From dba675fb65a7f8c1fa34ba48d9ce2f10ec8e0189 Mon Sep 17 00:00:00 2001 From: Campbell Barton Date: Thu, 1 Jul 2021 10:08:47 +1000 Subject: Cleanup: split normal calculation into it's own file Normals now includes many functions including normal splitting & custom normal manipulation split this into it's own file to centralize related functions. --- source/blender/blenkernel/BKE_mesh.h | 4 +- source/blender/blenkernel/CMakeLists.txt | 1 + source/blender/blenkernel/intern/mesh_evaluate.c | 2110 +-------------------- source/blender/blenkernel/intern/mesh_normals.c | 2144 ++++++++++++++++++++++ source/blender/bmesh/intern/bmesh_mesh_normals.c | 2 + 5 files changed, 2152 insertions(+), 2109 deletions(-) create mode 100644 source/blender/blenkernel/intern/mesh_normals.c diff --git a/source/blender/blenkernel/BKE_mesh.h b/source/blender/blenkernel/BKE_mesh.h index 6d74888b810..8d76a025e87 100644 --- a/source/blender/blenkernel/BKE_mesh.h +++ b/source/blender/blenkernel/BKE_mesh.h @@ -299,7 +299,7 @@ void BKE_mesh_recalc_looptri_with_normals(const struct MLoop *mloop, struct MLoopTri *mlooptri, const float (*poly_normals)[3]); -/* *** mesh_evaluate.c *** */ +/* *** mesh_normals.c *** */ void BKE_mesh_calc_normals_mapping_simple(struct Mesh *me); void BKE_mesh_calc_normals_mapping(struct MVert *mverts, @@ -494,6 +494,8 @@ void BKE_mesh_calc_normals_split_ex(struct Mesh *mesh, void BKE_mesh_set_custom_normals(struct Mesh *mesh, float (*r_custom_loopnors)[3]); void BKE_mesh_set_custom_normals_from_vertices(struct Mesh *mesh, float (*r_custom_vertnors)[3]); +/* *** mesh_evaluate.c *** */ + void BKE_mesh_calc_poly_normal(const struct MPoly *mpoly, const struct MLoop *loopstart, const struct MVert *mvarray, diff --git a/source/blender/blenkernel/CMakeLists.txt b/source/blender/blenkernel/CMakeLists.txt index 20663f0a790..b66cb9e224d 100644 --- a/source/blender/blenkernel/CMakeLists.txt +++ b/source/blender/blenkernel/CMakeLists.txt @@ -190,6 +190,7 @@ set(SRC intern/mesh_mapping.c intern/mesh_merge.c intern/mesh_mirror.c + intern/mesh_normals.c intern/mesh_remap.c intern/mesh_remesh_voxel.c intern/mesh_runtime.c diff --git a/source/blender/blenkernel/intern/mesh_evaluate.c b/source/blender/blenkernel/intern/mesh_evaluate.c index 961c10ea5d3..6eac96ba85b 100644 --- a/source/blender/blenkernel/intern/mesh_evaluate.c +++ b/source/blender/blenkernel/intern/mesh_evaluate.c @@ -25,8 +25,6 @@ #include -#include "CLG_log.h" - #include "MEM_guardedalloc.h" #include "DNA_mesh_types.h" @@ -36,2118 +34,14 @@ #include "BLI_alloca.h" #include "BLI_bitmap.h" #include "BLI_edgehash.h" -#include "BLI_linklist.h" -#include "BLI_linklist_stack.h" + #include "BLI_math.h" -#include "BLI_memarena.h" -#include "BLI_stack.h" -#include "BLI_task.h" #include "BLI_utildefines.h" #include "BKE_customdata.h" -#include "BKE_editmesh_cache.h" -#include "BKE_global.h" + #include "BKE_mesh.h" #include "BKE_multires.h" -#include "BKE_report.h" - -#include "BLI_strict_flags.h" - -#include "atomic_ops.h" -#include "mikktspace.h" - -// #define DEBUG_TIME - -#include "PIL_time.h" -#ifdef DEBUG_TIME -# include "PIL_time_utildefines.h" -#endif - -static CLG_LogRef LOG = {"bke.mesh_evaluate"}; - -/* -------------------------------------------------------------------- */ -/** \name Mesh Normal Calculation - * \{ */ - -/** - * Call when there are no polygons. - */ -static void mesh_calc_normals_vert_fallback(MVert *mverts, int numVerts) -{ - for (int i = 0; i < numVerts; i++) { - MVert *mv = &mverts[i]; - float no[3]; - - normalize_v3_v3(no, mv->co); - normal_float_to_short_v3(mv->no, no); - } -} - -/* TODO(Sybren): we can probably rename this to BKE_mesh_calc_normals_mapping(), - * and remove the function of the same name below, as that one doesn't seem to be - * called anywhere. */ -void BKE_mesh_calc_normals_mapping_simple(struct Mesh *mesh) -{ - const bool only_face_normals = CustomData_is_referenced_layer(&mesh->vdata, CD_MVERT); - - BKE_mesh_calc_normals_mapping_ex(mesh->mvert, - mesh->totvert, - mesh->mloop, - mesh->mpoly, - mesh->totloop, - mesh->totpoly, - NULL, - mesh->mface, - mesh->totface, - NULL, - NULL, - only_face_normals); -} - -/* Calculate vertex and face normals, face normals are returned in *r_faceNors if non-NULL - * and vertex normals are stored in actual mverts. - */ -void BKE_mesh_calc_normals_mapping(MVert *mverts, - int numVerts, - const MLoop *mloop, - const MPoly *mpolys, - int numLoops, - int numPolys, - float (*r_polyNors)[3], - const MFace *mfaces, - int numFaces, - const int *origIndexFace, - float (*r_faceNors)[3]) -{ - BKE_mesh_calc_normals_mapping_ex(mverts, - numVerts, - mloop, - mpolys, - numLoops, - numPolys, - r_polyNors, - mfaces, - numFaces, - origIndexFace, - r_faceNors, - false); -} -/* extended version of 'BKE_mesh_calc_normals_poly' with option not to calc vertex normals */ -void BKE_mesh_calc_normals_mapping_ex(MVert *mverts, - int numVerts, - const MLoop *mloop, - const MPoly *mpolys, - int numLoops, - int numPolys, - float (*r_polyNors)[3], - const MFace *mfaces, - int numFaces, - const int *origIndexFace, - float (*r_faceNors)[3], - const bool only_face_normals) -{ - float(*pnors)[3] = r_polyNors, (*fnors)[3] = r_faceNors; - - if (numPolys == 0) { - if (only_face_normals == false) { - mesh_calc_normals_vert_fallback(mverts, numVerts); - } - return; - } - - /* if we are not calculating verts and no verts were passes then we have nothing to do */ - if ((only_face_normals == true) && (r_polyNors == NULL) && (r_faceNors == NULL)) { - CLOG_WARN(&LOG, "called with nothing to do"); - return; - } - - if (!pnors) { - pnors = MEM_calloc_arrayN((size_t)numPolys, sizeof(float[3]), __func__); - } - /* NO NEED TO ALLOC YET */ - /* if (!fnors) fnors = MEM_calloc_arrayN(numFaces, sizeof(float[3]), "face nors mesh.c"); */ - - if (only_face_normals == false) { - /* vertex normals are optional, they require some extra calculations, - * so make them optional */ - BKE_mesh_calc_normals_poly( - mverts, NULL, numVerts, mloop, mpolys, numLoops, numPolys, pnors, false); - } - else { - /* only calc poly normals */ - const MPoly *mp = mpolys; - for (int i = 0; i < numPolys; i++, mp++) { - BKE_mesh_calc_poly_normal(mp, mloop + mp->loopstart, mverts, pnors[i]); - } - } - - if (origIndexFace && - /* fnors == r_faceNors */ /* NO NEED TO ALLOC YET */ - fnors != NULL && - numFaces) { - const MFace *mf = mfaces; - for (int i = 0; i < numFaces; i++, mf++, origIndexFace++) { - if (*origIndexFace < numPolys) { - copy_v3_v3(fnors[i], pnors[*origIndexFace]); - } - else { - /* eek, we're not corresponding to polys */ - CLOG_ERROR(&LOG, "tessellation face indices are incorrect. normals may look bad."); - } - } - } - - if (pnors != r_polyNors) { - MEM_freeN(pnors); - } - /* if (fnors != r_faceNors) MEM_freeN(fnors); */ /* NO NEED TO ALLOC YET */ - - fnors = pnors = NULL; -} - -typedef struct MeshCalcNormalsData { - const MPoly *mpolys; - const MLoop *mloop; - MVert *mverts; - float (*pnors)[3]; - float (*lnors_weighted)[3]; - float (*vnors)[3]; -} MeshCalcNormalsData; - -static void mesh_calc_normals_poly_cb(void *__restrict userdata, - const int pidx, - const TaskParallelTLS *__restrict UNUSED(tls)) -{ - MeshCalcNormalsData *data = userdata; - const MPoly *mp = &data->mpolys[pidx]; - - BKE_mesh_calc_poly_normal(mp, data->mloop + mp->loopstart, data->mverts, data->pnors[pidx]); -} - -static void mesh_calc_normals_poly_prepare_cb(void *__restrict userdata, - const int pidx, - const TaskParallelTLS *__restrict UNUSED(tls)) -{ - MeshCalcNormalsData *data = userdata; - const MPoly *mp = &data->mpolys[pidx]; - const MLoop *ml = &data->mloop[mp->loopstart]; - const MVert *mverts = data->mverts; - - float pnor_temp[3]; - float *pnor = data->pnors ? data->pnors[pidx] : pnor_temp; - float(*lnors_weighted)[3] = data->lnors_weighted; - - const int nverts = mp->totloop; - float(*edgevecbuf)[3] = BLI_array_alloca(edgevecbuf, (size_t)nverts); - - /* Polygon Normal and edge-vector */ - /* inline version of #BKE_mesh_calc_poly_normal, also does edge-vectors */ - { - int i_prev = nverts - 1; - const float *v_prev = mverts[ml[i_prev].v].co; - const float *v_curr; - - zero_v3(pnor); - /* Newell's Method */ - for (int i = 0; i < nverts; i++) { - v_curr = mverts[ml[i].v].co; - add_newell_cross_v3_v3v3(pnor, v_prev, v_curr); - - /* Unrelated to normalize, calculate edge-vector */ - sub_v3_v3v3(edgevecbuf[i_prev], v_prev, v_curr); - normalize_v3(edgevecbuf[i_prev]); - i_prev = i; - - v_prev = v_curr; - } - if (UNLIKELY(normalize_v3(pnor) == 0.0f)) { - pnor[2] = 1.0f; /* other axes set to 0.0 */ - } - } - - /* accumulate angle weighted face normal */ - /* inline version of #accumulate_vertex_normals_poly_v3, - * split between this threaded callback and #mesh_calc_normals_poly_accum_cb. */ - { - const float *prev_edge = edgevecbuf[nverts - 1]; - - for (int i = 0; i < nverts; i++) { - const int lidx = mp->loopstart + i; - const float *cur_edge = edgevecbuf[i]; - - /* calculate angle between the two poly edges incident on - * this vertex */ - const float fac = saacos(-dot_v3v3(cur_edge, prev_edge)); - - /* Store for later accumulation */ - mul_v3_v3fl(lnors_weighted[lidx], pnor, fac); - - prev_edge = cur_edge; - } - } -} - -static void mesh_calc_normals_poly_finalize_cb(void *__restrict userdata, - const int vidx, - const TaskParallelTLS *__restrict UNUSED(tls)) -{ - MeshCalcNormalsData *data = userdata; - - MVert *mv = &data->mverts[vidx]; - float *no = data->vnors[vidx]; - - if (UNLIKELY(normalize_v3(no) == 0.0f)) { - /* following Mesh convention; we use vertex coordinate itself for normal in this case */ - normalize_v3_v3(no, mv->co); - } - - normal_float_to_short_v3(mv->no, no); -} - -void BKE_mesh_calc_normals_poly(MVert *mverts, - float (*r_vertnors)[3], - int numVerts, - const MLoop *mloop, - const MPoly *mpolys, - int numLoops, - int numPolys, - float (*r_polynors)[3], - const bool only_face_normals) -{ - float(*pnors)[3] = r_polynors; - - TaskParallelSettings settings; - BLI_parallel_range_settings_defaults(&settings); - settings.min_iter_per_thread = 1024; - - if (only_face_normals) { - BLI_assert((pnors != NULL) || (numPolys == 0)); - BLI_assert(r_vertnors == NULL); - - MeshCalcNormalsData data = { - .mpolys = mpolys, - .mloop = mloop, - .mverts = mverts, - .pnors = pnors, - }; - - BLI_task_parallel_range(0, numPolys, &data, mesh_calc_normals_poly_cb, &settings); - return; - } - - float(*vnors)[3] = r_vertnors; - float(*lnors_weighted)[3] = MEM_malloc_arrayN( - (size_t)numLoops, sizeof(*lnors_weighted), __func__); - bool free_vnors = false; - - /* first go through and calculate normals for all the polys */ - if (vnors == NULL) { - vnors = MEM_calloc_arrayN((size_t)numVerts, sizeof(*vnors), __func__); - free_vnors = true; - } - else { - memset(vnors, 0, sizeof(*vnors) * (size_t)numVerts); - } - - MeshCalcNormalsData data = { - .mpolys = mpolys, - .mloop = mloop, - .mverts = mverts, - .pnors = pnors, - .lnors_weighted = lnors_weighted, - .vnors = vnors, - }; - - /* Compute poly normals, and prepare weighted loop normals. */ - BLI_task_parallel_range(0, numPolys, &data, mesh_calc_normals_poly_prepare_cb, &settings); - - /* Actually accumulate weighted loop normals into vertex ones. */ - /* Unfortunately, not possible to thread that - * (not in a reasonable, totally lock- and barrier-free fashion), - * since several loops will point to the same vertex... */ - for (int lidx = 0; lidx < numLoops; lidx++) { - add_v3_v3(vnors[mloop[lidx].v], data.lnors_weighted[lidx]); - } - - /* Normalize and validate computed vertex normals. */ - BLI_task_parallel_range(0, numVerts, &data, mesh_calc_normals_poly_finalize_cb, &settings); - - if (free_vnors) { - MEM_freeN(vnors); - } - MEM_freeN(lnors_weighted); -} - -void BKE_mesh_ensure_normals(Mesh *mesh) -{ - if (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) { - BKE_mesh_calc_normals(mesh); - } - BLI_assert((mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) == 0); -} - -/** - * Called after calculating all modifiers. - */ -void BKE_mesh_ensure_normals_for_display(Mesh *mesh) -{ - switch ((eMeshWrapperType)mesh->runtime.wrapper_type) { - case ME_WRAPPER_TYPE_MDATA: - /* Run code below. */ - break; - case ME_WRAPPER_TYPE_BMESH: { - struct BMEditMesh *em = mesh->edit_mesh; - EditMeshData *emd = mesh->runtime.edit_data; - if (emd->vertexCos) { - BKE_editmesh_cache_ensure_vert_normals(em, emd); - BKE_editmesh_cache_ensure_poly_normals(em, emd); - } - return; - } - } - - float(*poly_nors)[3] = CustomData_get_layer(&mesh->pdata, CD_NORMAL); - const bool do_vert_normals = (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) != 0; - const bool do_poly_normals = (mesh->runtime.cd_dirty_poly & CD_MASK_NORMAL || poly_nors == NULL); - - if (do_vert_normals || do_poly_normals) { - const bool do_add_poly_nors_cddata = (poly_nors == NULL); - if (do_add_poly_nors_cddata) { - poly_nors = MEM_malloc_arrayN((size_t)mesh->totpoly, sizeof(*poly_nors), __func__); - } - - /* calculate poly/vert normals */ - BKE_mesh_calc_normals_poly(mesh->mvert, - NULL, - mesh->totvert, - mesh->mloop, - mesh->mpoly, - mesh->totloop, - mesh->totpoly, - poly_nors, - !do_vert_normals); - - if (do_add_poly_nors_cddata) { - CustomData_add_layer(&mesh->pdata, CD_NORMAL, CD_ASSIGN, poly_nors, mesh->totpoly); - } - - mesh->runtime.cd_dirty_vert &= ~CD_MASK_NORMAL; - mesh->runtime.cd_dirty_poly &= ~CD_MASK_NORMAL; - } -} - -/* Note that this does not update the CD_NORMAL layer, - * but does update the normals in the CD_MVERT layer. */ -void BKE_mesh_calc_normals(Mesh *mesh) -{ -#ifdef DEBUG_TIME - TIMEIT_START_AVERAGED(BKE_mesh_calc_normals); -#endif - BKE_mesh_calc_normals_poly(mesh->mvert, - NULL, - mesh->totvert, - mesh->mloop, - mesh->mpoly, - mesh->totloop, - mesh->totpoly, - NULL, - false); -#ifdef DEBUG_TIME - TIMEIT_END_AVERAGED(BKE_mesh_calc_normals); -#endif - mesh->runtime.cd_dirty_vert &= ~CD_MASK_NORMAL; -} - -void BKE_mesh_calc_normals_looptri(MVert *mverts, - int numVerts, - const MLoop *mloop, - const MLoopTri *looptri, - int looptri_num, - float (*r_tri_nors)[3]) -{ - float(*tnorms)[3] = MEM_calloc_arrayN((size_t)numVerts, sizeof(*tnorms), "tnorms"); - float(*fnors)[3] = (r_tri_nors) ? - r_tri_nors : - MEM_calloc_arrayN((size_t)looptri_num, sizeof(*fnors), "meshnormals"); - - if (!tnorms || !fnors) { - goto cleanup; - } - - for (int i = 0; i < looptri_num; i++) { - const MLoopTri *lt = &looptri[i]; - float *f_no = fnors[i]; - const uint vtri[3] = { - mloop[lt->tri[0]].v, - mloop[lt->tri[1]].v, - mloop[lt->tri[2]].v, - }; - - normal_tri_v3(f_no, mverts[vtri[0]].co, mverts[vtri[1]].co, mverts[vtri[2]].co); - - accumulate_vertex_normals_tri_v3(tnorms[vtri[0]], - tnorms[vtri[1]], - tnorms[vtri[2]], - f_no, - mverts[vtri[0]].co, - mverts[vtri[1]].co, - mverts[vtri[2]].co); - } - - /* following Mesh convention; we use vertex coordinate itself for normal in this case */ - for (int i = 0; i < numVerts; i++) { - MVert *mv = &mverts[i]; - float *no = tnorms[i]; - - if (UNLIKELY(normalize_v3(no) == 0.0f)) { - normalize_v3_v3(no, mv->co); - } - - normal_float_to_short_v3(mv->no, no); - } - -cleanup: - MEM_freeN(tnorms); - - if (fnors != r_tri_nors) { - MEM_freeN(fnors); - } -} - -void BKE_lnor_spacearr_init(MLoopNorSpaceArray *lnors_spacearr, - const int numLoops, - const char data_type) -{ - if (!