From 4a04f7206914a49f5f95adc5eb786237f1a9f547 Mon Sep 17 00:00:00 2001 From: Campbell Barton Date: Sun, 23 Oct 2011 17:52:20 +0000 Subject: remove $Id: tags after discussion on the mailign list: http://markmail.org/message/fp7ozcywxum3ar7n --- extern/Eigen3/Eigen/src/QR/ColPivHouseholderQR.h | 532 +++++++++++++++++++++++ 1 file changed, 532 insertions(+) create mode 100644 extern/Eigen3/Eigen/src/QR/ColPivHouseholderQR.h (limited to 'extern/Eigen3/Eigen/src/QR/ColPivHouseholderQR.h') diff --git a/extern/Eigen3/Eigen/src/QR/ColPivHouseholderQR.h b/extern/Eigen3/Eigen/src/QR/ColPivHouseholderQR.h new file mode 100644 index 00000000000..f04c6038d6a --- /dev/null +++ b/extern/Eigen3/Eigen/src/QR/ColPivHouseholderQR.h @@ -0,0 +1,532 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2009 Gael Guennebaud +// Copyright (C) 2009 Benoit Jacob +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see . + +#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H +#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H + +/** \ingroup QR_Module + * + * \class ColPivHouseholderQR + * + * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting + * + * \param MatrixType the type of the matrix of which we are computing the QR decomposition + * + * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R + * such that + * \f[ + * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} + * \f] + * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an + * upper triangular matrix. + * + * This decomposition performs column pivoting in order to be rank-revealing and improve + * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR. + * + * \sa MatrixBase::colPivHouseholderQr() + */ +template class ColPivHouseholderQR +{ + public: + + typedef _MatrixType MatrixType; + enum { + RowsAtCompileTime = MatrixType::RowsAtCompileTime, + ColsAtCompileTime = MatrixType::ColsAtCompileTime, + Options = MatrixType::Options, + MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, + MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::Index Index; + typedef Matrix MatrixQType; + typedef typename internal::plain_diag_type::type HCoeffsType; + typedef PermutationMatrix PermutationType; + typedef typename internal::plain_row_type::type IntRowVectorType; + typedef typename internal::plain_row_type::type RowVectorType; + typedef typename internal::plain_row_type::type RealRowVectorType; + typedef typename HouseholderSequence::ConjugateReturnType HouseholderSequenceType; + + /** + * \brief Default Constructor. + * + * The default constructor is useful in cases in which the user intends to + * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&). + */ + ColPivHouseholderQR() + : m_qr(), + m_hCoeffs(), + m_colsPermutation(), + m_colsTranspositions(), + m_temp(), + m_colSqNorms(), + m_isInitialized(false) {} + + /** \brief Default Constructor with memory preallocation + * + * Like the default constructor but with preallocation of the internal data + * according to the specified problem \a size. + * \sa ColPivHouseholderQR() + */ + ColPivHouseholderQR(Index rows, Index cols) + : m_qr(rows, cols), + m_hCoeffs((std::min)(rows,cols)), + m_colsPermutation(cols), + m_colsTranspositions(cols), + m_temp(cols), + m_colSqNorms(cols), + m_isInitialized(false), + m_usePrescribedThreshold(false) {} + + ColPivHouseholderQR(const MatrixType& matrix) + : m_qr(matrix.rows(), matrix.cols()), + m_hCoeffs((std::min)(matrix.rows(),matrix.cols())), + m_colsPermutation(matrix.cols()), + m_colsTranspositions(matrix.cols()), + m_temp(matrix.cols()), + m_colSqNorms(matrix.cols()), + m_isInitialized(false), + m_usePrescribedThreshold(false) + { + compute(matrix); + } + + /** This method finds a solution x to the equation Ax=b, where A is the matrix of which + * *this is the QR decomposition, if any exists. + * + * \param b the right-hand-side of the equation to solve. + * + * \returns a solution. + * + * \note The case where b is a matrix is not yet implemented. Also, this + * code is space inefficient. + * + * \note_about_checking_solutions + * + * \note_about_arbitrary_choice_of_solution + * + * Example: \include ColPivHouseholderQR_solve.cpp + * Output: \verbinclude ColPivHouseholderQR_solve.out + */ + template + inline const internal::solve_retval + solve(const MatrixBase& b) const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return internal::solve_retval(*this, b.derived()); + } + + HouseholderSequenceType householderQ(void) const; + + /** \returns a reference to the matrix where the Householder QR decomposition is stored + */ + const MatrixType& matrixQR() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return m_qr; + } + + ColPivHouseholderQR& compute(const MatrixType& matrix); + + const PermutationType& colsPermutation() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return m_colsPermutation; + } + + /** \returns the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa logAbsDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar absDeterminant() const; + + /** \returns the natural log of the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. It has only linear complexity + * (that is, O(n) where n is the dimension of the square matrix) + * as the QR decomposition has already been computed. + * + * \note This is only for square matrices. + * + * \note This method is useful to work around the risk of overflow/underflow that's inherent + * to determinant computation. + * + * \sa absDeterminant(), MatrixBase::determinant() + */ + typename MatrixType::RealScalar logAbsDeterminant() const; + + /** \returns the rank of the matrix of which *this is the QR decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index rank() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + RealScalar premultiplied_threshold = internal::abs(m_maxpivot) * threshold(); + Index result = 0; + for(Index i = 0; i < m_nonzero_pivots; ++i) + result += (internal::abs(m_qr.coeff(i,i)) > premultiplied_threshold); + return result; + } + + /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline Index dimensionOfKernel() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return cols() - rank(); + } + + /** \returns true if the matrix of which *this is the QR decomposition represents an injective + * linear map, i.e. has trivial kernel; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInjective() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return rank() == cols(); + } + + /** \returns true if the matrix of which *this is the QR decomposition represents a surjective + * linear map; false otherwise. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isSurjective() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return rank() == rows(); + } + + /** \returns true if the matrix of which *this is the QR decomposition is invertible. + * + * \note This method has to determine which pivots should be considered nonzero. + * For that, it uses the threshold value that you can control by calling + * setThreshold(const RealScalar&). + */ + inline bool isInvertible() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return isInjective() && isSurjective(); + } + + /** \returns the inverse of the matrix of which *this is the QR decomposition. + * + * \note If this matrix is not invertible, the returned matrix has undefined coefficients. + * Use isInvertible() to first determine whether this matrix is invertible. + */ + inline const + internal::solve_retval + inverse() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return internal::solve_retval + (*this, MatrixType::Identity(m_qr.rows(), m_qr.cols())); + } + + inline Index rows() const { return m_qr.rows(); } + inline Index cols() const { return m_qr.cols(); } + const HCoeffsType& hCoeffs() const { return m_hCoeffs; } + + /** Allows to prescribe a threshold to be used by certain methods, such as rank(), + * who need to determine when pivots are to be considered nonzero. This is not used for the + * QR decomposition itself. + * + * When it needs to get the threshold value, Eigen calls threshold(). By default, this + * uses a formula to automatically determine a reasonable threshold. + * Once you have called the present method setThreshold(const RealScalar&), + * your value is used instead. + * + * \param threshold The new value to use as the threshold. + * + * A pivot will be considered nonzero if its absolute value is strictly greater than + * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$ + * where maxpivot is the biggest pivot. + * + * If you want to come back to the default behavior, call setThreshold(Default_t) + */ + ColPivHouseholderQR& setThreshold(const RealScalar& threshold) + { + m_usePrescribedThreshold = true; + m_prescribedThreshold = threshold; + return *this; + } + + /** Allows to come back to the default behavior, letting Eigen use its default formula for + * determining the threshold. + * + * You should pass the special object Eigen::Default as parameter here. + * \code qr.setThreshold(Eigen::Default); \endcode + * + * See the documentation of setThreshold(const RealScalar&). + */ + ColPivHouseholderQR& setThreshold(Default_t) + { + m_usePrescribedThreshold = false; + return *this; + } + + /** Returns the threshold that will be used by certain methods such as rank(). + * + * See the documentation of setThreshold(const RealScalar&). + */ + RealScalar threshold() const + { + eigen_assert(m_isInitialized || m_usePrescribedThreshold); + return m_usePrescribedThreshold ? m_prescribedThreshold + // this formula comes from experimenting (see "LU precision tuning" thread on the list) + // and turns out to be identical to Higham's formula used already in LDLt. + : NumTraits::epsilon() * m_qr.diagonalSize(); + } + + /** \returns the number of nonzero pivots in the QR decomposition. + * Here nonzero is meant in the exact sense, not in a fuzzy sense. + * So that notion isn't really intrinsically interesting, but it is + * still useful when implementing algorithms. + * + * \sa rank() + */ + inline Index nonzeroPivots() const + { + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return m_nonzero_pivots; + } + + /** \returns the absolute value of the biggest pivot, i.e. the biggest + * diagonal coefficient of R. + */ + RealScalar maxPivot() const { return m_maxpivot; } + + protected: + MatrixType m_qr; + HCoeffsType m_hCoeffs; + PermutationType m_colsPermutation; + IntRowVectorType m_colsTranspositions; + RowVectorType m_temp; + RealRowVectorType m_colSqNorms; + bool m_isInitialized, m_usePrescribedThreshold; + RealScalar m_prescribedThreshold, m_maxpivot; + Index m_nonzero_pivots; + Index m_det_pq; +}; + +template +typename MatrixType::RealScalar ColPivHouseholderQR::absDeterminant() const +{ + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return internal::abs(m_qr.diagonal().prod()); +} + +template +typename MatrixType::RealScalar ColPivHouseholderQR::logAbsDeterminant() const +{ + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!"); + return m_qr.diagonal().cwiseAbs().array().log().sum(); +} + +template +ColPivHouseholderQR& ColPivHouseholderQR::compute(const MatrixType& matrix) +{ + Index rows = matrix.rows(); + Index cols = matrix.cols(); + Index size = matrix.diagonalSize(); + + m_qr = matrix; + m_hCoeffs.resize(size); + + m_temp.resize(cols); + + m_colsTranspositions.resize(matrix.cols()); + Index number_of_transpositions = 0; + + m_colSqNorms.resize(cols); + for(Index k = 0; k < cols; ++k) + m_colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm(); + + RealScalar threshold_helper = m_colSqNorms.maxCoeff() * internal::abs2(NumTraits::epsilon()) / RealScalar(rows); + + m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case) + m_maxpivot = RealScalar(0); + + for(Index k = 0; k < size; ++k) + { + // first, we look up in our table m_colSqNorms which column has the biggest squared norm + Index biggest_col_index; + RealScalar biggest_col_sq_norm = m_colSqNorms.tail(cols-k).maxCoeff(&biggest_col_index); + biggest_col_index += k; + + // since our table m_colSqNorms accumulates imprecision at every step, we must now recompute + // the actual squared norm of the selected column. + // Note that not doing so does result in solve() sometimes returning inf/nan values + // when running the unit test with 1000 repetitions. + biggest_col_sq_norm = m_qr.col(biggest_col_index).tail(rows-k).squaredNorm(); + + // we store that back into our table: it can't hurt to correct our table. + m_colSqNorms.coeffRef(biggest_col_index) = biggest_col_sq_norm; + + // if the current biggest column is smaller than epsilon times the initial biggest column, + // terminate to avoid generating nan/inf values. + // Note that here, if we test instead for "biggest == 0", we get a failure every 1000 (or so) + // repetitions of the unit test, with the result of solve() filled with large values of the order + // of 1/(size*epsilon). + if(biggest_col_sq_norm < threshold_helper * RealScalar(rows-k)) + { + m_nonzero_pivots = k; + m_hCoeffs.tail(size-k).setZero(); + m_qr.bottomRightCorner(rows-k,cols-k) + .template triangularView() + .setZero(); + break; + } + + // apply the transposition to the columns + m_colsTranspositions.coeffRef(k) = biggest_col_index; + if(k != biggest_col_index) { + m_qr.col(k).swap(m_qr.col(biggest_col_index)); + std::swap(m_colSqNorms.coeffRef(k), m_colSqNorms.coeffRef(biggest_col_index)); + ++number_of_transpositions; + } + + // generate the householder vector, store it below the diagonal + RealScalar beta; + m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta); + + // apply the householder transformation to the diagonal coefficient + m_qr.coeffRef(k,k) = beta; + + // remember the maximum absolute value of diagonal coefficients + if(internal::abs(beta) > m_maxpivot) m_maxpivot = internal::abs(beta); + + // apply the householder transformation + m_qr.bottomRightCorner(rows-k, cols-k-1) + .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1)); + + // update our table of squared norms of the columns + m_colSqNorms.tail(cols-k-1) -= m_qr.row(k).tail(cols-k-1).cwiseAbs2(); + } + + m_colsPermutation.setIdentity(cols); + for(Index k = 0; k < m_nonzero_pivots; ++k) + m_colsPermutation.applyTranspositionOnTheRight(k, m_colsTranspositions.coeff(k)); + + m_det_pq = (number_of_transpositions%2) ? -1 : 1; + m_isInitialized = true; + + return *this; +} + +namespace internal { + +template +struct solve_retval, Rhs> + : solve_retval_base, Rhs> +{ + EIGEN_MAKE_SOLVE_HELPERS(ColPivHouseholderQR<_MatrixType>,Rhs) + + template void evalTo(Dest& dst) const + { + eigen_assert(rhs().rows() == dec().rows()); + + const int cols = dec().cols(), + nonzero_pivots = dec().nonzeroPivots(); + + if(nonzero_pivots == 0) + { + dst.setZero(); + return; + } + + typename Rhs::PlainObject c(rhs()); + + // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T + c.applyOnTheLeft(householderSequence(dec().matrixQR(), dec().hCoeffs()) + .setLength(dec().nonzeroPivots()) + .transpose() + ); + + dec().matrixQR() + .topLeftCorner(nonzero_pivots, nonzero_pivots) + .template triangularView() + .solveInPlace(c.topRows(nonzero_pivots)); + + + typename Rhs::PlainObject d(c); + d.topRows(nonzero_pivots) + = dec().matrixQR() + .topLeftCorner(nonzero_pivots, nonzero_pivots) + .template triangularView() + * c.topRows(nonzero_pivots); + + for(Index i = 0; i < nonzero_pivots; ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i); + for(Index i = nonzero_pivots; i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero(); + } +}; + +} // end namespace internal + +/** \returns the matrix Q as a sequence of householder transformations */ +template +typename ColPivHouseholderQR::HouseholderSequenceType ColPivHouseholderQR + ::householderQ() const +{ + eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized."); + return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate()).setLength(m_nonzero_pivots); +} + +/** \return the column-pivoting Householder QR decomposition of \c *this. + * + * \sa class ColPivHouseholderQR + */ +template +const ColPivHouseholderQR::PlainObject> +MatrixBase::colPivHouseholderQr() const +{ + return ColPivHouseholderQR(eval()); +} + + +#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H -- cgit v1.2.3