From 4a04f7206914a49f5f95adc5eb786237f1a9f547 Mon Sep 17 00:00:00 2001 From: Campbell Barton Date: Sun, 23 Oct 2011 17:52:20 +0000 Subject: remove $Id: tags after discussion on the mailign list: http://markmail.org/message/fp7ozcywxum3ar7n --- extern/Eigen3/Eigen/src/Jacobi/Jacobi.h | 430 ++++++++++++++++++++++++++++++++ 1 file changed, 430 insertions(+) create mode 100644 extern/Eigen3/Eigen/src/Jacobi/Jacobi.h (limited to 'extern/Eigen3/Eigen/src/Jacobi/Jacobi.h') diff --git a/extern/Eigen3/Eigen/src/Jacobi/Jacobi.h b/extern/Eigen3/Eigen/src/Jacobi/Jacobi.h new file mode 100644 index 00000000000..98dea6800bc --- /dev/null +++ b/extern/Eigen3/Eigen/src/Jacobi/Jacobi.h @@ -0,0 +1,430 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Benoit Jacob +// Copyright (C) 2009 Gael Guennebaud +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see . + +#ifndef EIGEN_JACOBI_H +#define EIGEN_JACOBI_H + +/** \ingroup Jacobi_Module + * \jacobi_module + * \class JacobiRotation + * \brief Rotation given by a cosine-sine pair. + * + * This class represents a Jacobi or Givens rotation. + * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by + * its cosine \c c and sine \c s as follow: + * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \f$ + * + * You can apply the respective counter-clockwise rotation to a column vector \c v by + * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code: + * \code + * v.applyOnTheLeft(J.adjoint()); + * \endcode + * + * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template class JacobiRotation +{ + public: + typedef typename NumTraits::Real RealScalar; + + /** Default constructor without any initialization. */ + JacobiRotation() {} + + /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */ + JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {} + + Scalar& c() { return m_c; } + Scalar c() const { return m_c; } + Scalar& s() { return m_s; } + Scalar s() const { return m_s; } + + /** Concatenates two planar rotation */ + JacobiRotation operator*(const JacobiRotation& other) + { + return JacobiRotation(m_c * other.m_c - internal::conj(m_s) * other.m_s, + internal::conj(m_c * internal::conj(other.m_s) + internal::conj(m_s) * internal::conj(other.m_c))); + } + + /** Returns the transposed transformation */ + JacobiRotation transpose() const { return JacobiRotation(m_c, -internal::conj(m_s)); } + + /** Returns the adjoint transformation */ + JacobiRotation adjoint() const { return JacobiRotation(internal::conj(m_c), -m_s); } + + template + bool makeJacobi(const MatrixBase&, typename Derived::Index p, typename Derived::Index q); + bool makeJacobi(RealScalar x, Scalar y, RealScalar z); + + void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0); + + protected: + void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type); + void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type); + + Scalar m_c, m_s; +}; + +/** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix + * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$ + * + * \sa MatrixBase::makeJacobi(const MatrixBase&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +bool JacobiRotation::makeJacobi(RealScalar x, Scalar y, RealScalar z) +{ + typedef typename NumTraits::Real RealScalar; + if(y == Scalar(0)) + { + m_c = Scalar(1); + m_s = Scalar(0); + return false; + } + else + { + RealScalar tau = (x-z)/(RealScalar(2)*internal::abs(y)); + RealScalar w = internal::sqrt(internal::abs2(tau) + RealScalar(1)); + RealScalar t; + if(tau>RealScalar(0)) + { + t = RealScalar(1) / (tau + w); + } + else + { + t = RealScalar(1) / (tau - w); + } + RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1); + RealScalar n = RealScalar(1) / internal::sqrt(internal::abs2(t)+RealScalar(1)); + m_s = - sign_t * (internal::conj(y) / internal::abs(y)) * internal::abs(t) * n; + m_c = n; + return true; + } +} + +/** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix + * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields + * a diagonal matrix \f$ A = J^* B J \f$ + * + * Example: \include Jacobi_makeJacobi.cpp + * Output: \verbinclude Jacobi_makeJacobi.out + * + * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +template +inline bool JacobiRotation::makeJacobi(const MatrixBase& m, typename Derived::Index p, typename Derived::Index q) +{ + return makeJacobi(internal::real(m.coeff(p,p)), m.coeff(p,q), internal::real(m.coeff(q,q))); +} + +/** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector + * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields: + * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$. + * + * The value of \a z is returned if \a z is not null (the default is null). + * Also note that G is built such that the cosine is always real. + * + * Example: \include Jacobi_makeGivens.cpp + * Output: \verbinclude Jacobi_makeGivens.out + * + * This function implements the continuous Givens rotation generation algorithm + * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. + * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000. + * + * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight() + */ +template +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* z) +{ + makeGivens(p, q, z, typename internal::conditional::IsComplex, internal::true_type, internal::false_type>::type()); +} + + +// specialization for complexes +template +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type) +{ + if(q==Scalar(0)) + { + m_c = internal::real(p)<0 ? Scalar(-1) : Scalar(1); + m_s = 0; + if(r) *r = m_c * p; + } + else if(p==Scalar(0)) + { + m_c = 0; + m_s = -q/internal::abs(q); + if(r) *r = internal::abs(q); + } + else + { + RealScalar p1 = internal::norm1(p); + RealScalar q1 = internal::norm1(q); + if(p1>=q1) + { + Scalar ps = p / p1; + RealScalar p2 = internal::abs2(ps); + Scalar qs = q / p1; + RealScalar q2 = internal::abs2(qs); + + RealScalar u = internal::sqrt(RealScalar(1) + q2/p2); + if(internal::real(p) +void JacobiRotation::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type) +{ + + if(q==Scalar(0)) + { + m_c = p internal::abs(q)) + { + Scalar t = q/p; + Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t)); + if(p +void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation& j); +} + +/** \jacobi_module + * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B, + * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$. + * + * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane() + */ +template +template +inline void MatrixBase::applyOnTheLeft(Index p, Index q, const JacobiRotation& j) +{ + RowXpr x(this->row(p)); + RowXpr y(this->row(q)); + internal::apply_rotation_in_the_plane(x, y, j); +} + +/** \ingroup Jacobi_Module + * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J + * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$. + * + * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane() + */ +template +template +inline void MatrixBase::applyOnTheRight(Index p, Index q, const JacobiRotation& j) +{ + ColXpr x(this->col(p)); + ColXpr y(this->col(q)); + internal::apply_rotation_in_the_plane(x, y, j.transpose()); +} + +namespace internal { +template +void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation& j) +{ + typedef typename VectorX::Index Index; + typedef typename VectorX::Scalar Scalar; + enum { PacketSize = packet_traits::size }; + typedef typename packet_traits::type Packet; + eigen_assert(_x.size() == _y.size()); + Index size = _x.size(); + Index incrx = _x.innerStride(); + Index incry = _y.innerStride(); + + Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0); + Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0); + + /*** dynamic-size vectorized paths ***/ + + if(VectorX::SizeAtCompileTime == Dynamic && + (VectorX::Flags & VectorY::Flags & PacketAccessBit) && + ((incrx==1 && incry==1) || PacketSize == 1)) + { + // both vectors are sequentially stored in memory => vectorization + enum { Peeling = 2 }; + + Index alignedStart = first_aligned(y, size); + Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize; + + const Packet pc = pset1(j.c()); + const Packet ps = pset1(j.s()); + conj_helper::IsComplex,false> pcj; + + for(Index i=0; i(px); + Packet yi = pload(py); + pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); + pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); + px += PacketSize; + py += PacketSize; + } + } + else + { + Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize); + for(Index i=alignedStart; i(px); + Packet xi1 = ploadu(px+PacketSize); + Packet yi = pload (py); + Packet yi1 = pload (py+PacketSize); + pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); + pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1))); + pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); + pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1))); + px += Peeling*PacketSize; + py += Peeling*PacketSize; + } + if(alignedEnd!=peelingEnd) + { + Packet xi = ploadu(x+peelingEnd); + Packet yi = pload (y+peelingEnd); + pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi))); + pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi))); + } + } + + for(Index i=alignedEnd; i(j.c()); + const Packet ps = pset1(j.s()); + conj_helper::IsComplex,false> pcj; + Scalar* EIGEN_RESTRICT px = x; + Scalar* EIGEN_RESTRICT py = y; + for(Index i=0; i(px); + Packet yi = pload(py); + pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi))); + pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi))); + px += PacketSize; + py += PacketSize; + } + } + + /*** non-vectorized path ***/ + else + { + for(Index i=0; i