(lnors_spacearr->lspacearr && lnors_spacearr->loops_pool)) { - MemArena *mem; - - if (!lnors_spacearr->mem) { - lnors_spacearr->mem = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__); - } - mem = lnors_spacearr->mem; - lnors_spacearr->lspacearr = BLI_memarena_calloc(mem, - sizeof(MLoopNorSpace *) * (size_t)numLoops); - lnors_spacearr->loops_pool = BLI_memarena_alloc(mem, sizeof(LinkNode) * (size_t)numLoops); - - lnors_spacearr->num_spaces = 0; - } - BLI_assert(ELEM(data_type, MLNOR_SPACEARR_BMLOOP_PTR, MLNOR_SPACEARR_LOOP_INDEX)); - lnors_spacearr->data_type = data_type; -} - -void BKE_lnor_spacearr_clear(MLoopNorSpaceArray *lnors_spacearr) -{ - lnors_spacearr->num_spaces = 0; - lnors_spacearr->lspacearr = NULL; - lnors_spacearr->loops_pool = NULL; - if (lnors_spacearr->mem != NULL) { - BLI_memarena_clear(lnors_spacearr->mem); - } -} - -void BKE_lnor_spacearr_free(MLoopNorSpaceArray *lnors_spacearr) -{ - lnors_spacearr->num_spaces = 0; - lnors_spacearr->lspacearr = NULL; - lnors_spacearr->loops_pool = NULL; - BLI_memarena_free(lnors_spacearr->mem); - lnors_spacearr->mem = NULL; -} - -MLoopNorSpace *BKE_lnor_space_create(MLoopNorSpaceArray *lnors_spacearr) -{ - lnors_spacearr->num_spaces++; - return BLI_memarena_calloc(lnors_spacearr->mem, sizeof(MLoopNorSpace)); -} - -/* This threshold is a bit touchy (usual float precision issue), this value seems OK. */ -#define LNOR_SPACE_TRIGO_THRESHOLD (1.0f - 1e-4f) - -/* Should only be called once. - * Beware, this modifies ref_vec and other_vec in place! - * In case no valid space can be generated, ref_alpha and ref_beta are set to zero - * (which means 'use auto lnors'). - */ -void BKE_lnor_space_define(MLoopNorSpace *lnor_space, - const float lnor[3], - float vec_ref[3], - float vec_other[3], - BLI_Stack *edge_vectors) -{ - const float pi2 = (float)M_PI * 2.0f; - float tvec[3], dtp; - const float dtp_ref = dot_v3v3(vec_ref, lnor); - const float dtp_other = dot_v3v3(vec_other, lnor); - - if (UNLIKELY(fabsf(dtp_ref) >= LNOR_SPACE_TRIGO_THRESHOLD || - fabsf(dtp_other) >= LNOR_SPACE_TRIGO_THRESHOLD)) { - /* If vec_ref or vec_other are too much aligned with lnor, we can't build lnor space, - * tag it as invalid and abort. */ - lnor_space->ref_alpha = lnor_space->ref_beta = 0.0f; - - if (edge_vectors) { - BLI_stack_clear(edge_vectors); - } - return; - } - - copy_v3_v3(lnor_space->vec_lnor, lnor); - - /* Compute ref alpha, average angle of all available edge vectors to lnor. */ - if (edge_vectors) { - float alpha = 0.0f; - int nbr = 0; - while (!BLI_stack_is_empty(edge_vectors)) { - const float *vec = BLI_stack_peek(edge_vectors); - alpha += saacosf(dot_v3v3(vec, lnor)); - BLI_stack_discard(edge_vectors); - nbr++; - } - /* Note: In theory, this could be 'nbr > 2', - * but there is one case where we only have two edges for two loops: - * a smooth vertex with only two edges and two faces (our Monkey's nose has that, e.g.). - */ - BLI_assert(nbr >= 2); /* This piece of code shall only be called for more than one loop... */ - lnor_space->ref_alpha = alpha / (float)nbr; - } - else { - lnor_space->ref_alpha = (saacosf(dot_v3v3(vec_ref, lnor)) + - saacosf(dot_v3v3(vec_other, lnor))) / - 2.0f; - } - - /* Project vec_ref on lnor's ortho plane. */ - mul_v3_v3fl(tvec, lnor, dtp_ref); - sub_v3_v3(vec_ref, tvec); - normalize_v3_v3(lnor_space->vec_ref, vec_ref); - - cross_v3_v3v3(tvec, lnor, lnor_space->vec_ref); - normalize_v3_v3(lnor_space->vec_ortho, tvec); - - /* Project vec_other on lnor's ortho plane. */ - mul_v3_v3fl(tvec, lnor, dtp_other); - sub_v3_v3(vec_other, tvec); - normalize_v3(vec_other); - - /* Beta is angle between ref_vec and other_vec, around lnor. */ - dtp = dot_v3v3(lnor_space->vec_ref, vec_other); - if (LIKELY(dtp < LNOR_SPACE_TRIGO_THRESHOLD)) { - const float beta = saacos(dtp); - lnor_space->ref_beta = (dot_v3v3(lnor_space->vec_ortho, vec_other) < 0.0f) ? pi2 - beta : beta; - } - else { - lnor_space->ref_beta = pi2; - } -} - -/** - * Add a new given loop to given lnor_space. - * Depending on \a lnor_space->data_type, we expect \a bm_loop to be a pointer to BMLoop struct - * (in case of BMLOOP_PTR), or NULL (in case of LOOP_INDEX), loop index is then stored in pointer. - * If \a is_single is set, the BMLoop or loop index is directly stored in \a lnor_space->loops - * pointer (since there is only one loop in this fan), - * else it is added to the linked list of loops in the fan. - */ -void BKE_lnor_space_add_loop(MLoopNorSpaceArray *lnors_spacearr, - MLoopNorSpace *lnor_space, - const int ml_index, - void *bm_loop, - const bool is_single) -{ - BLI_assert((lnors_spacearr->data_type == MLNOR_SPACEARR_LOOP_INDEX && bm_loop == NULL) || - (lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR && bm_loop != NULL)); - - lnors_spacearr->lspacearr[ml_index] = lnor_space; - if (bm_loop == NULL) { - bm_loop = POINTER_FROM_INT(ml_index); - } - if (is_single) { - BLI_assert(lnor_space->loops == NULL); - lnor_space->flags |= MLNOR_SPACE_IS_SINGLE; - lnor_space->loops = bm_loop; - } - else { - BLI_assert((lnor_space->flags & MLNOR_SPACE_IS_SINGLE) == 0); - BLI_linklist_prepend_nlink(&lnor_space->loops, bm_loop, &lnors_spacearr->loops_pool[ml_index]); - } -} - -MINLINE float unit_short_to_float(const short val) -{ - return (float)val / (float)SHRT_MAX; -} - -MINLINE short unit_float_to_short(const float val) -{ - /* Rounding... */ - return (short)floorf(val * (float)SHRT_MAX + 0.5f); -} - -void BKE_lnor_space_custom_data_to_normal(MLoopNorSpace *lnor_space, - const short clnor_data[2], - float r_custom_lnor[3]) -{ - /* NOP custom normal data or invalid lnor space, return. */ - if (clnor_data[0] == 0 || lnor_space->ref_alpha == 0.0f || lnor_space->ref_beta == 0.0f) { - copy_v3_v3(r_custom_lnor, lnor_space->vec_lnor); - return; - } - - { - /* TODO Check whether using sincosf() gives any noticeable benefit - * (could not even get it working under linux though)! */ - const float pi2 = (float)(M_PI * 2.0); - const float alphafac = unit_short_to_float(clnor_data[0]); - const float alpha = (alphafac > 0.0f ? lnor_space->ref_alpha : pi2 - lnor_space->ref_alpha) * - alphafac; - const float betafac = unit_short_to_float(clnor_data[1]); - - mul_v3_v3fl(r_custom_lnor, lnor_space->vec_lnor, cosf(alpha)); - - if (betafac == 0.0f) { - madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ref, sinf(alpha)); - } - else { - const float sinalpha = sinf(alpha); - const float beta = (betafac > 0.0f ? lnor_space->ref_beta : pi2 - lnor_space->ref_beta) * - betafac; - madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ref, sinalpha * cosf(beta)); - madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ortho, sinalpha * sinf(beta)); - } - } -} - -void BKE_lnor_space_custom_normal_to_data(MLoopNorSpace *lnor_space, - const float custom_lnor[3], - short r_clnor_data[2]) -{ - /* We use null vector as NOP custom normal (can be simpler than giving autocomputed lnor...). */ - if (is_zero_v3(custom_lnor) || compare_v3v3(lnor_space->vec_lnor, custom_lnor, 1e-4f)) { - r_clnor_data[0] = r_clnor_data[1] = 0; - return; - } - - { - const float pi2 = (float)(M_PI * 2.0); - const float cos_alpha = dot_v3v3(lnor_space->vec_lnor, custom_lnor); - float vec[3], cos_beta; - float alpha; - - alpha = saacosf(cos_alpha); - if (alpha > lnor_space->ref_alpha) { - /* Note we could stick to [0, pi] range here, - * but makes decoding more complex, not worth it. */ - r_clnor_data[0] = unit_float_to_short(-(pi2 - alpha) / (pi2 - lnor_space->ref_alpha)); - } - else { - r_clnor_data[0] = unit_float_to_short(alpha / lnor_space->ref_alpha); - } - - /* Project custom lnor on (vec_ref, vec_ortho) plane. */ - mul_v3_v3fl(vec, lnor_space->vec_lnor, -cos_alpha); - add_v3_v3(vec, custom_lnor); - normalize_v3(vec); - - cos_beta = dot_v3v3(lnor_space->vec_ref, vec); - - if (cos_beta < LNOR_SPACE_TRIGO_THRESHOLD) { - float beta = saacosf(cos_beta); - if (dot_v3v3(lnor_space->vec_ortho, vec) < 0.0f) { - beta = pi2 - beta; - } - - if (beta > lnor_space->ref_beta) { - r_clnor_data[1] = unit_float_to_short(-(pi2 - beta) / (pi2 - lnor_space->ref_beta)); - } - else { - r_clnor_data[1] = unit_float_to_short(beta / lnor_space->ref_beta); - } - } - else { - r_clnor_data[1] = 0; - } - } -} - -#define LOOP_SPLIT_TASK_BLOCK_SIZE 1024 - -typedef struct LoopSplitTaskData { - /* Specific to each instance (each task). */ - - /** We have to create those outside of tasks, since afaik memarena is not threadsafe. */ - MLoopNorSpace *lnor_space; - float (*lnor)[3]; - const MLoop *ml_curr; - const MLoop *ml_prev; - int ml_curr_index; - int ml_prev_index; - /** Also used a flag to switch between single or fan process! */ - const int *e2l_prev; - int mp_index; - - /** This one is special, it's owned and managed by worker tasks, - * avoid to have to create it for each fan! */ - BLI_Stack *edge_vectors; - - char pad_c; -} LoopSplitTaskData; - -typedef struct LoopSplitTaskDataCommon { - /* Read/write. - * Note we do not need to protect it, though, since two different tasks will *always* affect - * different elements in the arrays. */ - MLoopNorSpaceArray *lnors_spacearr; - float (*loopnors)[3]; - short (*clnors_data)[2]; - - /* Read-only. */ - const MVert *mverts; - const MEdge *medges; - const MLoop *mloops; - const MPoly *mpolys; - int (*edge_to_loops)[2]; - int *loop_to_poly; - const float (*polynors)[3]; - - int numEdges; - int numLoops; - int numPolys; -} LoopSplitTaskDataCommon; - -#define INDEX_UNSET INT_MIN -#define INDEX_INVALID -1 -/* See comment about edge_to_loops below. */ -#define IS_EDGE_SHARP(_e2l) (ELEM((_e2l)[1], INDEX_UNSET, INDEX_INVALID)) - -static void mesh_edges_sharp_tag(LoopSplitTaskDataCommon *data, - const bool check_angle, - const float split_angle, - const bool do_sharp_edges_tag) -{ - const MVert *mverts = data->mverts; - const MEdge *medges = data->medges; - const MLoop *mloops = data->mloops; - - const MPoly *mpolys = data->mpolys; - - const int numEdges = data->numEdges; - const int numPolys = data->numPolys; - - float(*loopnors)[3] = data->loopnors; /* Note: loopnors may be NULL here. */ - const float(*polynors)[3] = data->polynors; - - int(*edge_to_loops)[2] = data->edge_to_loops; - int *loop_to_poly = data->loop_to_poly; - - BLI_bitmap *sharp_edges = do_sharp_edges_tag ? BLI_BITMAP_NEW(numEdges, __func__) : NULL; - - const MPoly *mp; - int mp_index; - - const float split_angle_cos = check_angle ? cosf(split_angle) : -1.0f; - - for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) { - const MLoop *ml_curr; - int *e2l; - int ml_curr_index = mp->loopstart; - const int ml_last_index = (ml_curr_index + mp->totloop) - 1; - - ml_curr = &mloops[ml_curr_index]; - - for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++) { - e2l = edge_to_loops[ml_curr->e]; - - loop_to_poly[ml_curr_index] = mp_index; - - /* Pre-populate all loop normals as if their verts were all-smooth, - * this way we don't have to compute those later! - */ - if (loopnors) { - normal_short_to_float_v3(loopnors[ml_curr_index], mverts[ml_curr->v].no); - } - - /* Check whether current edge might be smooth or sharp */ - if ((e2l[0] | e2l[1]) == 0) { - /* 'Empty' edge until now, set e2l[0] (and e2l[1] to INDEX_UNSET to tag it as unset). */ - e2l[0] = ml_curr_index; - /* We have to check this here too, else we might miss some flat faces!!! */ - e2l[1] = (mp->flag & ME_SMOOTH) ? INDEX_UNSET : INDEX_INVALID; - } - else if (e2l[1] == INDEX_UNSET) { - const bool is_angle_sharp = (check_angle && - dot_v3v3(polynors[loop_to_poly[e2l[0]]], polynors[mp_index]) < - split_angle_cos); - - /* Second loop using this edge, time to test its sharpness. - * An edge is sharp if it is tagged as such, or its face is not smooth, - * or both poly have opposed (flipped) normals, i.e. both loops on the same edge share the - * same vertex, or angle between both its polys' normals is above split_angle value. - */ - if (!(mp->flag & ME_SMOOTH) || (medges[ml_curr->e].flag & ME_SHARP) || - ml_curr->v == mloops[e2l[0]].v || is_angle_sharp) { - /* Note: we are sure that loop != 0 here ;) */ - e2l[1] = INDEX_INVALID; - - /* We want to avoid tagging edges as sharp when it is already defined as such by - * other causes than angle threshold... */ - if (do_sharp_edges_tag && is_angle_sharp) { - BLI_BITMAP_SET(sharp_edges, ml_curr->e, true); - } - } - else { - e2l[1] = ml_curr_index; - } - } - else if (!IS_EDGE_SHARP(e2l)) { - /* More than two loops using this edge, tag as sharp if not yet done. */ - e2l[1] = INDEX_INVALID; - - /* We want to avoid tagging edges as sharp when it is already defined as such by - * other causes than angle threshold... */ - if (do_sharp_edges_tag) { - BLI_BITMAP_SET(sharp_edges, ml_curr->e, false); - } - } - /* Else, edge is already 'disqualified' (i.e. sharp)! */ - } - } - - /* If requested, do actual tagging of edges as sharp in another loop. */ - if (do_sharp_edges_tag) { - MEdge *me; - int me_index; - for (me = (MEdge *)medges, me_index = 0; me_index < numEdges; me++, me_index++) { - if (BLI_BITMAP_TEST(sharp_edges, me_index)) { - me->flag |= ME_SHARP; - } - } - - MEM_freeN(sharp_edges); - } -} - -/** - * Define sharp edges as needed to mimic 'autosmooth' from angle threshold. - * - * Used when defining an empty custom loop normals data layer, - * to keep same shading as with autosmooth! - */ -void BKE_edges_sharp_from_angle_set(const struct MVert *mverts, - const int UNUSED(numVerts), - struct MEdge *medges, - const int numEdges, - struct MLoop *mloops, - const int numLoops, - struct MPoly *mpolys, - const float (*polynors)[3], - const int numPolys, - const float split_angle) -{ - if (split_angle >= (float)M_PI) { - /* Nothing to do! */ - return; - } - - /* Mapping edge -> loops. See BKE_mesh_normals_loop_split() for details. */ - int(*edge_to_loops)[2] = MEM_calloc_arrayN((size_t)numEdges, sizeof(*edge_to_loops), __func__); - - /* Simple mapping from a loop to its polygon index. */ - int *loop_to_poly = MEM_malloc_arrayN((size_t)numLoops, sizeof(*loop_to_poly), __func__); - - LoopSplitTaskDataCommon common_data = { - .mverts = mverts, - .medges = medges, - .mloops = mloops, - .mpolys = mpolys, - .edge_to_loops = edge_to_loops, - .loop_to_poly = loop_to_poly, - .polynors = polynors, - .numEdges = numEdges, - .numPolys = numPolys, - }; - - mesh_edges_sharp_tag(&common_data, true, split_angle, true); - - MEM_freeN(edge_to_loops); - MEM_freeN(loop_to_poly); -} - -void BKE_mesh_loop_manifold_fan_around_vert_next(const MLoop *mloops, - const MPoly *mpolys, - const int *loop_to_poly, - const int *e2lfan_curr, - const uint mv_pivot_index, - const MLoop **r_mlfan_curr, - int *r_mlfan_curr_index, - int *r_mlfan_vert_index, - int *r_mpfan_curr_index) -{ - const MLoop *mlfan_next; - const MPoly *mpfan_next; - - /* Warning! This is rather complex! - * We have to find our next edge around the vertex (fan mode). - * First we find the next loop, which is either previous or next to mlfan_curr_index, depending - * whether both loops using current edge are in the same direction or not, and whether - * mlfan_curr_index actually uses the vertex we are fanning around! - * mlfan_curr_index is the index of mlfan_next here, and mlfan_next is not the real next one - * (i.e. not the future mlfan_curr)... - */ - *r_mlfan_curr_index = (e2lfan_curr[0] == *r_mlfan_curr_index) ? e2lfan_curr[1] : e2lfan_curr[0]; - *r_mpfan_curr_index = loop_to_poly[*r_mlfan_curr_index]; - - BLI_assert(*r_mlfan_curr_index >= 0); - BLI_assert(*r_mpfan_curr_index >= 0); - - mlfan_next = &mloops[*r_mlfan_curr_index]; - mpfan_next = &mpolys[*r_mpfan_curr_index]; - if (((*r_mlfan_curr)->v == mlfan_next->v && (*r_mlfan_curr)->v == mv_pivot_index) || - ((*r_mlfan_curr)->v != mlfan_next->v && (*r_mlfan_curr)->v != mv_pivot_index)) { - /* We need the previous loop, but current one is our vertex's loop. */ - *r_mlfan_vert_index = *r_mlfan_curr_index; - if (--(*r_mlfan_curr_index) < mpfan_next->loopstart) { - *r_mlfan_curr_index = mpfan_next->loopstart + mpfan_next->totloop - 1; - } - } - else { - /* We need the next loop, which is also our vertex's loop. */ - if (++(*r_mlfan_curr_index) >= mpfan_next->loopstart + mpfan_next->totloop) { - *r_mlfan_curr_index = mpfan_next->loopstart; - } - *r_mlfan_vert_index = *r_mlfan_curr_index; - } - *r_mlfan_curr = &mloops[*r_mlfan_curr_index]; - /* And now we are back in sync, mlfan_curr_index is the index of mlfan_curr! Pff! */ -} - -static void split_loop_nor_single_do(LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data) -{ - MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr; - const short(*clnors_data)[2] = common_data->clnors_data; - - const MVert *mverts = common_data->mverts; - const MEdge *medges = common_data->medges; - const float(*polynors)[3] = common_data->polynors; - - MLoopNorSpace *lnor_space = data->lnor_space; - float(*lnor)[3] = data->lnor; - const MLoop *ml_curr = data->ml_curr; - const MLoop *ml_prev = data->ml_prev; - const int ml_curr_index = data->ml_curr_index; -#if 0 /* Not needed for 'single' loop. */ - const int ml_prev_index = data->ml_prev_index; - const int *e2l_prev = data->e2l_prev; -#endif - const int mp_index = data->mp_index; - - /* Simple case (both edges around that vertex are sharp in current polygon), - * this loop just takes its poly normal. - */ - copy_v3_v3(*lnor, polynors[mp_index]); - -#if 0 - printf("BASIC: handling loop %d / edge %d / vert %d / poly %d\n", - ml_curr_index, - ml_curr->e, - ml_curr->v, - mp_index); -#endif - - /* If needed, generate this (simple!) lnor space. */ - if (lnors_spacearr) { - float vec_curr[3], vec_prev[3]; - - const uint mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */ - const MVert *mv_pivot = &mverts[mv_pivot_index]; - const MEdge *me_curr = &medges[ml_curr->e]; - const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] : - &mverts[me_curr->v1]; - const MEdge *me_prev = &medges[ml_prev->e]; - const MVert *mv_3 = (me_prev->v1 == mv_pivot_index) ? &mverts[me_prev->v2] : - &mverts[me_prev->v1]; - - sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co); - normalize_v3(vec_curr); - sub_v3_v3v3(vec_prev, mv_3->co, mv_pivot->co); - normalize_v3(vec_prev); - - BKE_lnor_space_define(lnor_space, *lnor, vec_curr, vec_prev, NULL); - /* We know there is only one loop in this space, - * no need to create a linklist in this case... */ - BKE_lnor_space_add_loop(lnors_spacearr, lnor_space, ml_curr_index, NULL, true); - - if (clnors_data) { - BKE_lnor_space_custom_data_to_normal(lnor_space, clnors_data[ml_curr_index], *lnor); - } - } -} - -static void split_loop_nor_fan_do(LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data) -{ - MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr; - float(*loopnors)[3] = common_data->loopnors; - short(*clnors_data)[2] = common_data->clnors_data; - - const MVert *mverts = common_data->mverts; - const MEdge *medges = common_data->medges; - const MLoop *mloops = common_data->mloops; - const MPoly *mpolys = common_data->mpolys; - const int(*edge_to_loops)[2] = common_data->edge_to_loops; - const int *loop_to_poly = common_data->loop_to_poly; - const float(*polynors)[3] = common_data->polynors; - - MLoopNorSpace *lnor_space = data->lnor_space; -#if 0 /* Not needed for 'fan' loops. */ - float(*lnor)[3] = data->lnor; -#endif - const MLoop *ml_curr = data->ml_curr; - const MLoop *ml_prev = data->ml_prev; - const int ml_curr_index = data->ml_curr_index; - const int ml_prev_index = data->ml_prev_index; - const int mp_index = data->mp_index; - const int *e2l_prev = data->e2l_prev; - - BLI_Stack *edge_vectors = data->edge_vectors; - - /* Gah... We have to fan around current vertex, until we find the other non-smooth edge, - * and accumulate face normals into the vertex! - * Note in case this vertex has only one sharp edges, this is a waste because the normal is the - * same as the vertex normal, but I do not see any easy way to detect that (would need to count - * number of sharp edges per vertex, I doubt the additional memory usage would be worth it, - * especially as it should not be a common case in real-life meshes anyway). - */ - const uint mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */ - const MVert *mv_pivot = &mverts[mv_pivot_index]; - - /* ml_curr would be mlfan_prev if we needed that one. */ - const MEdge *me_org = &medges[ml_curr->e]; - - const int *e2lfan_curr; - float vec_curr[3], vec_prev[3], vec_org[3]; - const MLoop *mlfan_curr; - float lnor[3] = {0.0f, 0.0f, 0.0f}; - /* mlfan_vert_index: the loop of our current edge might not be the loop of our current vertex! */ - int mlfan_curr_index, mlfan_vert_index, mpfan_curr_index; - - /* We validate clnors data on the fly - cheapest way to do! */ - int clnors_avg[2] = {0, 0}; - short(*clnor_ref)[2] = NULL; - int clnors_nbr = 0; - bool clnors_invalid = false; - - /* Temp loop normal stack. */ - BLI_SMALLSTACK_DECLARE(normal, float *); - /* Temp clnors stack. */ - BLI_SMALLSTACK_DECLARE(clnors, short *); - - e2lfan_curr = e2l_prev; - mlfan_curr = ml_prev; - mlfan_curr_index = ml_prev_index; - mlfan_vert_index = ml_curr_index; - mpfan_curr_index = mp_index; - - BLI_assert(mlfan_curr_index >= 0); - BLI_assert(mlfan_vert_index >= 0); - BLI_assert(mpfan_curr_index >= 0); - - /* Only need to compute previous edge's vector once, then we can just reuse old current one! */ - { - const MVert *mv_2 = (me_org->v1 == mv_pivot_index) ? &mverts[me_org->v2] : &mverts[me_org->v1]; - - sub_v3_v3v3(vec_org, mv_2->co, mv_pivot->co); - normalize_v3(vec_org); - copy_v3_v3(vec_prev, vec_org); - - if (lnors_spacearr) { - BLI_stack_push(edge_vectors, vec_org); - } - } - - // printf("FAN: vert %d, start edge %d\n", mv_pivot_index, ml_curr->e); - - while (true) { - const MEdge *me_curr = &medges[mlfan_curr->e]; - /* Compute edge vectors. - * NOTE: We could pre-compute those into an array, in the first iteration, instead of computing - * them twice (or more) here. However, time gained is not worth memory and time lost, - * given the fact that this code should not be called that much in real-life meshes... - */ - { - const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] : - &mverts[me_curr->v1]; - - sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co); - normalize_v3(vec_curr); - } - - // printf("\thandling edge %d / loop %d\n", mlfan_curr->e, mlfan_curr_index); - - { - /* Code similar to accumulate_vertex_normals_poly_v3. */ - /* Calculate angle between the two poly edges incident on this vertex. */ - const float fac = saacos(dot_v3v3(vec_curr, vec_prev)); - /* Accumulate */ - madd_v3_v3fl(lnor, polynors[mpfan_curr_index], fac); - - if (clnors_data) { - /* Accumulate all clnors, if they are not all equal we have to fix that! */ - short(*clnor)[2] = &clnors_data[mlfan_vert_index]; - if (clnors_nbr) { - clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] || (*clnor_ref)[1] != (*clnor)[1]); - } - else { - clnor_ref = clnor; - } - clnors_avg[0] += (*clnor)[0]; - clnors_avg[1] += (*clnor)[1]; - clnors_nbr++; - /* We store here a pointer to all custom lnors processed. */ - BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor); - } - } - - /* We store here a pointer to all loop-normals processed. */ - BLI_SMALLSTACK_PUSH(normal, (float *)(loopnors[mlfan_vert_index])); - - if (lnors_spacearr) { - /* Assign current lnor space to current 'vertex' loop. */ - BKE_lnor_space_add_loop(lnors_spacearr, lnor_space, mlfan_vert_index, NULL, false); - if (me_curr != me_org) { - /* We store here all edges-normalized vectors processed. */ - BLI_stack_push(edge_vectors, vec_curr); - } - } - - if (IS_EDGE_SHARP(e2lfan_curr) || (me_curr == me_org)) { - /* Current edge is sharp and we have finished with this fan of faces around this vert, - * or this vert is smooth, and we have completed a full turn around it. - */ - // printf("FAN: Finished!\n"); - break; - } - - copy_v3_v3(vec_prev, vec_curr); - - /* Find next loop of the smooth fan. */ - BKE_mesh_loop_manifold_fan_around_vert_next(mloops, - mpolys, - loop_to_poly, - e2lfan_curr, - mv_pivot_index, - &mlfan_curr, - &mlfan_curr_index, - &mlfan_vert_index, - &mpfan_curr_index); - - e2lfan_curr = edge_to_loops[mlfan_curr->e]; - } - - { - float lnor_len = normalize_v3(lnor); - - /* If we are generating lnor spacearr, we can now define the one for this fan, - * and optionally compute final lnor from custom data too! - */ - if (lnors_spacearr) { - if (UNLIKELY(lnor_len == 0.0f)) { - /* Use vertex normal as fallback! */ - copy_v3_v3(lnor, loopnors[mlfan_vert_index]); - lnor_len = 1.0f; - } - - BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_curr, edge_vectors); - - if (clnors_data) { - if (clnors_invalid) { - short *clnor; - - clnors_avg[0] /= clnors_nbr; - clnors_avg[1] /= clnors_nbr; - /* Fix/update all clnors of this fan with computed average value. */ - if (G.debug & G_DEBUG) { - printf("Invalid clnors in this fan!\n"); - } - while ((clnor = BLI_SMALLSTACK_POP(clnors))) { - // print_v2("org clnor", clnor); - clnor[0] = (short)clnors_avg[0]; - clnor[1] = (short)clnors_avg[1]; - } - // print_v2("new clnors", clnors_avg); - } - /* Extra bonus: since small-stack is local to this function, - * no more need to empty it at all cost! */ - - BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor); - } - } - - /* In case we get a zero normal here, just use vertex normal already set! */ - if (LIKELY(lnor_len != 0.0f)) { - /* Copy back the final computed normal into all related loop-normals. */ - float *nor; - - while ((nor = BLI_SMALLSTACK_POP(normal))) { - copy_v3_v3(nor, lnor); - } - } - /* Extra bonus: since small-stack is local to this function, - * no more need to empty it at all cost! */ - } -} - -static void loop_split_worker_do(LoopSplitTaskDataCommon *common_data, - LoopSplitTaskData *data, - BLI_Stack *edge_vectors) -{ - BLI_assert(data->ml_curr); - if (data->e2l_prev) { - BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors)); - data->edge_vectors = edge_vectors; - split_loop_nor_fan_do(common_data, data); - } - else { - /* No need for edge_vectors for 'single' case! */ - split_loop_nor_single_do(common_data, data); - } -} - -static void loop_split_worker(TaskPool *__restrict pool, void *taskdata) -{ - LoopSplitTaskDataCommon *common_data = BLI_task_pool_user_data(pool); - LoopSplitTaskData *data = taskdata; - - /* Temp edge vectors stack, only used when computing lnor spacearr. */ - BLI_Stack *edge_vectors = common_data->lnors_spacearr ? - BLI_stack_new(sizeof(float[3]), __func__) : - NULL; - -#ifdef DEBUG_TIME - TIMEIT_START_AVERAGED(loop_split_worker); -#endif - - for (int i = 0; i < LOOP_SPLIT_TASK_BLOCK_SIZE; i++, data++) { - /* A NULL ml_curr is used to tag ended data! */ - if (data->ml_curr == NULL) { - break; - } - - loop_split_worker_do(common_data, data, edge_vectors); - } - - if (edge_vectors) { - BLI_stack_free(edge_vectors); - } - -#ifdef DEBUG_TIME - TIMEIT_END_AVERAGED(loop_split_worker); -#endif -} - -/** - * Check whether given loop is part of an unknown-so-far cyclic smooth fan, or not. - * Needed because cyclic smooth fans have no obvious 'entry point', - * and yet we need to walk them once, and only once. - */ -static bool loop_split_generator_check_cyclic_smooth_fan(const MLoop *mloops, - const MPoly *mpolys, - const int (*edge_to_loops)[2], - const int *loop_to_poly, - const int *e2l_prev, - BLI_bitmap *skip_loops, - const MLoop *ml_curr, - const MLoop *ml_prev, - const int ml_curr_index, - const int ml_prev_index, - const int mp_curr_index) -{ - const uint mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */ - const int *e2lfan_curr; - const MLoop *mlfan_curr; - /* mlfan_vert_index: the loop of our current edge might not be the loop of our current vertex! */ - int mlfan_curr_index, mlfan_vert_index, mpfan_curr_index; - - e2lfan_curr = e2l_prev; - if (IS_EDGE_SHARP(e2lfan_curr)) { - /* Sharp loop, so not a cyclic smooth fan... */ - return false; - } - - mlfan_curr = ml_prev; - mlfan_curr_index = ml_prev_index; - mlfan_vert_index = ml_curr_index; - mpfan_curr_index = mp_curr_index; - - BLI_assert(mlfan_curr_index >= 0); - BLI_assert(mlfan_vert_index >= 0); - BLI_assert(mpfan_curr_index >= 0); - - BLI_assert(!BLI_BITMAP_TEST(skip_loops, mlfan_vert_index)); - BLI_BITMAP_ENABLE(skip_loops, mlfan_vert_index); - - while (true) { - /* Find next loop of the smooth fan. */ - BKE_mesh_loop_manifold_fan_around_vert_next(mloops, - mpolys, - loop_to_poly, - e2lfan_curr, - mv_pivot_index, - &mlfan_curr, - &mlfan_curr_index, - &mlfan_vert_index, - &mpfan_curr_index); - - e2lfan_curr = edge_to_loops[mlfan_curr->e]; - - if (IS_EDGE_SHARP(e2lfan_curr)) { - /* Sharp loop/edge, so not a cyclic smooth fan... */ - return false; - } - /* Smooth loop/edge... */ - if (BLI_BITMAP_TEST(skip_loops, mlfan_vert_index)) { - if (mlfan_vert_index == ml_curr_index) { - /* We walked around a whole cyclic smooth fan without finding any already-processed loop, - * means we can use initial ml_curr/ml_prev edge as start for this smooth fan. */ - return true; - } - /* ... already checked in some previous looping, we can abort. */ - return false; - } - - /* ... we can skip it in future, and keep checking the smooth fan. */ - BLI_BITMAP_ENABLE(skip_loops, mlfan_vert_index); - } -} - -static void loop_split_generator(TaskPool *pool, LoopSplitTaskDataCommon *common_data) -{ - MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr; - float(*loopnors)[3] = common_data->loopnors; - - const MLoop *mloops = common_data->mloops; - const MPoly *mpolys = common_data->mpolys; - const int *loop_to_poly = common_data->loop_to_poly; - const int(*edge_to_loops)[2] = common_data->edge_to_loops; - const int numLoops = common_data->numLoops; - const int numPolys = common_data->numPolys; - - const MPoly *mp; - int mp_index; - - const MLoop *ml_curr; - const MLoop *ml_prev; - int ml_curr_index; - int ml_prev_index; - - BLI_bitmap *skip_loops = BLI_BITMAP_NEW(numLoops, __func__); - - LoopSplitTaskData *data_buff = NULL; - int data_idx = 0; - - /* Temp edge vectors stack, only used when computing lnor spacearr - * (and we are not multi-threading). */ - BLI_Stack *edge_vectors = NULL; - -#ifdef DEBUG_TIME - TIMEIT_START_AVERAGED(loop_split_generator); -#endif - - if (!pool) { - if (lnors_spacearr) { - edge_vectors = BLI_stack_new(sizeof(float[3]), __func__); - } - } - - /* We now know edges that can be smoothed (with their vector, and their two loops), - * and edges that will be hard! Now, time to generate the normals. - */ - for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) { - float(*lnors)[3]; - const int ml_last_index = (mp->loopstart + mp->totloop) - 1; - ml_curr_index = mp->loopstart; - ml_prev_index = ml_last_index; - - ml_curr = &mloops[ml_curr_index]; - ml_prev = &mloops[ml_prev_index]; - lnors = &loopnors[ml_curr_index]; - - for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++, lnors++) { - const int *e2l_curr = edge_to_loops[ml_curr->e]; - const int *e2l_prev = edge_to_loops[ml_prev->e]; - -#if 0 - printf("Checking loop %d / edge %u / vert %u (sharp edge: %d, skiploop: %d)...", - ml_curr_index, - ml_curr->e, - ml_curr->v, - IS_EDGE_SHARP(e2l_curr), - BLI_BITMAP_TEST_BOOL(skip_loops, ml_curr_index)); -#endif - - /* A smooth edge, we have to check for cyclic smooth fan case. - * If we find a new, never-processed cyclic smooth fan, we can do it now using that loop/edge - * as 'entry point', otherwise we can skip it. */ - - /* Note: In theory, we could make loop_split_generator_check_cyclic_smooth_fan() store - * mlfan_vert_index'es and edge indexes in two stacks, to avoid having to fan again around - * the vert during actual computation of clnor & clnorspace. However, this would complicate - * the code, add more memory usage, and despite its logical complexity, - * loop_manifold_fan_around_vert_next() is quite cheap in term of CPU cycles, - * so really think it's not worth it. */ - if (!IS_EDGE_SHARP(e2l_curr) && (BLI_BITMAP_TEST(skip_loops, ml_curr_index) || - !loop_split_generator_check_cyclic_smooth_fan(mloops, - mpolys, - edge_to_loops, - loop_to_poly, - e2l_prev, - skip_loops, - ml_curr, - ml_prev, - ml_curr_index, - ml_prev_index, - mp_index))) { - // printf("SKIPPING!\n"); - } - else { - LoopSplitTaskData *data, data_local; - - // printf("PROCESSING!\n"); - - if (pool) { - if (data_idx == 0) { - data_buff = MEM_calloc_arrayN( - LOOP_SPLIT_TASK_BLOCK_SIZE, sizeof(*data_buff), __func__); - } - data = &data_buff[data_idx]; - } - else { - data = &data_local; - memset(data, 0, sizeof(*data)); - } - - if (IS_EDGE_SHARP(e2l_curr) && IS_EDGE_SHARP(e2l_prev)) { - data->lnor = lnors; - data->ml_curr = ml_curr; - data->ml_prev = ml_prev; - data->ml_curr_index = ml_curr_index; -#if 0 /* Not needed for 'single' loop. */ - data->ml_prev_index = ml_prev_index; - data->e2l_prev = NULL; /* Tag as 'single' task. */ -#endif - data->mp_index = mp_index; - if (lnors_spacearr) { - data->lnor_space = BKE_lnor_space_create(lnors_spacearr); - } - } - /* We *do not need* to check/tag loops as already computed! - * Due to the fact a loop only links to one of its two edges, - * a same fan *will never be walked more than once!