ratio;
+ }
+
+ INTEGRATOR_STATE_WRITE(shadow_path, flag) = shadow_flag;
+ INTEGRATOR_STATE_WRITE(shadow_path, bounce) = bounce;
+ INTEGRATOR_STATE_WRITE(shadow_path, transparent_bounce) = transparent_bounce;
+ INTEGRATOR_STATE_WRITE(shadow_path, throughput) = throughput_phase;
+
+ if (kernel_data.kernel_features & KERNEL_FEATURE_SHADOW_PASS) {
+ INTEGRATOR_STATE_WRITE(shadow_path, unshadowed_throughput) = throughput;
+ }
+
+ integrator_state_copy_volume_stack_to_shadow(INTEGRATOR_STATE_PASS);
+
+ /* Branch off shadow kernel. */
+ INTEGRATOR_SHADOW_PATH_INIT(DEVICE_KERNEL_INTEGRATOR_INTERSECT_SHADOW);
+}
+# endif
+
+/* Path tracing: scatter in new direction using phase function */
+ccl_device_forceinline bool integrate_volume_phase_scatter(INTEGRATOR_STATE_ARGS,
+ ShaderData *sd,
+ const RNGState *rng_state,
+ const ShaderVolumePhases *phases)
+{
+ PROFILING_INIT(kg, PROFILING_SHADE_VOLUME_INDIRECT_LIGHT);
+
+ float phase_u, phase_v;
+ path_state_rng_2D(kg, rng_state, PRNG_BSDF_U, &phase_u, &phase_v);
+
+ /* Phase closure, sample direction. */
+ float phase_pdf;
+ BsdfEval phase_eval ccl_optional_struct_init;
+ float3 phase_omega_in ccl_optional_struct_init;
+ differential3 phase_domega_in ccl_optional_struct_init;
+
+ const int label = shader_volume_phase_sample(kg,
+ sd,
+ phases,
+ phase_u,
+ phase_v,
+ &phase_eval,
+ &phase_omega_in,
+ &phase_domega_in,
+ &phase_pdf);
+
+ if (phase_pdf == 0.0f || bsdf_eval_is_zero(&phase_eval)) {
+ return false;
+ }
+
+ /* Setup ray. */
+ INTEGRATOR_STATE_WRITE(ray, P) = sd->P;
+ INTEGRATOR_STATE_WRITE(ray, D) = normalize(phase_omega_in);
+ INTEGRATOR_STATE_WRITE(ray, t) = FLT_MAX;
+
+# ifdef __RAY_DIFFERENTIALS__
+ INTEGRATOR_STATE_WRITE(ray, dP) = differential_make_compact(sd->dP);
+ INTEGRATOR_STATE_WRITE(ray, dD) = differential_make_compact(phase_domega_in);
+# endif
+
+ /* Update throughput. */
+ const float3 throughput = INTEGRATOR_STATE(path, throughput);
+ const float3 throughput_phase = throughput * bsdf_eval_sum(&phase_eval) / phase_pdf;
+ INTEGRATOR_STATE_WRITE(path, throughput) = throughput_phase;
+
+ if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
+ INTEGRATOR_STATE_WRITE(path, diffuse_glossy_ratio) = one_float3();
+ }
+
+ /* Update path state */
+ INTEGRATOR_STATE_WRITE(path, mis_ray_pdf) = phase_pdf;
+ INTEGRATOR_STATE_WRITE(path, mis_ray_t) = 0.0f;
+ INTEGRATOR_STATE_WRITE(path, min_ray_pdf) = fminf(phase_pdf,
+ INTEGRATOR_STATE(path, min_ray_pdf));
+
+ path_state_next(INTEGRATOR_STATE_PASS, label);
+ return true;
+}
+
+/* get the volume attenuation and emission over line segment defined by
+ * ray, with the assumption that there are no surfaces blocking light
+ * between the endpoints. distance sampling is used to decide if we will
+ * scatter or not. */
+ccl_device VolumeIntegrateEvent volume_integrate(INTEGRATOR_STATE_ARGS,
+ Ray *ccl_restrict ray,
+ ccl_global float *ccl_restrict render_buffer)
+{
+ ShaderData sd;
+ shader_setup_from_volume(kg, &sd, ray);
+
+ /* Load random number state. */
+ RNGState rng_state;
+ path_state_rng_load(INTEGRATOR_STATE_PASS, &rng_state);
+
+ /* Sample light ahead of volume stepping, for equiangular sampling. */
+ /* TODO: distant lights are ignored now, but could instead use even distribution. */
+ LightSample ls ccl_optional_struct_init;
+ const bool need_light_sample = !(INTEGRATOR_STATE(path, flag) & PATH_RAY_TERMINATE);
+ const bool have_equiangular_sample = need_light_sample &&
+ integrate_volume_sample_light(
+ INTEGRATOR_STATE_PASS, &sd, &rng_state, &ls) &&
+ (ls.t != FLT_MAX);
+
+ VolumeSampleMethod direct_sample_method = (have_equiangular_sample) ?