* - * Since we consider edges having neighbor polys with inverted - * (flipped) normals as sharp, we are sure that no fan will be skipped, - * even only considering the case (sharp curr_edge, smooth prev_edge), - * and not the alternative (smooth curr_edge, sharp prev_edge). - * All this due/thanks to link between normals and loop ordering (i.e. winding). - */ - else { -#if 0 /* Not needed for 'fan' loops. */ - data->lnor = lnors; -#endif - data->ml_curr = ml_curr; - data->ml_prev = ml_prev; - data->ml_curr_index = ml_curr_index; - data->ml_prev_index = ml_prev_index; - data->e2l_prev = e2l_prev; /* Also tag as 'fan' task. */ - data->mp_index = mp_index; - if (lnors_spacearr) { - data->lnor_space = BKE_lnor_space_create(lnors_spacearr); - } - } - - if (pool) { - data_idx++; - if (data_idx == LOOP_SPLIT_TASK_BLOCK_SIZE) { - BLI_task_pool_push(pool, loop_split_worker, data_buff, true, NULL); - data_idx = 0; - } - } - else { - loop_split_worker_do(common_data, data, edge_vectors); - } - } - - ml_prev = ml_curr; - ml_prev_index = ml_curr_index; - } - } - - /* Last block of data... Since it is calloc'ed and we use first NULL item as stopper, - * everything is fine. */ - if (pool && data_idx) { - BLI_task_pool_push(pool, loop_split_worker, data_buff, true, NULL); - } - - if (edge_vectors) { - BLI_stack_free(edge_vectors); - } - MEM_freeN(skip_loops); - -#ifdef DEBUG_TIME - TIMEIT_END_AVERAGED(loop_split_generator); -#endif -} - -/** - * Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals'). - * Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry - * (splitting edges). - */ -void BKE_mesh_normals_loop_split(const MVert *mverts, - const int UNUSED(numVerts), - MEdge *medges, - const int numEdges, - MLoop *mloops, - float (*r_loopnors)[3], - const int numLoops, - MPoly *mpolys, - const float (*polynors)[3], - const int numPolys, - const bool use_split_normals, - const float split_angle, - MLoopNorSpaceArray *r_lnors_spacearr, - short (*clnors_data)[2], - int *r_loop_to_poly) -{ - /* For now this is not supported. - * If we do not use split normals, we do not generate anything fancy! */ - BLI_assert(use_split_normals || !(r_lnors_spacearr)); - - if (!use_split_normals) { - /* In this case, we simply fill lnors with vnors (or fnors for flat faces), quite simple! - * Note this is done here to keep some logic and consistency in this quite complex code, - * since we may want to use lnors even when mesh's 'autosmooth' is disabled - * (see e.g. mesh mapping code). - * As usual, we could handle that on case-by-case basis, - * but simpler to keep it well confined here. - */ - int mp_index; - - for (mp_index = 0; mp_index < numPolys; mp_index++) { - MPoly *mp = &mpolys[mp_index]; - int ml_index = mp->loopstart; - const int ml_index_end = ml_index + mp->totloop; - const bool is_poly_flat = ((mp->flag & ME_SMOOTH) == 0); - - for (; ml_index < ml_index_end; ml_index++) { - if (r_loop_to_poly) { - r_loop_to_poly[ml_index] = mp_index; - } - if (is_poly_flat) { - copy_v3_v3(r_loopnors[ml_index], polynors[mp_index]); - } - else { - normal_short_to_float_v3(r_loopnors[ml_index], mverts[mloops[ml_index].v].no); - } - } - } - return; - } - - /** - * Mapping edge -> loops. - * If that edge is used by more than two loops (polys), - * it is always sharp (and tagged as such, see below). - * We also use the second loop index as a kind of flag: - * - * - smooth edge: > 0. - * - sharp edge: < 0 (INDEX_INVALID || INDEX_UNSET). - * - unset: INDEX_UNSET. - * - * Note that currently we only have two values for second loop of sharp edges. - * However, if needed, we can store the negated value of loop index instead of INDEX_INVALID - * to retrieve the real value later in code). - * Note also that loose edges always have both values set to 0! */ - int(*edge_to_loops)[2] = MEM_calloc_arrayN((size_t)numEdges, sizeof(*edge_to_loops), __func__); - - /* Simple mapping from a loop to its polygon index. */ - int *loop_to_poly = r_loop_to_poly ? - r_loop_to_poly : - MEM_malloc_arrayN((size_t)numLoops, sizeof(*loop_to_poly), __func__); - - /* When using custom loop normals, disable the angle feature! */ - const bool check_angle = (split_angle < (float)M_PI) && (clnors_data == NULL); - - MLoopNorSpaceArray _lnors_spacearr = {NULL}; - -#ifdef DEBUG_TIME - TIMEIT_START_AVERAGED(BKE_mesh_normals_loop_split); -#endif - - if (!r_lnors_spacearr && clnors_data) { - /* We need to compute lnor spacearr if some custom lnor data are given to us! */ - r_lnors_spacearr = &_lnors_spacearr; - } - if (r_lnors_spacearr) { - BKE_lnor_spacearr_init(r_lnors_spacearr, numLoops, MLNOR_SPACEARR_LOOP_INDEX); - } - - /* Init data common to all tasks. */ - LoopSplitTaskDataCommon common_data = { - .lnors_spacearr = r_lnors_spacearr, - .loopnors = r_loopnors, - .clnors_data = clnors_data, - .mverts = mverts, - .medges = medges, - .mloops = mloops, - .mpolys = mpolys, - .edge_to_loops = edge_to_loops, - .loop_to_poly = loop_to_poly, - .polynors = polynors, - .numEdges = numEdges, - .numLoops = numLoops, - .numPolys = numPolys, - }; - - /* This first loop check which edges are actually smooth, and compute edge vectors. */ - mesh_edges_sharp_tag(&common_data, check_angle, split_angle, false); - - if (numLoops < LOOP_SPLIT_TASK_BLOCK_SIZE * 8) { - /* Not enough loops to be worth the whole threading overhead... */ - loop_split_generator(NULL, &common_data); - } - else { - TaskPool *task_pool = BLI_task_pool_create(&common_data, TASK_PRIORITY_HIGH); - - loop_split_generator(task_pool, &common_data); - - BLI_task_pool_work_and_wait(task_pool); - - BLI_task_pool_free(task_pool); - } - - MEM_freeN(edge_to_loops); - if (!r_loop_to_poly) { - MEM_freeN(loop_to_poly); - } - - if (r_lnors_spacearr) { - if (r_lnors_spacearr == &_lnors_spacearr) { - BKE_lnor_spacearr_free(r_lnors_spacearr); - } - } - -#ifdef DEBUG_TIME - TIMEIT_END_AVERAGED(BKE_mesh_normals_loop_split); -#endif -} - -#undef INDEX_UNSET -#undef INDEX_INVALID -#undef IS_EDGE_SHARP - -/** - * Compute internal representation of given custom normals (as an array of float[2]). - * It also makes sure the mesh matches those custom normals, by setting sharp edges flag as needed - * to get a same custom lnor for all loops sharing a same smooth fan. - * If use_vertices if true, r_custom_loopnors is assumed to be per-vertex, not per-loop - * (this allows to set whole vert's normals at once, useful in some cases). - * r_custom_loopnors is expected to have normalized normals, or zero ones, - * in which case they will be replaced by default loop/vertex normal. - */ -static void mesh_normals_loop_custom_set(const MVert *mverts, - const int numVerts, - MEdge *medges, - const int numEdges, - MLoop *mloops, - float (*r_custom_loopnors)[3], - const int numLoops, - MPoly *mpolys, - const float (*polynors)[3], - const int numPolys, - short (*r_clnors_data)[2], - const bool use_vertices) -{ - /* We *may* make that poor BKE_mesh_normals_loop_split() even more complex by making it handling - * that feature too, would probably be more efficient in absolute. - * However, this function *is not* performance-critical, since it is mostly expected to be called - * by io addons when importing custom normals, and modifier - * (and perhaps from some editing tools later?). - * So better to keep some simplicity here, and just call BKE_mesh_normals_loop_split() twice! - */ - MLoopNorSpaceArray lnors_spacearr = {NULL}; - BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)numLoops, __func__); - float(*lnors)[3] = MEM_calloc_arrayN((size_t)numLoops, sizeof(*lnors), __func__); - int *loop_to_poly = MEM_malloc_arrayN((size_t)numLoops, sizeof(int), __func__); - /* In this case we always consider split nors as ON, - * and do not want to use angle to define smooth fans! */ - const bool use_split_normals = true; - const float split_angle = (float)M_PI; - - BLI_SMALLSTACK_DECLARE(clnors_data, short *); - - /* Compute current lnor spacearr. */ - BKE_mesh_normals_loop_split(mverts, - numVerts, - medges, - numEdges, - mloops, - lnors, - numLoops, - mpolys, - polynors, - numPolys, - use_split_normals, - split_angle, - &lnors_spacearr, - NULL, - loop_to_poly); - - /* Set all given zero vectors to their default value. */ - if (use_vertices) { - for (int i = 0; i < numVerts; i++) { - if (is_zero_v3(r_custom_loopnors[i])) { - normal_short_to_float_v3(r_custom_loopnors[i], mverts[i].no); - } - } - } - else { - for (int i = 0; i < numLoops; i++) { - if (is_zero_v3(r_custom_loopnors[i])) { - copy_v3_v3(r_custom_loopnors[i], lnors[i]); - } - } - } - - BLI_assert(lnors_spacearr.data_type == MLNOR_SPACEARR_LOOP_INDEX); - - /* Now, check each current smooth fan (one lnor space per smooth fan!), - * and if all its matching custom lnors are not (enough) equal, add sharp edges as needed. - * This way, next time we run BKE_mesh_normals_loop_split(), we'll get lnor spacearr/smooth fans - * matching given custom lnors. - * Note this code *will never* unsharp edges! And quite obviously, - * when we set custom normals per vertices, running this is absolutely useless. - */ - if (!use_vertices) { - for (int i = 0; i < numLoops; i++) { - if (!lnors_spacearr.lspacearr[i]) { - /* This should not happen in theory, but in some rare case (probably ugly geometry) - * we can get some NULL loopspacearr at this point. :/ - * Maybe we should set those loops' edges as sharp? - */ - BLI_BITMAP_ENABLE(done_loops, i); - if (G.debug & G_DEBUG) { - printf("WARNING! Getting invalid NULL loop space for loop %d!\n", i); - } - continue; - } - - if (!BLI_BITMAP_TEST(done_loops, i)) { - /* Notes: - * * In case of mono-loop smooth fan, we have nothing to do. - * * Loops in this linklist are ordered (in reversed order compared to how they were - * discovered by BKE_mesh_normals_loop_split(), but this is not a problem). - * Which means if we find a mismatching clnor, - * we know all remaining loops will have to be in a new, different smooth fan/lnor space. - * * In smooth fan case, we compare each clnor against a ref one, - * to avoid small differences adding up into a real big one in the end! - */ - if (lnors_spacearr.lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) { - BLI_BITMAP_ENABLE(done_loops, i); - continue; - } - - LinkNode *loops = lnors_spacearr.lspacearr[i]->loops; - MLoop *prev_ml = NULL; - const float *org_nor = NULL; - - while (loops) { - const int lidx = POINTER_AS_INT(loops->link); - MLoop *ml = &mloops[lidx]; - const int nidx = lidx; - float *nor = r_custom_loopnors[nidx]; - - if (!org_nor) { - org_nor = nor; - } - else if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) { - /* Current normal differs too much from org one, we have to tag the edge between - * previous loop's face and current's one as sharp. - * We know those two loops do not point to the same edge, - * since we do not allow reversed winding in a same smooth fan. - */ - const MPoly *mp = &mpolys[loop_to_poly[lidx]]; - const MLoop *mlp = - &mloops[(lidx == mp->loopstart) ? mp->loopstart + mp->totloop - 1 : lidx - 1]; - medges[(prev_ml->e == mlp->e) ? prev_ml->e : ml->e].flag |= ME_SHARP; - - org_nor = nor; - } - - prev_ml = ml; - loops = loops->next; - BLI_BITMAP_ENABLE(done_loops, lidx); - } - - /* We also have to check between last and first loops, - * otherwise we may miss some sharp edges here! - * This is just a simplified version of above while loop. - * See T45984. */ - loops = lnors_spacearr.lspacearr[i]->loops; - if (loops && org_nor) { - const int lidx = POINTER_AS_INT(loops->link); - MLoop *ml = &mloops[lidx]; - const int nidx = lidx; - float *nor = r_custom_loopnors[nidx]; - - if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) { - const MPoly *mp = &mpolys[loop_to_poly[lidx]]; - const MLoop *mlp = - &mloops[(lidx == mp->loopstart) ? mp->loopstart + mp->totloop - 1 : lidx - 1]; - medges[(prev_ml->e == mlp->e) ? prev_ml->e : ml->e].flag |= ME_SHARP; - } - } - } - } - - /* And now, recompute our new auto lnors and lnor spacearr! */ - BKE_lnor_spacearr_clear(&lnors_spacearr); - BKE_mesh_normals_loop_split(mverts, - numVerts, - medges, - numEdges, - mloops, - lnors, - numLoops, - mpolys, - polynors, - numPolys, - use_split_normals, - split_angle, - &lnors_spacearr, - NULL, - loop_to_poly); - } - else { - BLI_bitmap_set_all(done_loops, true, (size_t)numLoops); - } - - /* And we just have to convert plain object-space custom normals to our - * lnor space-encoded ones. */ - for (int i = 0; i < numLoops; i++) { - if (!lnors_spacearr.lspacearr[i]) { - BLI_BITMAP_DISABLE(done_loops, i); - if (G.debug & G_DEBUG) { - printf("WARNING! Still getting invalid NULL loop space in second loop for loop %d!\n", i); - } - continue; - } - - if (BLI_BITMAP_TEST_BOOL(done_loops, i)) { - /* Note we accumulate and average all custom normals in current smooth fan, - * to avoid getting different clnors data (tiny differences in plain custom normals can - * give rather huge differences in computed 2D factors). - */ - LinkNode *loops = lnors_spacearr.lspacearr[i]->loops; - if (lnors_spacearr.lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) { - BLI_assert(POINTER_AS_INT(loops) == i); - const int nidx = use_vertices ? (int)mloops[i].v : i; - float *nor = r_custom_loopnors[nidx]; - - BKE_lnor_space_custom_normal_to_data(lnors_spacearr.lspacearr[i], nor, r_clnors_data[i]); - BLI_BITMAP_DISABLE(done_loops, i); - } - else { - int nbr_nors = 0; - float avg_nor[3]; - short clnor_data_tmp[2], *clnor_data; - - zero_v3(avg_nor); - while (loops) { - const int lidx = POINTER_AS_INT(loops->link); - const int nidx = use_vertices ? (int)mloops[lidx].v : lidx; - float *nor = r_custom_loopnors[nidx]; - - nbr_nors++; - add_v3_v3(avg_nor, nor); - BLI_SMALLSTACK_PUSH(clnors_data, (short *)r_clnors_data[lidx]); - - loops = loops->next; - BLI_BITMAP_DISABLE(done_loops, lidx); - } - - mul_v3_fl(avg_nor, 1.0f / (float)nbr_nors); - BKE_lnor_space_custom_normal_to_data(lnors_spacearr.lspacearr[i], avg_nor, clnor_data_tmp); - - while ((clnor_data = BLI_SMALLSTACK_POP(clnors_data))) { - clnor_data[0] = clnor_data_tmp[0]; - clnor_data[1] = clnor_data_tmp[1]; - } - } - } - } - - MEM_freeN(lnors); - MEM_freeN(loop_to_poly); - MEM_freeN(done_loops); - BKE_lnor_spacearr_free(&lnors_spacearr); -} - -void BKE_mesh_normals_loop_custom_set(const MVert *mverts, - const int numVerts, - MEdge *medges, - const int numEdges, - MLoop *mloops, - float (*r_custom_loopnors)[3], - const int numLoops, - MPoly *mpolys, - const float (*polynors)[3], - const int numPolys, - short (*r_clnors_data)[2]) -{ - mesh_normals_loop_custom_set(mverts, - numVerts, - medges, - numEdges, - mloops, - r_custom_loopnors, - numLoops, - mpolys, - polynors, - numPolys, - r_clnors_data, - false); -} - -void BKE_mesh_normals_loop_custom_from_vertices_set(const MVert *mverts, - float (*r_custom_vertnors)[3], - const int numVerts, - MEdge *medges, - const int numEdges, - MLoop *mloops, - const int numLoops, - MPoly *mpolys, - const float (*polynors)[3], - const int numPolys, - short (*r_clnors_data)[2]) -{ - mesh_normals_loop_custom_set(mverts, - numVerts, - medges, - numEdges, - mloops, - r_custom_vertnors, - numLoops, - mpolys, - polynors, - numPolys, - r_clnors_data, - true); -} - -static void mesh_set_custom_normals(Mesh *mesh, float (*r_custom_nors)[3], const bool use_vertices) -{ - short(*clnors)[2]; - const int numloops = mesh->totloop; - - clnors = CustomData_get_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL); - if (clnors != NULL) { - memset(clnors, 0, sizeof(*clnors) * (size_t)numloops); - } - else { - clnors = CustomData_add_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL, CD_CALLOC, NULL, numloops); - } - - float(*polynors)[3] = CustomData_get_layer(&mesh->pdata, CD_NORMAL); - bool free_polynors = false; - if (polynors == NULL) { - polynors = MEM_mallocN(sizeof(float[3]) * (size_t)mesh->totpoly, __func__); - BKE_mesh_calc_normals_poly(mesh->mvert, - NULL, - mesh->totvert, - mesh->mloop, - mesh->mpoly, - mesh->totloop, - mesh->totpoly, - polynors, - false); - free_polynors = true; - } - - mesh_normals_loop_custom_set(mesh->mvert, - mesh->totvert, - mesh->medge, - mesh->totedge, - mesh->mloop, - r_custom_nors, - mesh->totloop, - mesh->mpoly, - polynors, - mesh->totpoly, - clnors, - use_vertices); - - if (free_polynors) { - MEM_freeN(polynors); - } -} - -/** - * Higher level functions hiding most of the code needed around call to - * #BKE_mesh_normals_loop_custom_set(). - * - * \param r_custom_loopnors: is not const, since code will replace zero_v3 normals there - * with automatically computed vectors. - */ -void BKE_mesh_set_custom_normals(Mesh *mesh, float (*r_custom_loopnors)[3]) -{ - mesh_set_custom_normals(mesh, r_custom_loopnors, false); -} - -/** - * Higher level functions hiding most of the code needed around call to - * #BKE_mesh_normals_loop_custom_from_vertices_set(). - * - * \param r_custom_vertnors: is not const, since code will replace zero_v3 normals there - * with automatically computed vectors. - */ -void BKE_mesh_set_custom_normals_from_vertices(Mesh *mesh, float (*r_custom_vertnors)[3]) -{ - mesh_set_custom_normals(mesh, r_custom_vertnors, true); -} - -/** - * Computes average per-vertex normals from given custom loop normals. - * - * \param clnors: The computed custom loop normals. - * \param r_vert_clnors: The (already allocated) array where to store averaged per-vertex normals. - */ -void BKE_mesh_normals_loop_to_vertex(const int numVerts, - const MLoop *mloops, - const int numLoops, - const float (*clnors)[3], - float (*r_vert_clnors)[3]) -{ - int *vert_loops_nbr = MEM_calloc_arrayN((size_t)numVerts, sizeof(*vert_loops_nbr), __func__); - - copy_vn_fl((float *)r_vert_clnors, 3 * numVerts, 0.0f); - - int i; - const MLoop *ml; - for (i = 0, ml = mloops; i < numLoops; i++, ml++) { - const uint v = ml->v; - - add_v3_v3(r_vert_clnors[v], clnors[i]); - vert_loops_nbr[v]++; - } - - for (i = 0; i < numVerts; i++) { - mul_v3_fl(r_vert_clnors[i], 1.0f / (float)vert_loops_nbr[i]); - } - - MEM_freeN(vert_loops_nbr); -} - -#undef LNOR_SPACE_TRIGO_THRESHOLD - -/** \} */ /* -------------------------------------------------------------------- */ /** \name Polygon Calculations diff --git a/source/blender/blenkernel/intern/mesh_normals.c b/source/blender/blenkernel/intern/mesh_normals.c new file mode 100644 index 00000000000..02f21cf1b24 --- /dev/null +++ b/source/blender/blenkernel/intern/mesh_normals.c @@ -0,0 +1,2144 @@ +/* + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software Foundation, + * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. + * + * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. + * All rights reserved. + */ + +/** \file + * \ingroup bke + * + * Mesh normal calculation functions. + * + * \see bmesh_mesh_normals.c for the equivalent #BMesh functionality. + */ + +#include + +#include "CLG_log.h" + +#include "MEM_guardedalloc.h" + +#include "DNA_mesh_types.h" +#include "DNA_meshdata_types.h" + +#include "BLI_alloca.h" +#include "BLI_bitmap.h" + +#include "BLI_linklist.h" +#include "BLI_linklist_stack.h" +#include "BLI_math.h" +#include "BLI_memarena.h" +#include "BLI_stack.h" +#include "BLI_task.h" +#include "BLI_utildefines.h" + +#include "BKE_customdata.h" +#include "BKE_editmesh_cache.h" +#include "BKE_global.h" +#include "BKE_mesh.h" + +// #define DEBUG_TIME + +#ifdef DEBUG_TIME +# include "PIL_time.h" +# include "PIL_time_utildefines.h" +#endif + +static CLG_LogRef LOG = {"bke.mesh_normals"}; + +/* -------------------------------------------------------------------- */ +/** \name Mesh Normal Calculation + * \{ */ + +/** + * Call when there are no polygons. + */ +static void mesh_calc_normals_vert_fallback(MVert *mverts, int numVerts) +{ + for (int i = 0; i < numVerts; i++) { + MVert *mv = &mverts[i]; + float no[3]; + + normalize_v3_v3(no, mv->co); + normal_float_to_short_v3(mv->no, no); + } +} + +/* TODO(Sybren): we can probably rename this to BKE_mesh_calc_normals_mapping(), + * and remove the function of the same name below, as that one doesn't seem to be + * called anywhere. */ +void BKE_mesh_calc_normals_mapping_simple(struct Mesh *mesh) +{ + const bool only_face_normals = CustomData_is_referenced_layer(&mesh->vdata, CD_MVERT); + + BKE_mesh_calc_normals_mapping_ex(mesh->mvert, + mesh->totvert, + mesh->mloop, + mesh->mpoly, + mesh->totloop, + mesh->totpoly, + NULL, + mesh->mface, + mesh->totface, + NULL, + NULL, + only_face_normals); +} + +/* Calculate vertex and face normals, face normals are returned in *r_faceNors if non-NULL + * and vertex normals are stored in actual mverts. + */ +void BKE_mesh_calc_normals_mapping(MVert *mverts, + int numVerts, + const MLoop *mloop, + const MPoly *mpolys, + int numLoops, + int numPolys, + float (*r_polyNors)[3], + const MFace *mfaces, + int numFaces, + const int *origIndexFace, + float (*r_faceNors)[3]) +{ + BKE_mesh_calc_normals_mapping_ex(mverts, + numVerts, + mloop, + mpolys, + numLoops, + numPolys, + r_polyNors, + mfaces, + numFaces, + origIndexFace, + r_faceNors, + false); +} +/* extended version of 'BKE_mesh_calc_normals_poly' with option not to calc vertex normals */ +void BKE_mesh_calc_normals_mapping_ex(MVert *mverts, + int numVerts, + const MLoop *mloop, + const MPoly *mpolys, + int numLoops, + int numPolys, + float (*r_polyNors)[3], + const MFace *mfaces, + int numFaces, + const int *origIndexFace, + float (*r_faceNors)[3], + const bool only_face_normals) +{ + float(*pnors)[3] = r_polyNors, (*fnors)[3] = r_faceNors; + + if (numPolys == 0) { + if (only_face_normals == false) { + mesh_calc_normals_vert_fallback(mverts, numVerts); + } + return; + } + + /* if we are not calculating verts and no verts were passes then we have nothing to do */ + if ((only_face_normals == true) && (r_polyNors == NULL) && (r_faceNors == NULL)) { + CLOG_WARN(&LOG, "called with nothing to do"); + return; + } + + if (!pnors) { + pnors = MEM_calloc_arrayN((size_t)numPolys, sizeof(float[3]), __func__); + } + /* NO NEED TO ALLOC YET */ + /* if (!fnors) fnors = MEM_calloc_arrayN(numFaces, sizeof(float[3]), "face nors mesh.c"); */ + + if (only_face_normals == false) { + /* vertex normals are optional, they require some extra calculations, + * so make them optional */ + BKE_mesh_calc_normals_poly( + mverts, NULL, numVerts, mloop, mpolys, numLoops, numPolys, pnors, false); + } + else { + /* only calc poly normals */ + const MPoly *mp = mpolys; + for (int i = 0; i < numPolys; i++, mp++) { + BKE_mesh_calc_poly_normal(mp, mloop + mp->loopstart, mverts, pnors[i]); + } + } + + if (origIndexFace && + /* fnors == r_faceNors */ /* NO NEED TO ALLOC YET */ + fnors != NULL && + numFaces) { + const MFace *mf = mfaces; + for (int i = 0; i < numFaces; i++, mf++, origIndexFace++) { + if (*origIndexFace < numPolys) { + copy_v3_v3(fnors[i], pnors[*origIndexFace]); + } + else { + /* eek, we're not corresponding to polys */ + CLOG_ERROR(&LOG, "tessellation face indices are incorrect. normals may look bad."); + } + } + } + + if (pnors != r_polyNors) { + MEM_freeN(pnors); + } + /* if (fnors != r_faceNors) MEM_freeN(fnors); */ /* NO NEED TO ALLOC YET */ + + fnors = pnors = NULL; +} + +typedef struct MeshCalcNormalsData { + const MPoly *mpolys; + const MLoop *mloop; + MVert *mverts; + float (*pnors)[3]; + float (*lnors_weighted)[3]; + float (*vnors)[3]; +} MeshCalcNormalsData; + +static void mesh_calc_normals_poly_cb(void *__restrict userdata, + const int pidx, + const TaskParallelTLS *__restrict UNUSED(tls)) +{ + MeshCalcNormalsData *data = userdata; + const MPoly *mp = &data->mpolys[pidx]; + + BKE_mesh_calc_poly_normal(mp, data->mloop + mp->loopstart, data->mverts, data->pnors[pidx]); +} + +static void mesh_calc_normals_poly_prepare_cb(void *__restrict userdata, + const int pidx, + const TaskParallelTLS *__restrict UNUSED(tls)) +{ + MeshCalcNormalsData *data = userdata; + const MPoly *mp = &data->mpolys[pidx]; + const MLoop *ml = &data->mloop[mp->loopstart]; + const MVert *mverts = data->mverts; + + float pnor_temp[3]; + float *pnor = data->pnors ? data->pnors[pidx] : pnor_temp; + float(*lnors_weighted)[3] = data->lnors_weighted; + + const int nverts = mp->totloop; + float(*edgevecbuf)[3] = BLI_array_alloca(edgevecbuf, (size_t)nverts); + + /* Polygon Normal and edge-vector */ + /* inline version of #BKE_mesh_calc_poly_normal, also does edge-vectors */ + { + int i_prev = nverts - 1; + const float *v_prev = mverts[ml[i_prev].v].co; + const float *v_curr; + + zero_v3(pnor); + /* Newell's Method */ + for (int i = 0; i < nverts; i++) { + v_curr = mverts[ml[i].v].co; + add_newell_cross_v3_v3v3(pnor, v_prev, v_curr); + + /* Unrelated to normalize, calculate edge-vector */ + sub_v3_v3v3(edgevecbuf[i_prev], v_prev, v_curr); + normalize_v3(edgevecbuf[i_prev]); + i_prev = i; + + v_prev = v_curr; + } + if (UNLIKELY(normalize_v3(pnor) == 0.0f)) { + pnor[2] = 1.0f; /* other axes set to 0.0 */ + } + } + + /* accumulate angle weighted face normal */ + /* inline version of #accumulate_vertex_normals_poly_v3, + * split between this threaded callback and #mesh_calc_normals_poly_accum_cb. */ + { + const float *prev_edge = edgevecbuf[nverts - 1]; + + for (int i = 0; i < nverts; i++) { + const int lidx = mp->loopstart + i; + const float *cur_edge = edgevecbuf[i]; + + /* calculate angle between the two poly edges incident on + * this vertex */ + const float fac = saacos(-dot_v3v3(cur_edge, prev_edge)); + + /* Store for later accumulation */ + mul_v3_v3fl(lnors_weighted[lidx], pnor, fac); + + prev_edge = cur_edge; + } + } +} + +static void mesh_calc_normals_poly_finalize_cb(void *__restrict userdata, + const int vidx, + const TaskParallelTLS *__restrict UNUSED(tls)) +{ + MeshCalcNormalsData *data = userdata; + + MVert *mv = &data->mverts[vidx]; + float *no = data->vnors[vidx]; + + if (UNLIKELY(normalize_v3(no) == 0.0f)) { + /* following Mesh convention; we use vertex coordinate itself for normal in this case */ + normalize_v3_v3(no, mv->co); + } + + normal_float_to_short_v3(mv->no, no); +} + +void BKE_mesh_calc_normals_poly(MVert *mverts, + float (*r_vertnors)[3], + int numVerts, + const MLoop *mloop, + const MPoly *mpolys, + int numLoops, + int numPolys, + float (*r_polynors)[3], + const bool only_face_normals) +{ + float(*pnors)[3] = r_polynors; + + TaskParallelSettings settings; + BLI_parallel_range_settings_defaults(&settings); + settings.min_iter_per_thread = 1024; + + if (only_face_normals) { + BLI_assert((pnors != NULL) || (numPolys == 0)); + BLI_assert(r_vertnors == NULL); + + MeshCalcNormalsData data = { + .mpolys = mpolys, + .mloop = mloop, + .mverts = mverts, + .pnors = pnors, + }; + + BLI_task_parallel_range(0, numPolys, &data, mesh_calc_normals_poly_cb, &settings); + return; + } + + float(*vnors)[3] = r_vertnors; + float(*lnors_weighted)[3] = MEM_malloc_arrayN( + (size_t)numLoops, sizeof(*lnors_weighted), __func__); + bool free_vnors = false; + + /* first go through and calculate normals for all the polys */ + if (vnors == NULL) { + vnors = MEM_calloc_arrayN((size_t)numVerts, sizeof(*vnors), __func__); + free_vnors = true; + } + else { + memset(vnors, 0, sizeof(*vnors) * (size_t)numVerts); + } + + MeshCalcNormalsData data = { + .mpolys = mpolys, + .mloop = mloop, + .mverts = mverts, + .pnors = pnors, + .lnors_weighted = lnors_weighted, + .vnors = vnors, + }; + + /* Compute poly normals, and prepare weighted loop normals. */ + BLI_task_parallel_range(0, numPolys, &data, mesh_calc_normals_poly_prepare_cb, &settings); + + /* Actually accumulate weighted loop normals into vertex ones. */ + /* Unfortunately, not possible to thread that + * (not in a reasonable, totally lock- and barrier-free fashion), + * since several loops will point to the same vertex... */ + for (int lidx = 0; lidx < numLoops; lidx++) { + add_v3_v3(vnors[mloop[lidx].v], data.lnors_weighted[lidx]); + } + + /* Normalize and validate computed vertex normals. */ + BLI_task_parallel_range(0, numVerts, &data, mesh_calc_normals_poly_finalize_cb, &settings); + + if (free_vnors) { + MEM_freeN(vnors); + } + MEM_freeN(lnors_weighted); +} + +void BKE_mesh_ensure_normals(Mesh *mesh) +{ + if (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) { + BKE_mesh_calc_normals(mesh); + } + BLI_assert((mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) == 0); +} + +/** + * Called after calculating all modifiers. + */ +void BKE_mesh_ensure_normals_for_display(Mesh *mesh) +{ + switch ((eMeshWrapperType)mesh->runtime.wrapper_type) { + case ME_WRAPPER_TYPE_MDATA: + /* Run code below. */ + break; + case ME_WRAPPER_TYPE_BMESH: { + struct BMEditMesh *em = mesh->edit_mesh; + EditMeshData *emd = mesh->runtime.edit_data; + if (emd->vertexCos) { + BKE_editmesh_cache_ensure_vert_normals(em, emd); + BKE_editmesh_cache_ensure_poly_normals(em, emd); + } + return; + } + } + + float(*poly_nors)[3] = CustomData_get_layer(&mesh->pdata, CD_NORMAL); + const bool do_vert_normals = (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) != 0; + const bool do_poly_normals = (mesh->runtime.cd_dirty_poly & CD_MASK_NORMAL || poly_nors == NULL); + + if (do_vert_normals || do_poly_normals) { + const bool do_add_poly_nors_cddata = (poly_nors == NULL); + if (do_add_poly_nors_cddata) { + poly_nors = MEM_malloc_arrayN((size_t)mesh->totpoly, sizeof(*poly_nors), __func__); + } + + /* calculate poly/vert normals */ + BKE_mesh_calc_normals_poly(mesh->mvert, + NULL, + mesh->totvert, + mesh->mloop, + mesh->mpoly, + mesh->totloop, + mesh->totpoly, + poly_nors, + !do_vert_normals); + + if (do_add_poly_nors_cddata) { + CustomData_add_layer(&mesh->pdata, CD_NORMAL, CD_ASSIGN, poly_nors, mesh->totpoly); + } + + mesh->runtime.cd_dirty_vert &= ~CD_MASK_NORMAL; + mesh->runtime.cd_dirty_poly &= ~CD_MASK_NORMAL; + } +} + +/* Note that this does not update the CD_NORMAL layer, + * but does update the normals in the CD_MVERT layer. */ +void BKE_mesh_calc_normals(Mesh *mesh) +{ +#ifdef DEBUG_TIME + TIMEIT_START_AVERAGED(BKE_mesh_calc_normals); +#endif + BKE_mesh_calc_normals_poly(mesh->mvert, + NULL, + mesh->totvert, + mesh->mloop, + mesh->mpoly, + mesh->totloop, + mesh->totpoly, + NULL, + false); +#ifdef DEBUG_TIME + TIMEIT_END_AVERAGED(BKE_mesh_calc_normals); +#endif + mesh->runtime.cd_dirty_vert &= ~CD_MASK_NORMAL; +} + +void BKE_mesh_calc_normals_looptri(MVert *mverts, + int numVerts, + const MLoop *mloop, + const MLoopTri *looptri, + int looptri_num, + float (*r_tri_nors)[3]) +{ + float(*tnorms)[3] = MEM_calloc_arrayN((size_t)numVerts, sizeof(*tnorms), "tnorms"); + float(*fnors)[3] = (r_tri_nors) ? + r_tri_nors : + MEM_calloc_arrayN((size_t)looptri_num, sizeof(*fnors), "meshnormals"); + + if (!tnorms || !fnors) { + goto cleanup; + } + + for (int i = 0; i < looptri_num; i++) { + const MLoopTri *lt = &looptri[i]; + float *f_no = fnors[i]; + const uint vtri[3] = { + mloop[lt->tri[0]].v, + mloop[lt->tri[1]].v, + mloop[lt->tri[2]].v, + }; + + normal_tri_v3(f_no, mverts[vtri[0]].co, mverts[vtri[1]].co, mverts[vtri[2]].co); + + accumulate_vertex_normals_tri_v3(tnorms[vtri[0]], + tnorms[vtri[1]], + tnorms[vtri[2]], + f_no, + mverts[vtri[0]].co, + mverts[vtri[1]].co, + mverts[vtri[2]].co); + } + + /* following Mesh convention; we use vertex coordinate itself for normal in this case */ + for (int i = 0; i < numVerts; i++) { + MVert *mv = &mverts[i]; + float *no = tnorms[i]; + + if (UNLIKELY(normalize_v3(no) == 0.0f)) { + normalize_v3_v3(no, mv->co); + } + + normal_float_to_short_v3(mv->no, no); + } + +cleanup: + MEM_freeN(tnorms); + + if (fnors != r_tri_nors) { + MEM_freeN(fnors); + } +} + +void BKE_lnor_spacearr_init(MLoopNorSpaceArray *lnors_spacearr, + const int numLoops, + const char data_type) +{ + if (!