+ volume_stack_sample_method(INTEGRATOR_STATE_PASS) :
+ VOLUME_SAMPLE_DISTANCE;
+
+ /* Step through volume. */
+ const float step_size = volume_stack_step_size(INTEGRATOR_STATE_PASS, [=](const int i) {
+ return integrator_state_read_volume_stack(INTEGRATOR_STATE_PASS, i);
+ });
+
+ /* TODO: expensive to zero closures? */
+ VolumeIntegrateResult result = {};
+ volume_integrate_heterogeneous(INTEGRATOR_STATE_PASS,
+ ray,
+ &sd,
+ &rng_state,
+ render_buffer,
+ step_size,
+ direct_sample_method,
+ ls.P,
+ result);
+
+ /* Perform path termination. The intersect_closest will have already marked this path
+ * to be terminated. That will shading evaluating to leave out any scattering closures,
+ * but emission and absorption are still handled for multiple importance sampling. */
+ const uint32_t path_flag = INTEGRATOR_STATE(path, flag);
+ const float probability = (path_flag & PATH_RAY_TERMINATE_IN_NEXT_VOLUME) ?
+ 0.0f :
+ path_state_continuation_probability(INTEGRATOR_STATE_PASS,
+ path_flag);
+ if (probability == 0.0f) {
+ return VOLUME_PATH_MISSED;
+ }
+
+ /* Direct light. */
+ if (result.direct_scatter) {
+ const float3 direct_P = ray->P + result.direct_t * ray->D;
+ result.direct_throughput /= probability;
+ integrate_volume_direct_light(INTEGRATOR_STATE_PASS,
+ &sd,
+ &rng_state,
+ direct_P,
+ &result.direct_phases,
+ result.direct_throughput,
+ &ls);
+ }
+
+ /* Indirect light.
+ *
+ * Only divide throughput by probability if we scatter. For the attenuation
+ * case the next surface will already do this division. */
+ if (result.indirect_scatter) {
+ result.indirect_throughput /= probability;
+ }
+ INTEGRATOR_STATE_WRITE(path, throughput) = result.indirect_throughput;
+
+ if (result.indirect_scatter) {
+ sd.P = ray->P + result.indirect_t * ray->D;
+
+ if (integrate_volume_phase_scatter(
+ INTEGRATOR_STATE_PASS, &sd, &rng_state, &result.indirect_phases)) {
+ return VOLUME_PATH_SCATTERED;
+ }
+ else {
+ return VOLUME_PATH_MISSED;
+ }
+ }
+ else {
+ return VOLUME_PATH_ATTENUATED;
+ }
+}
+
+#endif
+
+ccl_device void integrator_shade_volume(INTEGRATOR_STATE_ARGS,
+ ccl_global float *ccl_restrict render_buffer)
+{
+ PROFILING_INIT(kg, PROFILING_SHADE_VOLUME_SETUP);
+
+#ifdef __VOLUME__
+ /* Setup shader data. */
+ Ray ray ccl_optional_struct_init;
+ integrator_state_read_ray(INTEGRATOR_STATE_PASS, &ray);
+
+ Intersection isect ccl_optional_struct_init;
+ integrator_state_read_isect(INTEGRATOR_STATE_PASS, &isect);
+
+ /* Set ray length to current segment. */
+ ray.t = (isect.prim != PRIM_NONE) ? isect.t : FLT_MAX;
+
+ /* Clean volume stack for background rays. */
+ if (isect.prim == PRIM_NONE) {
+ volume_stack_clean(INTEGRATOR_STATE_PASS);
+ }
+
+ VolumeIntegrateEvent event = volume_integrate(INTEGRATOR_STATE_PASS, &ray, render_buffer);
+
+ if (event == VOLUME_PATH_SCATTERED) {
+ /* Queue intersect_closest kernel. */
+ INTEGRATOR_PATH_NEXT(DEVICE_KERNEL_INTEGRATOR_SHADE_VOLUME,
+ DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST);
+ return;
+ }
+ else if (event == VOLUME_PATH_MISSED) {
+ /* End path. */
+ INTEGRATOR_PATH_TERMINATE(DEVICE_KERNEL_INTEGRATOR_SHADE_VOLUME);
+ return;
+ }
+ else {
+ /* Continue to background, light or surface. */
+ if (isect.prim == PRIM_NONE) {
+ INTEGRATOR_PATH_NEXT(DEVICE_KERNEL_INTEGRATOR_SHADE_VOLUME,
+ DEVICE_KERNEL_INTEGRATOR_SHADE_BACKGROUND);
+ return;
+ }
+ else if (isect.type & PRIMITIVE_LAMP) {
+ INTEGRATOR_PATH_NEXT(DEVICE_KERNEL_INTEGRATOR_SHADE_VOLUME,
+ DEVICE_KERNEL_INTEGRATOR_SHADE_LIGHT);
+ return;
+ }
+ else {
+ /* Hit a surface, continue with surface kernel unless terminated. */
+ const int shader = intersection_get_shader(kg, &isect);
+ const int flags = kernel_tex_fetch(__shaders, shader).flags;
+
+ integrator_intersect_shader_next_kernel<DEVICE_KERNEL_INTEGRATOR_SHADE_VOLUME>(
+ INTEGRATOR_STATE_PASS, &isect, shader, flags);
+ return;
+ }
+ }
+#endif /* __VOLUME__ */
+}
+
+CCL_NAMESPACE_END