(lnors_spacearr->lspacearr && lnors_spacearr->loops_pool)) { + MemArena *mem; + + if (!lnors_spacearr->mem) { + lnors_spacearr->mem = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, __func__); + } + mem = lnors_spacearr->mem; + lnors_spacearr->lspacearr = BLI_memarena_calloc(mem, + sizeof(MLoopNorSpace *) * (size_t)numLoops); + lnors_spacearr->loops_pool = BLI_memarena_alloc(mem, sizeof(LinkNode) * (size_t)numLoops); + + lnors_spacearr->num_spaces = 0; + } + BLI_assert(ELEM(data_type, MLNOR_SPACEARR_BMLOOP_PTR, MLNOR_SPACEARR_LOOP_INDEX)); + lnors_spacearr->data_type = data_type; +} + +void BKE_lnor_spacearr_clear(MLoopNorSpaceArray *lnors_spacearr) +{ + lnors_spacearr->num_spaces = 0; + lnors_spacearr->lspacearr = NULL; + lnors_spacearr->loops_pool = NULL; + if (lnors_spacearr->mem != NULL) { + BLI_memarena_clear(lnors_spacearr->mem); + } +} + +void BKE_lnor_spacearr_free(MLoopNorSpaceArray *lnors_spacearr) +{ + lnors_spacearr->num_spaces = 0; + lnors_spacearr->lspacearr = NULL; + lnors_spacearr->loops_pool = NULL; + BLI_memarena_free(lnors_spacearr->mem); + lnors_spacearr->mem = NULL; +} + +MLoopNorSpace *BKE_lnor_space_create(MLoopNorSpaceArray *lnors_spacearr) +{ + lnors_spacearr->num_spaces++; + return BLI_memarena_calloc(lnors_spacearr->mem, sizeof(MLoopNorSpace)); +} + +/* This threshold is a bit touchy (usual float precision issue), this value seems OK. */ +#define LNOR_SPACE_TRIGO_THRESHOLD (1.0f - 1e-4f) + +/* Should only be called once. + * Beware, this modifies ref_vec and other_vec in place! + * In case no valid space can be generated, ref_alpha and ref_beta are set to zero + * (which means 'use auto lnors'). + */ +void BKE_lnor_space_define(MLoopNorSpace *lnor_space, + const float lnor[3], + float vec_ref[3], + float vec_other[3], + BLI_Stack *edge_vectors) +{ + const float pi2 = (float)M_PI * 2.0f; + float tvec[3], dtp; + const float dtp_ref = dot_v3v3(vec_ref, lnor); + const float dtp_other = dot_v3v3(vec_other, lnor); + + if (UNLIKELY(fabsf(dtp_ref) >= LNOR_SPACE_TRIGO_THRESHOLD || + fabsf(dtp_other) >= LNOR_SPACE_TRIGO_THRESHOLD)) { + /* If vec_ref or vec_other are too much aligned with lnor, we can't build lnor space, + * tag it as invalid and abort. */ + lnor_space->ref_alpha = lnor_space->ref_beta = 0.0f; + + if (edge_vectors) { + BLI_stack_clear(edge_vectors); + } + return; + } + + copy_v3_v3(lnor_space->vec_lnor, lnor); + + /* Compute ref alpha, average angle of all available edge vectors to lnor. */ + if (edge_vectors) { + float alpha = 0.0f; + int nbr = 0; + while (!BLI_stack_is_empty(edge_vectors)) { + const float *vec = BLI_stack_peek(edge_vectors); + alpha += saacosf(dot_v3v3(vec, lnor)); + BLI_stack_discard(edge_vectors); + nbr++; + } + /* Note: In theory, this could be 'nbr > 2', + * but there is one case where we only have two edges for two loops: + * a smooth vertex with only two edges and two faces (our Monkey's nose has that, e.g.). + */ + BLI_assert(nbr >= 2); /* This piece of code shall only be called for more than one loop... */ + lnor_space->ref_alpha = alpha / (float)nbr; + } + else { + lnor_space->ref_alpha = (saacosf(dot_v3v3(vec_ref, lnor)) + + saacosf(dot_v3v3(vec_other, lnor))) / + 2.0f; + } + + /* Project vec_ref on lnor's ortho plane. */ + mul_v3_v3fl(tvec, lnor, dtp_ref); + sub_v3_v3(vec_ref, tvec); + normalize_v3_v3(lnor_space->vec_ref, vec_ref); + + cross_v3_v3v3(tvec, lnor, lnor_space->vec_ref); + normalize_v3_v3(lnor_space->vec_ortho, tvec); + + /* Project vec_other on lnor's ortho plane. */ + mul_v3_v3fl(tvec, lnor, dtp_other); + sub_v3_v3(vec_other, tvec); + normalize_v3(vec_other); + + /* Beta is angle between ref_vec and other_vec, around lnor. */ + dtp = dot_v3v3(lnor_space->vec_ref, vec_other); + if (LIKELY(dtp < LNOR_SPACE_TRIGO_THRESHOLD)) { + const float beta = saacos(dtp); + lnor_space->ref_beta = (dot_v3v3(lnor_space->vec_ortho, vec_other) < 0.0f) ? pi2 - beta : beta; + } + else { + lnor_space->ref_beta = pi2; + } +} + +/** + * Add a new given loop to given lnor_space. + * Depending on \a lnor_space->data_type, we expect \a bm_loop to be a pointer to BMLoop struct + * (in case of BMLOOP_PTR), or NULL (in case of LOOP_INDEX), loop index is then stored in pointer. + * If \a is_single is set, the BMLoop or loop index is directly stored in \a lnor_space->loops + * pointer (since there is only one loop in this fan), + * else it is added to the linked list of loops in the fan. + */ +void BKE_lnor_space_add_loop(MLoopNorSpaceArray *lnors_spacearr, + MLoopNorSpace *lnor_space, + const int ml_index, + void *bm_loop, + const bool is_single) +{ + BLI_assert((lnors_spacearr->data_type == MLNOR_SPACEARR_LOOP_INDEX && bm_loop == NULL) || + (lnors_spacearr->data_type == MLNOR_SPACEARR_BMLOOP_PTR && bm_loop != NULL)); + + lnors_spacearr->lspacearr[ml_index] = lnor_space; + if (bm_loop == NULL) { + bm_loop = POINTER_FROM_INT(ml_index); + } + if (is_single) { + BLI_assert(lnor_space->loops == NULL); + lnor_space->flags |= MLNOR_SPACE_IS_SINGLE; + lnor_space->loops = bm_loop; + } + else { + BLI_assert((lnor_space->flags & MLNOR_SPACE_IS_SINGLE) == 0); + BLI_linklist_prepend_nlink(&lnor_space->loops, bm_loop, &lnors_spacearr->loops_pool[ml_index]); + } +} + +MINLINE float unit_short_to_float(const short val) +{ + return (float)val / (float)SHRT_MAX; +} + +MINLINE short unit_float_to_short(const float val) +{ + /* Rounding... */ + return (short)floorf(val * (float)SHRT_MAX + 0.5f); +} + +void BKE_lnor_space_custom_data_to_normal(MLoopNorSpace *lnor_space, + const short clnor_data[2], + float r_custom_lnor[3]) +{ + /* NOP custom normal data or invalid lnor space, return. */ + if (clnor_data[0] == 0 || lnor_space->ref_alpha == 0.0f || lnor_space->ref_beta == 0.0f) { + copy_v3_v3(r_custom_lnor, lnor_space->vec_lnor); + return; + } + + { + /* TODO Check whether using sincosf() gives any noticeable benefit + * (could not even get it working under linux though)! */ + const float pi2 = (float)(M_PI * 2.0); + const float alphafac = unit_short_to_float(clnor_data[0]); + const float alpha = (alphafac > 0.0f ? lnor_space->ref_alpha : pi2 - lnor_space->ref_alpha) * + alphafac; + const float betafac = unit_short_to_float(clnor_data[1]); + + mul_v3_v3fl(r_custom_lnor, lnor_space->vec_lnor, cosf(alpha)); + + if (betafac == 0.0f) { + madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ref, sinf(alpha)); + } + else { + const float sinalpha = sinf(alpha); + const float beta = (betafac > 0.0f ? lnor_space->ref_beta : pi2 - lnor_space->ref_beta) * + betafac; + madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ref, sinalpha * cosf(beta)); + madd_v3_v3fl(r_custom_lnor, lnor_space->vec_ortho, sinalpha * sinf(beta)); + } + } +} + +void BKE_lnor_space_custom_normal_to_data(MLoopNorSpace *lnor_space, + const float custom_lnor[3], + short r_clnor_data[2]) +{ + /* We use null vector as NOP custom normal (can be simpler than giving autocomputed lnor...). */ + if (is_zero_v3(custom_lnor) || compare_v3v3(lnor_space->vec_lnor, custom_lnor, 1e-4f)) { + r_clnor_data[0] = r_clnor_data[1] = 0; + return; + } + + { + const float pi2 = (float)(M_PI * 2.0); + const float cos_alpha = dot_v3v3(lnor_space->vec_lnor, custom_lnor); + float vec[3], cos_beta; + float alpha; + + alpha = saacosf(cos_alpha); + if (alpha > lnor_space->ref_alpha) { + /* Note we could stick to [0, pi] range here, + * but makes decoding more complex, not worth it. */ + r_clnor_data[0] = unit_float_to_short(-(pi2 - alpha) / (pi2 - lnor_space->ref_alpha)); + } + else { + r_clnor_data[0] = unit_float_to_short(alpha / lnor_space->ref_alpha); + } + + /* Project custom lnor on (vec_ref, vec_ortho) plane. */ + mul_v3_v3fl(vec, lnor_space->vec_lnor, -cos_alpha); + add_v3_v3(vec, custom_lnor); + normalize_v3(vec); + + cos_beta = dot_v3v3(lnor_space->vec_ref, vec); + + if (cos_beta < LNOR_SPACE_TRIGO_THRESHOLD) { + float beta = saacosf(cos_beta); + if (dot_v3v3(lnor_space->vec_ortho, vec) < 0.0f) { + beta = pi2 - beta; + } + + if (beta > lnor_space->ref_beta) { + r_clnor_data[1] = unit_float_to_short(-(pi2 - beta) / (pi2 - lnor_space->ref_beta)); + } + else { + r_clnor_data[1] = unit_float_to_short(beta / lnor_space->ref_beta); + } + } + else { + r_clnor_data[1] = 0; + } + } +} + +#define LOOP_SPLIT_TASK_BLOCK_SIZE 1024 + +typedef struct LoopSplitTaskData { + /* Specific to each instance (each task). */ + + /** We have to create those outside of tasks, since afaik memarena is not threadsafe. */ + MLoopNorSpace *lnor_space; + float (*lnor)[3]; + const MLoop *ml_curr; + const MLoop *ml_prev; + int ml_curr_index; + int ml_prev_index; + /** Also used a flag to switch between single or fan process! */ + const int *e2l_prev; + int mp_index; + + /** This one is special, it's owned and managed by worker tasks, + * avoid to have to create it for each fan! */ + BLI_Stack *edge_vectors; + + char pad_c; +} LoopSplitTaskData; + +typedef struct LoopSplitTaskDataCommon { + /* Read/write. + * Note we do not need to protect it, though, since two different tasks will *always* affect + * different elements in the arrays. */ + MLoopNorSpaceArray *lnors_spacearr; + float (*loopnors)[3]; + short (*clnors_data)[2]; + + /* Read-only. */ + const MVert *mverts; + const MEdge *medges; + const MLoop *mloops; + const MPoly *mpolys; + int (*edge_to_loops)[2]; + int *loop_to_poly; + const float (*polynors)[3]; + + int numEdges; + int numLoops; + int numPolys; +} LoopSplitTaskDataCommon; + +#define INDEX_UNSET INT_MIN +#define INDEX_INVALID -1 +/* See comment about edge_to_loops below. */ +#define IS_EDGE_SHARP(_e2l) (ELEM((_e2l)[1], INDEX_UNSET, INDEX_INVALID)) + +static void mesh_edges_sharp_tag(LoopSplitTaskDataCommon *data, + const bool check_angle, + const float split_angle, + const bool do_sharp_edges_tag) +{ + const MVert *mverts = data->mverts; + const MEdge *medges = data->medges; + const MLoop *mloops = data->mloops; + + const MPoly *mpolys = data->mpolys; + + const int numEdges = data->numEdges; + const int numPolys = data->numPolys; + + float(*loopnors)[3] = data->loopnors; /* Note: loopnors may be NULL here. */ + const float(*polynors)[3] = data->polynors; + + int(*edge_to_loops)[2] = data->edge_to_loops; + int *loop_to_poly = data->loop_to_poly; + + BLI_bitmap *sharp_edges = do_sharp_edges_tag ? BLI_BITMAP_NEW(numEdges, __func__) : NULL; + + const MPoly *mp; + int mp_index; + + const float split_angle_cos = check_angle ? cosf(split_angle) : -1.0f; + + for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) { + const MLoop *ml_curr; + int *e2l; + int ml_curr_index = mp->loopstart; + const int ml_last_index = (ml_curr_index + mp->totloop) - 1; + + ml_curr = &mloops[ml_curr_index]; + + for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++) { + e2l = edge_to_loops[ml_curr->e]; + + loop_to_poly[ml_curr_index] = mp_index; + + /* Pre-populate all loop normals as if their verts were all-smooth, + * this way we don't have to compute those later! + */ + if (loopnors) { + normal_short_to_float_v3(loopnors[ml_curr_index], mverts[ml_curr->v].no); + } + + /* Check whether current edge might be smooth or sharp */ + if ((e2l[0] | e2l[1]) == 0) { + /* 'Empty' edge until now, set e2l[0] (and e2l[1] to INDEX_UNSET to tag it as unset). */ + e2l[0] = ml_curr_index; + /* We have to check this here too, else we might miss some flat faces!!! */ + e2l[1] = (mp->flag & ME_SMOOTH) ? INDEX_UNSET : INDEX_INVALID; + } + else if (e2l[1] == INDEX_UNSET) { + const bool is_angle_sharp = (check_angle && + dot_v3v3(polynors[loop_to_poly[e2l[0]]], polynors[mp_index]) < + split_angle_cos); + + /* Second loop using this edge, time to test its sharpness. + * An edge is sharp if it is tagged as such, or its face is not smooth, + * or both poly have opposed (flipped) normals, i.e. both loops on the same edge share the + * same vertex, or angle between both its polys' normals is above split_angle value. + */ + if (!(mp->flag & ME_SMOOTH) || (medges[ml_curr->e].flag & ME_SHARP) || + ml_curr->v == mloops[e2l[0]].v || is_angle_sharp) { + /* Note: we are sure that loop != 0 here ;) */ + e2l[1] = INDEX_INVALID; + + /* We want to avoid tagging edges as sharp when it is already defined as such by + * other causes than angle threshold... */ + if (do_sharp_edges_tag && is_angle_sharp) { + BLI_BITMAP_SET(sharp_edges, ml_curr->e, true); + } + } + else { + e2l[1] = ml_curr_index; + } + } + else if (!IS_EDGE_SHARP(e2l)) { + /* More than two loops using this edge, tag as sharp if not yet done. */ + e2l[1] = INDEX_INVALID; + + /* We want to avoid tagging edges as sharp when it is already defined as such by + * other causes than angle threshold... */ + if (do_sharp_edges_tag) { + BLI_BITMAP_SET(sharp_edges, ml_curr->e, false); + } + } + /* Else, edge is already 'disqualified' (i.e. sharp)! */ + } + } + + /* If requested, do actual tagging of edges as sharp in another loop. */ + if (do_sharp_edges_tag) { + MEdge *me; + int me_index; + for (me = (MEdge *)medges, me_index = 0; me_index < numEdges; me++, me_index++) { + if (BLI_BITMAP_TEST(sharp_edges, me_index)) { + me->flag |= ME_SHARP; + } + } + + MEM_freeN(sharp_edges); + } +} + +/** + * Define sharp edges as needed to mimic 'autosmooth' from angle threshold. + * + * Used when defining an empty custom loop normals data layer, + * to keep same shading as with autosmooth! + */ +void BKE_edges_sharp_from_angle_set(const struct MVert *mverts, + const int UNUSED(numVerts), + struct MEdge *medges, + const int numEdges, + struct MLoop *mloops, + const int numLoops, + struct MPoly *mpolys, + const float (*polynors)[3], + const int numPolys, + const float split_angle) +{ + if (split_angle >= (float)M_PI) { + /* Nothing to do! */ + return; + } + + /* Mapping edge -> loops. See BKE_mesh_normals_loop_split() for details. */ + int(*edge_to_loops)[2] = MEM_calloc_arrayN((size_t)numEdges, sizeof(*edge_to_loops), __func__); + + /* Simple mapping from a loop to its polygon index. */ + int *loop_to_poly = MEM_malloc_arrayN((size_t)numLoops, sizeof(*loop_to_poly), __func__); + + LoopSplitTaskDataCommon common_data = { + .mverts = mverts, + .medges = medges, + .mloops = mloops, + .mpolys = mpolys, + .edge_to_loops = edge_to_loops, + .loop_to_poly = loop_to_poly, + .polynors = polynors, + .numEdges = numEdges, + .numPolys = numPolys, + }; + + mesh_edges_sharp_tag(&common_data, true, split_angle, true); + + MEM_freeN(edge_to_loops); + MEM_freeN(loop_to_poly); +} + +void BKE_mesh_loop_manifold_fan_around_vert_next(const MLoop *mloops, + const MPoly *mpolys, + const int *loop_to_poly, + const int *e2lfan_curr, + const uint mv_pivot_index, + const MLoop **r_mlfan_curr, + int *r_mlfan_curr_index, + int *r_mlfan_vert_index, + int *r_mpfan_curr_index) +{ + const MLoop *mlfan_next; + const MPoly *mpfan_next; + + /* Warning! This is rather complex! + * We have to find our next edge around the vertex (fan mode). + * First we find the next loop, which is either previous or next to mlfan_curr_index, depending + * whether both loops using current edge are in the same direction or not, and whether + * mlfan_curr_index actually uses the vertex we are fanning around! + * mlfan_curr_index is the index of mlfan_next here, and mlfan_next is not the real next one + * (i.e. not the future mlfan_curr)... + */ + *r_mlfan_curr_index = (e2lfan_curr[0] == *r_mlfan_curr_index) ? e2lfan_curr[1] : e2lfan_curr[0]; + *r_mpfan_curr_index = loop_to_poly[*r_mlfan_curr_index]; + + BLI_assert(*r_mlfan_curr_index >= 0); + BLI_assert(*r_mpfan_curr_index >= 0); + + mlfan_next = &mloops[*r_mlfan_curr_index]; + mpfan_next = &mpolys[*r_mpfan_curr_index]; + if (((*r_mlfan_curr)->v == mlfan_next->v && (*r_mlfan_curr)->v == mv_pivot_index) || + ((*r_mlfan_curr)->v != mlfan_next->v && (*r_mlfan_curr)->v != mv_pivot_index)) { + /* We need the previous loop, but current one is our vertex's loop. */ + *r_mlfan_vert_index = *r_mlfan_curr_index; + if (--(*r_mlfan_curr_index) < mpfan_next->loopstart) { + *r_mlfan_curr_index = mpfan_next->loopstart + mpfan_next->totloop - 1; + } + } + else { + /* We need the next loop, which is also our vertex's loop. */ + if (++(*r_mlfan_curr_index) >= mpfan_next->loopstart + mpfan_next->totloop) { + *r_mlfan_curr_index = mpfan_next->loopstart; + } + *r_mlfan_vert_index = *r_mlfan_curr_index; + } + *r_mlfan_curr = &mloops[*r_mlfan_curr_index]; + /* And now we are back in sync, mlfan_curr_index is the index of mlfan_curr! Pff! */ +} + +static void split_loop_nor_single_do(LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data) +{ + MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr; + const short(*clnors_data)[2] = common_data->clnors_data; + + const MVert *mverts = common_data->mverts; + const MEdge *medges = common_data->medges; + const float(*polynors)[3] = common_data->polynors; + + MLoopNorSpace *lnor_space = data->lnor_space; + float(*lnor)[3] = data->lnor; + const MLoop *ml_curr = data->ml_curr; + const MLoop *ml_prev = data->ml_prev; + const int ml_curr_index = data->ml_curr_index; +#if 0 /* Not needed for 'single' loop. */ + const int ml_prev_index = data->ml_prev_index; + const int *e2l_prev = data->e2l_prev; +#endif + const int mp_index = data->mp_index; + + /* Simple case (both edges around that vertex are sharp in current polygon), + * this loop just takes its poly normal. + */ + copy_v3_v3(*lnor, polynors[mp_index]); + +#if 0 + printf("BASIC: handling loop %d / edge %d / vert %d / poly %d\n", + ml_curr_index, + ml_curr->e, + ml_curr->v, + mp_index); +#endif + + /* If needed, generate this (simple!) lnor space. */ + if (lnors_spacearr) { + float vec_curr[3], vec_prev[3]; + + const uint mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */ + const MVert *mv_pivot = &mverts[mv_pivot_index]; + const MEdge *me_curr = &medges[ml_curr->e]; + const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] : + &mverts[me_curr->v1]; + const MEdge *me_prev = &medges[ml_prev->e]; + const MVert *mv_3 = (me_prev->v1 == mv_pivot_index) ? &mverts[me_prev->v2] : + &mverts[me_prev->v1]; + + sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co); + normalize_v3(vec_curr); + sub_v3_v3v3(vec_prev, mv_3->co, mv_pivot->co); + normalize_v3(vec_prev); + + BKE_lnor_space_define(lnor_space, *lnor, vec_curr, vec_prev, NULL); + /* We know there is only one loop in this space, + * no need to create a linklist in this case... */ + BKE_lnor_space_add_loop(lnors_spacearr, lnor_space, ml_curr_index, NULL, true); + + if (clnors_data) { + BKE_lnor_space_custom_data_to_normal(lnor_space, clnors_data[ml_curr_index], *lnor); + } + } +} + +static void split_loop_nor_fan_do(LoopSplitTaskDataCommon *common_data, LoopSplitTaskData *data) +{ + MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr; + float(*loopnors)[3] = common_data->loopnors; + short(*clnors_data)[2] = common_data->clnors_data; + + const MVert *mverts = common_data->mverts; + const MEdge *medges = common_data->medges; + const MLoop *mloops = common_data->mloops; + const MPoly *mpolys = common_data->mpolys; + const int(*edge_to_loops)[2] = common_data->edge_to_loops; + const int *loop_to_poly = common_data->loop_to_poly; + const float(*polynors)[3] = common_data->polynors; + + MLoopNorSpace *lnor_space = data->lnor_space; +#if 0 /* Not needed for 'fan' loops. */ + float(*lnor)[3] = data->lnor; +#endif + const MLoop *ml_curr = data->ml_curr; + const MLoop *ml_prev = data->ml_prev; + const int ml_curr_index = data->ml_curr_index; + const int ml_prev_index = data->ml_prev_index; + const int mp_index = data->mp_index; + const int *e2l_prev = data->e2l_prev; + + BLI_Stack *edge_vectors = data->edge_vectors; + + /* Gah... We have to fan around current vertex, until we find the other non-smooth edge, + * and accumulate face normals into the vertex! + * Note in case this vertex has only one sharp edges, this is a waste because the normal is the + * same as the vertex normal, but I do not see any easy way to detect that (would need to count + * number of sharp edges per vertex, I doubt the additional memory usage would be worth it, + * especially as it should not be a common case in real-life meshes anyway). + */ + const uint mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */ + const MVert *mv_pivot = &mverts[mv_pivot_index]; + + /* ml_curr would be mlfan_prev if we needed that one. */ + const MEdge *me_org = &medges[ml_curr->e]; + + const int *e2lfan_curr; + float vec_curr[3], vec_prev[3], vec_org[3]; + const MLoop *mlfan_curr; + float lnor[3] = {0.0f, 0.0f, 0.0f}; + /* mlfan_vert_index: the loop of our current edge might not be the loop of our current vertex! */ + int mlfan_curr_index, mlfan_vert_index, mpfan_curr_index; + + /* We validate clnors data on the fly - cheapest way to do! */ + int clnors_avg[2] = {0, 0}; + short(*clnor_ref)[2] = NULL; + int clnors_nbr = 0; + bool clnors_invalid = false; + + /* Temp loop normal stack. */ + BLI_SMALLSTACK_DECLARE(normal, float *); + /* Temp clnors stack. */ + BLI_SMALLSTACK_DECLARE(clnors, short *); + + e2lfan_curr = e2l_prev; + mlfan_curr = ml_prev; + mlfan_curr_index = ml_prev_index; + mlfan_vert_index = ml_curr_index; + mpfan_curr_index = mp_index; + + BLI_assert(mlfan_curr_index >= 0); + BLI_assert(mlfan_vert_index >= 0); + BLI_assert(mpfan_curr_index >= 0); + + /* Only need to compute previous edge's vector once, then we can just reuse old current one! */ + { + const MVert *mv_2 = (me_org->v1 == mv_pivot_index) ? &mverts[me_org->v2] : &mverts[me_org->v1]; + + sub_v3_v3v3(vec_org, mv_2->co, mv_pivot->co); + normalize_v3(vec_org); + copy_v3_v3(vec_prev, vec_org); + + if (lnors_spacearr) { + BLI_stack_push(edge_vectors, vec_org); + } + } + + // printf("FAN: vert %d, start edge %d\n", mv_pivot_index, ml_curr->e); + + while (true) { + const MEdge *me_curr = &medges[mlfan_curr->e]; + /* Compute edge vectors. + * NOTE: We could pre-compute those into an array, in the first iteration, instead of computing + * them twice (or more) here. However, time gained is not worth memory and time lost, + * given the fact that this code should not be called that much in real-life meshes... + */ + { + const MVert *mv_2 = (me_curr->v1 == mv_pivot_index) ? &mverts[me_curr->v2] : + &mverts[me_curr->v1]; + + sub_v3_v3v3(vec_curr, mv_2->co, mv_pivot->co); + normalize_v3(vec_curr); + } + + // printf("\thandling edge %d / loop %d\n", mlfan_curr->e, mlfan_curr_index); + + { + /* Code similar to accumulate_vertex_normals_poly_v3. */ + /* Calculate angle between the two poly edges incident on this vertex. */ + const float fac = saacos(dot_v3v3(vec_curr, vec_prev)); + /* Accumulate */ + madd_v3_v3fl(lnor, polynors[mpfan_curr_index], fac); + + if (clnors_data) { + /* Accumulate all clnors, if they are not all equal we have to fix that! */ + short(*clnor)[2] = &clnors_data[mlfan_vert_index]; + if (clnors_nbr) { + clnors_invalid |= ((*clnor_ref)[0] != (*clnor)[0] || (*clnor_ref)[1] != (*clnor)[1]); + } + else { + clnor_ref = clnor; + } + clnors_avg[0] += (*clnor)[0]; + clnors_avg[1] += (*clnor)[1]; + clnors_nbr++; + /* We store here a pointer to all custom lnors processed. */ + BLI_SMALLSTACK_PUSH(clnors, (short *)*clnor); + } + } + + /* We store here a pointer to all loop-normals processed. */ + BLI_SMALLSTACK_PUSH(normal, (float *)(loopnors[mlfan_vert_index])); + + if (lnors_spacearr) { + /* Assign current lnor space to current 'vertex' loop. */ + BKE_lnor_space_add_loop(lnors_spacearr, lnor_space, mlfan_vert_index, NULL, false); + if (me_curr != me_org) { + /* We store here all edges-normalized vectors processed. */ + BLI_stack_push(edge_vectors, vec_curr); + } + } + + if (IS_EDGE_SHARP(e2lfan_curr) || (me_curr == me_org)) { + /* Current edge is sharp and we have finished with this fan of faces around this vert, + * or this vert is smooth, and we have completed a full turn around it. + */ + // printf("FAN: Finished!\n"); + break; + } + + copy_v3_v3(vec_prev, vec_curr); + + /* Find next loop of the smooth fan. */ + BKE_mesh_loop_manifold_fan_around_vert_next(mloops, + mpolys, + loop_to_poly, + e2lfan_curr, + mv_pivot_index, + &mlfan_curr, + &mlfan_curr_index, + &mlfan_vert_index, + &mpfan_curr_index); + + e2lfan_curr = edge_to_loops[mlfan_curr->e]; + } + + { + float lnor_len = normalize_v3(lnor); + + /* If we are generating lnor spacearr, we can now define the one for this fan, + * and optionally compute final lnor from custom data too! + */ + if (lnors_spacearr) { + if (UNLIKELY(lnor_len == 0.0f)) { + /* Use vertex normal as fallback! */ + copy_v3_v3(lnor, loopnors[mlfan_vert_index]); + lnor_len = 1.0f; + } + + BKE_lnor_space_define(lnor_space, lnor, vec_org, vec_curr, edge_vectors); + + if (clnors_data) { + if (clnors_invalid) { + short *clnor; + + clnors_avg[0] /= clnors_nbr; + clnors_avg[1] /= clnors_nbr; + /* Fix/update all clnors of this fan with computed average value. */ + if (G.debug & G_DEBUG) { + printf("Invalid clnors in this fan!\n"); + } + while ((clnor = BLI_SMALLSTACK_POP(clnors))) { + // print_v2("org clnor", clnor); + clnor[0] = (short)clnors_avg[0]; + clnor[1] = (short)clnors_avg[1]; + } + // print_v2("new clnors", clnors_avg); + } + /* Extra bonus: since small-stack is local to this function, + * no more need to empty it at all cost! */ + + BKE_lnor_space_custom_data_to_normal(lnor_space, *clnor_ref, lnor); + } + } + + /* In case we get a zero normal here, just use vertex normal already set! */ + if (LIKELY(lnor_len != 0.0f)) { + /* Copy back the final computed normal into all related loop-normals. */ + float *nor; + + while ((nor = BLI_SMALLSTACK_POP(normal))) { + copy_v3_v3(nor, lnor); + } + } + /* Extra bonus: since small-stack is local to this function, + * no more need to empty it at all cost! */ + } +} + +static void loop_split_worker_do(LoopSplitTaskDataCommon *common_data, + LoopSplitTaskData *data, + BLI_Stack *edge_vectors) +{ + BLI_assert(data->ml_curr); + if (data->e2l_prev) { + BLI_assert((edge_vectors == NULL) || BLI_stack_is_empty(edge_vectors)); + data->edge_vectors = edge_vectors; + split_loop_nor_fan_do(common_data, data); + } + else { + /* No need for edge_vectors for 'single' case! */ + split_loop_nor_single_do(common_data, data); + } +} + +static void loop_split_worker(TaskPool *__restrict pool, void *taskdata) +{ + LoopSplitTaskDataCommon *common_data = BLI_task_pool_user_data(pool); + LoopSplitTaskData *data = taskdata; + + /* Temp edge vectors stack, only used when computing lnor spacearr. */ + BLI_Stack *edge_vectors = common_data->lnors_spacearr ? + BLI_stack_new(sizeof(float[3]), __func__) : + NULL; + +#ifdef DEBUG_TIME + TIMEIT_START_AVERAGED(loop_split_worker); +#endif + + for (int i = 0; i < LOOP_SPLIT_TASK_BLOCK_SIZE; i++, data++) { + /* A NULL ml_curr is used to tag ended data! */ + if (data->ml_curr == NULL) { + break; + } + + loop_split_worker_do(common_data, data, edge_vectors); + } + + if (edge_vectors) { + BLI_stack_free(edge_vectors); + } + +#ifdef DEBUG_TIME + TIMEIT_END_AVERAGED(loop_split_worker); +#endif +} + +/** + * Check whether given loop is part of an unknown-so-far cyclic smooth fan, or not. + * Needed because cyclic smooth fans have no obvious 'entry point', + * and yet we need to walk them once, and only once. + */ +static bool loop_split_generator_check_cyclic_smooth_fan(const MLoop *mloops, + const MPoly *mpolys, + const int (*edge_to_loops)[2], + const int *loop_to_poly, + const int *e2l_prev, + BLI_bitmap *skip_loops, + const MLoop *ml_curr, + const MLoop *ml_prev, + const int ml_curr_index, + const int ml_prev_index, + const int mp_curr_index) +{ + const uint mv_pivot_index = ml_curr->v; /* The vertex we are "fanning" around! */ + const int *e2lfan_curr; + const MLoop *mlfan_curr; + /* mlfan_vert_index: the loop of our current edge might not be the loop of our current vertex! */ + int mlfan_curr_index, mlfan_vert_index, mpfan_curr_index; + + e2lfan_curr = e2l_prev; + if (IS_EDGE_SHARP(e2lfan_curr)) { + /* Sharp loop, so not a cyclic smooth fan... */ + return false; + } + + mlfan_curr = ml_prev; + mlfan_curr_index = ml_prev_index; + mlfan_vert_index = ml_curr_index; + mpfan_curr_index = mp_curr_index; + + BLI_assert(mlfan_curr_index >= 0); + BLI_assert(mlfan_vert_index >= 0); + BLI_assert(mpfan_curr_index >= 0); + + BLI_assert(!BLI_BITMAP_TEST(skip_loops, mlfan_vert_index)); + BLI_BITMAP_ENABLE(skip_loops, mlfan_vert_index); + + while (true) { + /* Find next loop of the smooth fan. */ + BKE_mesh_loop_manifold_fan_around_vert_next(mloops, + mpolys, + loop_to_poly, + e2lfan_curr, + mv_pivot_index, + &mlfan_curr, + &mlfan_curr_index, + &mlfan_vert_index, + &mpfan_curr_index); + + e2lfan_curr = edge_to_loops[mlfan_curr->e]; + + if (IS_EDGE_SHARP(e2lfan_curr)) { + /* Sharp loop/edge, so not a cyclic smooth fan... */ + return false; + } + /* Smooth loop/edge... */ + if (BLI_BITMAP_TEST(skip_loops, mlfan_vert_index)) { + if (mlfan_vert_index == ml_curr_index) { + /* We walked around a whole cyclic smooth fan without finding any already-processed loop, + * means we can use initial ml_curr/ml_prev edge as start for this smooth fan. */ + return true; + } + /* ... already checked in some previous looping, we can abort. */ + return false; + } + + /* ... we can skip it in future, and keep checking the smooth fan. */ + BLI_BITMAP_ENABLE(skip_loops, mlfan_vert_index); + } +} + +static void loop_split_generator(TaskPool *pool, LoopSplitTaskDataCommon *common_data) +{ + MLoopNorSpaceArray *lnors_spacearr = common_data->lnors_spacearr; + float(*loopnors)[3] = common_data->loopnors; + + const MLoop *mloops = common_data->mloops; + const MPoly *mpolys = common_data->mpolys; + const int *loop_to_poly = common_data->loop_to_poly; + const int(*edge_to_loops)[2] = common_data->edge_to_loops; + const int numLoops = common_data->numLoops; + const int numPolys = common_data->numPolys; + + const MPoly *mp; + int mp_index; + + const MLoop *ml_curr; + const MLoop *ml_prev; + int ml_curr_index; + int ml_prev_index; + + BLI_bitmap *skip_loops = BLI_BITMAP_NEW(numLoops, __func__); + + LoopSplitTaskData *data_buff = NULL; + int data_idx = 0; + + /* Temp edge vectors stack, only used when computing lnor spacearr + * (and we are not multi-threading). */ + BLI_Stack *edge_vectors = NULL; + +#ifdef DEBUG_TIME + TIMEIT_START_AVERAGED(loop_split_generator); +#endif + + if (!pool) { + if (lnors_spacearr) { + edge_vectors = BLI_stack_new(sizeof(float[3]), __func__); + } + } + + /* We now know edges that can be smoothed (with their vector, and their two loops), + * and edges that will be hard! Now, time to generate the normals. + */ + for (mp = mpolys, mp_index = 0; mp_index < numPolys; mp++, mp_index++) { + float(*lnors)[3]; + const int ml_last_index = (mp->loopstart + mp->totloop) - 1; + ml_curr_index = mp->loopstart; + ml_prev_index = ml_last_index; + + ml_curr = &mloops[ml_curr_index]; + ml_prev = &mloops[ml_prev_index]; + lnors = &loopnors[ml_curr_index]; + + for (; ml_curr_index <= ml_last_index; ml_curr++, ml_curr_index++, lnors++) { + const int *e2l_curr = edge_to_loops[ml_curr->e]; + const int *e2l_prev = edge_to_loops[ml_prev->e]; + +#if 0 + printf("Checking loop %d / edge %u / vert %u (sharp edge: %d, skiploop: %d)...", + ml_curr_index, + ml_curr->e, + ml_curr->v, + IS_EDGE_SHARP(e2l_curr), + BLI_BITMAP_TEST_BOOL(skip_loops, ml_curr_index)); +#endif + + /* A smooth edge, we have to check for cyclic smooth fan case. + * If we find a new, never-processed cyclic smooth fan, we can do it now using that loop/edge + * as 'entry point', otherwise we can skip it. */ + + /* Note: In theory, we could make loop_split_generator_check_cyclic_smooth_fan() store + * mlfan_vert_index'es and edge indexes in two stacks, to avoid having to fan again around + * the vert during actual computation of clnor & clnorspace. However, this would complicate + * the code, add more memory usage, and despite its logical complexity, + * loop_manifold_fan_around_vert_next() is quite cheap in term of CPU cycles, + * so really think it's not worth it. */ + if (!IS_EDGE_SHARP(e2l_curr) && (BLI_BITMAP_TEST(skip_loops, ml_curr_index) || + !loop_split_generator_check_cyclic_smooth_fan(mloops, + mpolys, + edge_to_loops, + loop_to_poly, + e2l_prev, + skip_loops, + ml_curr, + ml_prev, + ml_curr_index, + ml_prev_index, + mp_index))) { + // printf("SKIPPING!\n"); + } + else { + LoopSplitTaskData *data, data_local; + + // printf("PROCESSING!\n"); + + if (pool) { + if (data_idx == 0) { + data_buff = MEM_calloc_arrayN( + LOOP_SPLIT_TASK_BLOCK_SIZE, sizeof(*data_buff), __func__); + } + data = &data_buff[data_idx]; + } + else { + data = &data_local; + memset(data, 0, sizeof(*data)); + } + + if (IS_EDGE_SHARP(e2l_curr) && IS_EDGE_SHARP(e2l_prev)) { + data->lnor = lnors; + data->ml_curr = ml_curr; + data->ml_prev = ml_prev; + data->ml_curr_index = ml_curr_index; +#if 0 /* Not needed for 'single' loop. */ + data->ml_prev_index = ml_prev_index; + data->e2l_prev = NULL; /* Tag as 'single' task. */ +#endif + data->mp_index = mp_index; + if (lnors_spacearr) { + data->lnor_space = BKE_lnor_space_create(lnors_spacearr); + } + } + /* We *do not need* to check/tag loops as already computed! + * Due to the fact a loop only links to one of its two edges, + * a same fan *will never be walked more than once!* + * Since we consider edges having neighbor polys with inverted + * (flipped) normals as sharp, we are sure that no fan will be skipped, + * even only considering the case (sharp curr_edge, smooth prev_edge), + * and not the alternative (smooth curr_edge, sharp prev_edge). + * All this due/thanks to link between normals and loop ordering (i.e. winding). + */ + else { +#if 0 /* Not needed for 'fan' loops. */ + data->lnor = lnors; +#endif + data->ml_curr = ml_curr; + data->ml_prev = ml_prev; + data->ml_curr_index = ml_curr_index; + data->ml_prev_index = ml_prev_index; + data->e2l_prev = e2l_prev; /* Also tag as 'fan' task. */ + data->mp_index = mp_index; + if (lnors_spacearr) { + data->lnor_space = BKE_lnor_space_create(lnors_spacearr); + } + } + + if (pool) { + data_idx++; + if (data_idx == LOOP_SPLIT_TASK_BLOCK_SIZE) { + BLI_task_pool_push(pool, loop_split_worker, data_buff, true, NULL); + data_idx = 0; + } + } + else { + loop_split_worker_do(common_data, data, edge_vectors); + } + } + + ml_prev = ml_curr; + ml_prev_index = ml_curr_index; + } + } + + /* Last block of data... Since it is calloc'ed and we use first NULL item as stopper, + * everything is fine. */ + if (pool && data_idx) { + BLI_task_pool_push(pool, loop_split_worker, data_buff, true, NULL); + } + + if (edge_vectors) { + BLI_stack_free(edge_vectors); + } + MEM_freeN(skip_loops); + +#ifdef DEBUG_TIME + TIMEIT_END_AVERAGED(loop_split_generator); +#endif +} + +/** + * Compute split normals, i.e. vertex normals associated with each poly (hence 'loop normals'). + * Useful to materialize sharp edges (or non-smooth faces) without actually modifying the geometry + * (splitting edges). + */ +void BKE_mesh_normals_loop_split(const MVert *mverts, + const int UNUSED(numVerts), + MEdge *medges, + const int numEdges, + MLoop *mloops, + float (*r_loopnors)[3], + const int numLoops, + MPoly *mpolys, + const float (*polynors)[3], + const int numPolys, + const bool use_split_normals, + const float split_angle, + MLoopNorSpaceArray *r_lnors_spacearr, + short (*clnors_data)[2], + int *r_loop_to_poly) +{ + /* For now this is not supported. + * If we do not use split normals, we do not generate anything fancy! */ + BLI_assert(use_split_normals || !(r_lnors_spacearr)); + + if (!use_split_normals) { + /* In this case, we simply fill lnors with vnors (or fnors for flat faces), quite simple! + * Note this is done here to keep some logic and consistency in this quite complex code, + * since we may want to use lnors even when mesh's 'autosmooth' is disabled + * (see e.g. mesh mapping code). + * As usual, we could handle that on case-by-case basis, + * but simpler to keep it well confined here. + */ + int mp_index; + + for (mp_index = 0; mp_index < numPolys; mp_index++) { + MPoly *mp = &mpolys[mp_index]; + int ml_index = mp->loopstart; + const int ml_index_end = ml_index + mp->totloop; + const bool is_poly_flat = ((mp->flag & ME_SMOOTH) == 0); + + for (; ml_index < ml_index_end; ml_index++) { + if (r_loop_to_poly) { + r_loop_to_poly[ml_index] = mp_index; + } + if (is_poly_flat) { + copy_v3_v3(r_loopnors[ml_index], polynors[mp_index]); + } + else { + normal_short_to_float_v3(r_loopnors[ml_index], mverts[mloops[ml_index].v].no); + } + } + } + return; + } + + /** + * Mapping edge -> loops. + * If that edge is used by more than two loops (polys), + * it is always sharp (and tagged as such, see below). + * We also use the second loop index as a kind of flag: + * + * - smooth edge: > 0. + * - sharp edge: < 0 (INDEX_INVALID || INDEX_UNSET). + * - unset: INDEX_UNSET. + * + * Note that currently we only have two values for second loop of sharp edges. + * However, if needed, we can store the negated value of loop index instead of INDEX_INVALID + * to retrieve the real value later in code). + * Note also that loose edges always have both values set to 0! */ + int(*edge_to_loops)[2] = MEM_calloc_arrayN((size_t)numEdges, sizeof(*edge_to_loops), __func__); + + /* Simple mapping from a loop to its polygon index. */ + int *loop_to_poly = r_loop_to_poly ? + r_loop_to_poly : + MEM_malloc_arrayN((size_t)numLoops, sizeof(*loop_to_poly), __func__); + + /* When using custom loop normals, disable the angle feature! */ + const bool check_angle = (split_angle < (float)M_PI) && (clnors_data == NULL); + + MLoopNorSpaceArray _lnors_spacearr = {NULL}; + +#ifdef DEBUG_TIME + TIMEIT_START_AVERAGED(BKE_mesh_normals_loop_split); +#endif + + if (!r_lnors_spacearr && clnors_data) { + /* We need to compute lnor spacearr if some custom lnor data are given to us! */ + r_lnors_spacearr = &_lnors_spacearr; + } + if (r_lnors_spacearr) { + BKE_lnor_spacearr_init(r_lnors_spacearr, numLoops, MLNOR_SPACEARR_LOOP_INDEX); + } + + /* Init data common to all tasks. */ + LoopSplitTaskDataCommon common_data = { + .lnors_spacearr = r_lnors_spacearr, + .loopnors = r_loopnors, + .clnors_data = clnors_data, + .mverts = mverts, + .medges = medges, + .mloops = mloops, + .mpolys = mpolys, + .edge_to_loops = edge_to_loops, + .loop_to_poly = loop_to_poly, + .polynors = polynors, + .numEdges = numEdges, + .numLoops = numLoops, + .numPolys = numPolys, + }; + + /* This first loop check which edges are actually smooth, and compute edge vectors. */ + mesh_edges_sharp_tag(&common_data, check_angle, split_angle, false); + + if (numLoops < LOOP_SPLIT_TASK_BLOCK_SIZE * 8) { + /* Not enough loops to be worth the whole threading overhead... */ + loop_split_generator(NULL, &common_data); + } + else { + TaskPool *task_pool = BLI_task_pool_create(&common_data, TASK_PRIORITY_HIGH); + + loop_split_generator(task_pool, &common_data); + + BLI_task_pool_work_and_wait(task_pool); + + BLI_task_pool_free(task_pool); + } + + MEM_freeN(edge_to_loops); + if (!r_loop_to_poly) { + MEM_freeN(loop_to_poly); + } + + if (r_lnors_spacearr) { + if (r_lnors_spacearr == &_lnors_spacearr) { + BKE_lnor_spacearr_free(r_lnors_spacearr); + } + } + +#ifdef DEBUG_TIME + TIMEIT_END_AVERAGED(BKE_mesh_normals_loop_split); +#endif +} + +#undef INDEX_UNSET +#undef INDEX_INVALID +#undef IS_EDGE_SHARP + +/** + * Compute internal representation of given custom normals (as an array of float[2]). + * It also makes sure the mesh matches those custom normals, by setting sharp edges flag as needed + * to get a same custom lnor for all loops sharing a same smooth fan. + * If use_vertices if true, r_custom_loopnors is assumed to be per-vertex, not per-loop + * (this allows to set whole vert's normals at once, useful in some cases). + * r_custom_loopnors is expected to have normalized normals, or zero ones, + * in which case they will be replaced by default loop/vertex normal. + */ +static void mesh_normals_loop_custom_set(const MVert *mverts, + const int numVerts, + MEdge *medges, + const int numEdges, + MLoop *mloops, + float (*r_custom_loopnors)[3], + const int numLoops, + MPoly *mpolys, + const float (*polynors)[3], + const int numPolys, + short (*r_clnors_data)[2], + const bool use_vertices) +{ + /* We *may* make that poor BKE_mesh_normals_loop_split() even more complex by making it handling + * that feature too, would probably be more efficient in absolute. + * However, this function *is not* performance-critical, since it is mostly expected to be called + * by io addons when importing custom normals, and modifier + * (and perhaps from some editing tools later?). + * So better to keep some simplicity here, and just call BKE_mesh_normals_loop_split() twice! + */ + MLoopNorSpaceArray lnors_spacearr = {NULL}; + BLI_bitmap *done_loops = BLI_BITMAP_NEW((size_t)numLoops, __func__); + float(*lnors)[3] = MEM_calloc_arrayN((size_t)numLoops, sizeof(*lnors), __func__); + int *loop_to_poly = MEM_malloc_arrayN((size_t)numLoops, sizeof(int), __func__); + /* In this case we always consider split nors as ON, + * and do not want to use angle to define smooth fans! */ + const bool use_split_normals = true; + const float split_angle = (float)M_PI; + + BLI_SMALLSTACK_DECLARE(clnors_data, short *); + + /* Compute current lnor spacearr. */ + BKE_mesh_normals_loop_split(mverts, + numVerts, + medges, + numEdges, + mloops, + lnors, + numLoops, + mpolys, + polynors, + numPolys, + use_split_normals, + split_angle, + &lnors_spacearr, + NULL, + loop_to_poly); + + /* Set all given zero vectors to their default value. */ + if (use_vertices) { + for (int i = 0; i < numVerts; i++) { + if (is_zero_v3(r_custom_loopnors[i])) { + normal_short_to_float_v3(r_custom_loopnors[i], mverts[i].no); + } + } + } + else { + for (int i = 0; i < numLoops; i++) { + if (is_zero_v3(r_custom_loopnors[i])) { + copy_v3_v3(r_custom_loopnors[i], lnors[i]); + } + } + } + + BLI_assert(lnors_spacearr.data_type == MLNOR_SPACEARR_LOOP_INDEX); + + /* Now, check each current smooth fan (one lnor space per smooth fan!), + * and if all its matching custom lnors are not (enough) equal, add sharp edges as needed. + * This way, next time we run BKE_mesh_normals_loop_split(), we'll get lnor spacearr/smooth fans + * matching given custom lnors. + * Note this code *will never* unsharp edges! And quite obviously, + * when we set custom normals per vertices, running this is absolutely useless. + */ + if (!use_vertices) { + for (int i = 0; i < numLoops; i++) { + if (!lnors_spacearr.lspacearr[i]) { + /* This should not happen in theory, but in some rare case (probably ugly geometry) + * we can get some NULL loopspacearr at this point. :/ + * Maybe we should set those loops' edges as sharp? + */ + BLI_BITMAP_ENABLE(done_loops, i); + if (G.debug & G_DEBUG) { + printf("WARNING! Getting invalid NULL loop space for loop %d!\n", i); + } + continue; + } + + if (!BLI_BITMAP_TEST(done_loops, i)) { + /* Notes: + * * In case of mono-loop smooth fan, we have nothing to do. + * * Loops in this linklist are ordered (in reversed order compared to how they were + * discovered by BKE_mesh_normals_loop_split(), but this is not a problem). + * Which means if we find a mismatching clnor, + * we know all remaining loops will have to be in a new, different smooth fan/lnor space. + * * In smooth fan case, we compare each clnor against a ref one, + * to avoid small differences adding up into a real big one in the end! + */ + if (lnors_spacearr.lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) { + BLI_BITMAP_ENABLE(done_loops, i); + continue; + } + + LinkNode *loops = lnors_spacearr.lspacearr[i]->loops; + MLoop *prev_ml = NULL; + const float *org_nor = NULL; + + while (loops) { + const int lidx = POINTER_AS_INT(loops->link); + MLoop *ml = &mloops[lidx]; + const int nidx = lidx; + float *nor = r_custom_loopnors[nidx]; + + if (!org_nor) { + org_nor = nor; + } + else if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) { + /* Current normal differs too much from org one, we have to tag the edge between + * previous loop's face and current's one as sharp. + * We know those two loops do not point to the same edge, + * since we do not allow reversed winding in a same smooth fan. + */ + const MPoly *mp = &mpolys[loop_to_poly[lidx]]; + const MLoop *mlp = + &mloops[(lidx == mp->loopstart) ? mp->loopstart + mp->totloop - 1 : lidx - 1]; + medges[(prev_ml->e == mlp->e) ? prev_ml->e : ml->e].flag |= ME_SHARP; + + org_nor = nor; + } + + prev_ml = ml; + loops = loops->next; + BLI_BITMAP_ENABLE(done_loops, lidx); + } + + /* We also have to check between last and first loops, + * otherwise we may miss some sharp edges here! + * This is just a simplified version of above while loop. + * See T45984. */ + loops = lnors_spacearr.lspacearr[i]->loops; + if (loops && org_nor) { + const int lidx = POINTER_AS_INT(loops->link); + MLoop *ml = &mloops[lidx]; + const int nidx = lidx; + float *nor = r_custom_loopnors[nidx]; + + if (dot_v3v3(org_nor, nor) < LNOR_SPACE_TRIGO_THRESHOLD) { + const MPoly *mp = &mpolys[loop_to_poly[lidx]]; + const MLoop *mlp = + &mloops[(lidx == mp->loopstart) ? mp->loopstart + mp->totloop - 1 : lidx - 1]; + medges[(prev_ml->e == mlp->e) ? prev_ml->e : ml->e].flag |= ME_SHARP; + } + } + } + } + + /* And now, recompute our new auto lnors and lnor spacearr! */ + BKE_lnor_spacearr_clear(&lnors_spacearr); + BKE_mesh_normals_loop_split(mverts, + numVerts, + medges, + numEdges, + mloops, + lnors, + numLoops, + mpolys, + polynors, + numPolys, + use_split_normals, + split_angle, + &lnors_spacearr, + NULL, + loop_to_poly); + } + else { + BLI_bitmap_set_all(done_loops, true, (size_t)numLoops); + } + + /* And we just have to convert plain object-space custom normals to our + * lnor space-encoded ones. */ + for (int i = 0; i < numLoops; i++) { + if (!lnors_spacearr.lspacearr[i]) { + BLI_BITMAP_DISABLE(done_loops, i); + if (G.debug & G_DEBUG) { + printf("WARNING! Still getting invalid NULL loop space in second loop for loop %d!\n", i); + } + continue; + } + + if (BLI_BITMAP_TEST_BOOL(done_loops, i)) { + /* Note we accumulate and average all custom normals in current smooth fan, + * to avoid getting different clnors data (tiny differences in plain custom normals can + * give rather huge differences in computed 2D factors). + */ + LinkNode *loops = lnors_spacearr.lspacearr[i]->loops; + if (lnors_spacearr.lspacearr[i]->flags & MLNOR_SPACE_IS_SINGLE) { + BLI_assert(POINTER_AS_INT(loops) == i); + const int nidx = use_vertices ? (int)mloops[i].v : i; + float *nor = r_custom_loopnors[nidx]; + + BKE_lnor_space_custom_normal_to_data(lnors_spacearr.lspacearr[i], nor, r_clnors_data[i]); + BLI_BITMAP_DISABLE(done_loops, i); + } + else { + int nbr_nors = 0; + float avg_nor[3]; + short clnor_data_tmp[2], *clnor_data; + + zero_v3(avg_nor); + while (loops) { + const int lidx = POINTER_AS_INT(loops->link); + const int nidx = use_vertices ? (int)mloops[lidx].v : lidx; + float *nor = r_custom_loopnors[nidx]; + + nbr_nors++; + add_v3_v3(avg_nor, nor); + BLI_SMALLSTACK_PUSH(clnors_data, (short *)r_clnors_data[lidx]); + + loops = loops->next; + BLI_BITMAP_DISABLE(done_loops, lidx); + } + + mul_v3_fl(avg_nor, 1.0f / (float)nbr_nors); + BKE_lnor_space_custom_normal_to_data(lnors_spacearr.lspacearr[i], avg_nor, clnor_data_tmp); + + while ((clnor_data = BLI_SMALLSTACK_POP(clnors_data))) { + clnor_data[0] = clnor_data_tmp[0]; + clnor_data[1] = clnor_data_tmp[1]; + } + } + } + } + + MEM_freeN(lnors); + MEM_freeN(loop_to_poly); + MEM_freeN(done_loops); + BKE_lnor_spacearr_free(&lnors_spacearr); +} + +void BKE_mesh_normals_loop_custom_set(const MVert *mverts, + const int numVerts, + MEdge *medges, + const int numEdges, + MLoop *mloops, + float (*r_custom_loopnors)[3], + const int numLoops, + MPoly *mpolys, + const float (*polynors)[3], + const int numPolys, + short (*r_clnors_data)[2]) +{ + mesh_normals_loop_custom_set(mverts, + numVerts, + medges, + numEdges, + mloops, + r_custom_loopnors, + numLoops, + mpolys, + polynors, + numPolys, + r_clnors_data, + false); +} + +void BKE_mesh_normals_loop_custom_from_vertices_set(const MVert *mverts, + float (*r_custom_vertnors)[3], + const int numVerts, + MEdge *medges, + const int numEdges, + MLoop *mloops, + const int numLoops, + MPoly *mpolys, + const float (*polynors)[3], + const int numPolys, + short (*r_clnors_data)[2]) +{ + mesh_normals_loop_custom_set(mverts, + numVerts, + medges, + numEdges, + mloops, + r_custom_vertnors, + numLoops, + mpolys, + polynors, + numPolys, + r_clnors_data, + true); +} + +static void mesh_set_custom_normals(Mesh *mesh, float (*r_custom_nors)[3], const bool use_vertices) +{ + short(*clnors)[2]; + const int numloops = mesh->totloop; + + clnors = CustomData_get_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL); + if (clnors != NULL) { + memset(clnors, 0, sizeof(*clnors) * (size_t)numloops); + } + else { + clnors = CustomData_add_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL, CD_CALLOC, NULL, numloops); + } + + float(*polynors)[3] = CustomData_get_layer(&mesh->pdata, CD_NORMAL); + bool free_polynors = false; + if (polynors == NULL) { + polynors = MEM_mallocN(sizeof(float[3]) * (size_t)mesh->totpoly, __func__); + BKE_mesh_calc_normals_poly(mesh->mvert, + NULL, + mesh->totvert, + mesh->mloop, + mesh->mpoly, + mesh->totloop, + mesh->totpoly, + polynors, + false); + free_polynors = true; + } + + mesh_normals_loop_custom_set(mesh->mvert, + mesh->totvert, + mesh->medge, + mesh->totedge, + mesh->mloop, + r_custom_nors, + mesh->totloop, + mesh->mpoly, + polynors, + mesh->totpoly, + clnors, + use_vertices); + + if (free_polynors) { + MEM_freeN(polynors); + } +} + +/** + * Higher level functions hiding most of the code needed around call to + * #BKE_mesh_normals_loop_custom_set(). + * + * \param r_custom_loopnors: is not const, since code will replace zero_v3 normals there + * with automatically computed vectors. + */ +void BKE_mesh_set_custom_normals(Mesh *mesh, float (*r_custom_loopnors)[3]) +{ + mesh_set_custom_normals(mesh, r_custom_loopnors, false); +} + +/** + * Higher level functions hiding most of the code needed around call to + * #BKE_mesh_normals_loop_custom_from_vertices_set(). + * + * \param r_custom_vertnors: is not const, since code will replace zero_v3 normals there + * with automatically computed vectors. + */ +void BKE_mesh_set_custom_normals_from_vertices(Mesh *mesh, float (*r_custom_vertnors)[3]) +{ + mesh_set_custom_normals(mesh, r_custom_vertnors, true); +} + +/** + * Computes average per-vertex normals from given custom loop normals. + * + * \param clnors: The computed custom loop normals. + * \param r_vert_clnors: The (already allocated) array where to store averaged per-vertex normals. + */ +void BKE_mesh_normals_loop_to_vertex(const int numVerts, + const MLoop *mloops, + const int numLoops, + const float (*clnors)[3], + float (*r_vert_clnors)[3]) +{ + int *vert_loops_nbr = MEM_calloc_arrayN((size_t)numVerts, sizeof(*vert_loops_nbr), __func__); + + copy_vn_fl((float *)r_vert_clnors, 3 * numVerts, 0.0f); + + int i; + const MLoop *ml; + for (i = 0, ml = mloops; i < numLoops; i++, ml++) { + const uint v = ml->v; + + add_v3_v3(r_vert_clnors[v], clnors[i]); + vert_loops_nbr[v]++; + } + + for (i = 0; i < numVerts; i++) { + mul_v3_fl(r_vert_clnors[i], 1.0f / (float)vert_loops_nbr[i]); + } + + MEM_freeN(vert_loops_nbr); +} + +#undef LNOR_SPACE_TRIGO_THRESHOLD + +/** \} */ diff --git a/source/blender/bmesh/intern/bmesh_mesh_normals.c b/source/blender/bmesh/intern/bmesh_mesh_normals.c index a8a75656c94..6ab7b8a2057 100644 --- a/source/blender/bmesh/intern/bmesh_mesh_normals.c +++ b/source/blender/bmesh/intern/bmesh_mesh_normals.c @@ -18,6 +18,8 @@ * \ingroup bmesh * * BM mesh normal calculation functions. + * + * \see mesh_normals.c for the equivalent #Mesh functionality. */ #include "MEM_guardedalloc.h" -- cgit v1.2.3