From 4355603790712032e89fa4da6d8ce7f3ede62b4f Mon Sep 17 00:00:00 2001 From: Sergey Sharybin Date: Mon, 11 Jul 2016 12:28:45 +0200 Subject: Cycles: Move BVK kernel files to own directory BVH traversal is not really that much a geometry and we've got quite some traversals now. Makes sense to keep them separate in the name of source structure clarity. --- intern/cycles/kernel/bvh/qbvh_volume.h | 374 +++++++++++++++++++++++++++++++++ 1 file changed, 374 insertions(+) create mode 100644 intern/cycles/kernel/bvh/qbvh_volume.h (limited to 'intern/cycles/kernel/bvh/qbvh_volume.h') diff --git a/intern/cycles/kernel/bvh/qbvh_volume.h b/intern/cycles/kernel/bvh/qbvh_volume.h new file mode 100644 index 00000000000..da21ede9e12 --- /dev/null +++ b/intern/cycles/kernel/bvh/qbvh_volume.h @@ -0,0 +1,374 @@ +/* + * Adapted from code Copyright 2009-2010 NVIDIA Corporation, + * and code copyright 2009-2012 Intel Corporation + * + * Modifications Copyright 2011-2014, Blender Foundation. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +/* This is a template BVH traversal function for volumes, where + * various features can be enabled/disabled. This way we can compile optimized + * versions for each case without new features slowing things down. + * + * BVH_INSTANCING: object instancing + * BVH_MOTION: motion blur rendering + * + */ + +#if BVH_FEATURE(BVH_HAIR) +# define NODE_INTERSECT qbvh_node_intersect +#else +# define NODE_INTERSECT qbvh_aligned_node_intersect +#endif + +ccl_device bool BVH_FUNCTION_FULL_NAME(QBVH)(KernelGlobals *kg, + const Ray *ray, + Intersection *isect, + const uint visibility) +{ + /* TODO(sergey): + * - Test if pushing distance on the stack helps. + * - Likely and unlikely for if() statements. + * - Test restrict attribute for pointers. + */ + + /* Traversal stack in CUDA thread-local memory. */ + QBVHStackItem traversalStack[BVH_QSTACK_SIZE]; + traversalStack[0].addr = ENTRYPOINT_SENTINEL; + + /* Traversal variables in registers. */ + int stackPtr = 0; + int nodeAddr = kernel_data.bvh.root; + + /* Ray parameters in registers. */ + float3 P = ray->P; + float3 dir = bvh_clamp_direction(ray->D); + float3 idir = bvh_inverse_direction(dir); + int object = OBJECT_NONE; + +#if BVH_FEATURE(BVH_MOTION) + Transform ob_itfm; +#endif + +#ifndef __KERNEL_SSE41__ + if(!isfinite(P.x)) { + return false; + } +#endif + + isect->t = ray->t; + isect->u = 0.0f; + isect->v = 0.0f; + isect->prim = PRIM_NONE; + isect->object = OBJECT_NONE; + + ssef tnear(0.0f), tfar(ray->t); +#if BVH_FEATURE(BVH_HAIR) + sse3f dir4(ssef(dir.x), ssef(dir.y), ssef(dir.z)); +#endif + sse3f idir4(ssef(idir.x), ssef(idir.y), ssef(idir.z)); + +#ifdef __KERNEL_AVX2__ + float3 P_idir = P*idir; + sse3f P_idir4(P_idir.x, P_idir.y, P_idir.z); +#endif +#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) + sse3f org4(ssef(P.x), ssef(P.y), ssef(P.z)); +#endif + + /* Offsets to select the side that becomes the lower or upper bound. */ + int near_x, near_y, near_z; + int far_x, far_y, far_z; + + if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } + if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } + if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } + + IsectPrecalc isect_precalc; + triangle_intersect_precalc(dir, &isect_precalc); + + /* Traversal loop. */ + do { + do { + /* Traverse internal nodes. */ + while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL) { +#ifdef __VISIBILITY_FLAG__ + float4 inodes = kernel_tex_fetch(__bvh_nodes, nodeAddr+0); + if((__float_as_uint(inodes.x) & visibility) == 0) { + /* Pop. */ + nodeAddr = traversalStack[stackPtr].addr; + --stackPtr; + continue; + } +#endif + + ssef dist; + int traverseChild = NODE_INTERSECT(kg, + tnear, + tfar, +#ifdef __KERNEL_AVX2__ + P_idir4, +#endif +#if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) + org4, +#endif +#if BVH_FEATURE(BVH_HAIR) + dir4, +#endif + idir4, + near_x, near_y, near_z, + far_x, far_y, far_z, + nodeAddr, + &dist); + + if(traverseChild != 0) { + float4 cnodes; +#if BVH_FEATURE(BVH_HAIR) + if(__float_as_uint(inodes.x) & PATH_RAY_NODE_UNALIGNED) { + cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr+13); + } + else +#endif + { + cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr+7); + } + + /* One child is hit, continue with that child. */ + int r = __bscf(traverseChild); + if(traverseChild == 0) { + nodeAddr = __float_as_int(cnodes[r]); + continue; + } + + /* Two children are hit, push far child, and continue with + * closer child. + */ + int c0 = __float_as_int(cnodes[r]); + float d0 = ((float*)&dist)[r]; + r = __bscf(traverseChild); + int c1 = __float_as_int(cnodes[r]); + float d1 = ((float*)&dist)[r]; + if(traverseChild == 0) { + if(d1 < d0) { + nodeAddr = c1; + ++stackPtr; + kernel_assert(stackPtr < BVH_QSTACK_SIZE); + traversalStack[stackPtr].addr = c0; + traversalStack[stackPtr].dist = d0; + continue; + } + else { + nodeAddr = c0; + ++stackPtr; + kernel_assert(stackPtr < BVH_QSTACK_SIZE); + traversalStack[stackPtr].addr = c1; + traversalStack[stackPtr].dist = d1; + continue; + } + } + + /* Here starts the slow path for 3 or 4 hit children. We push + * all nodes onto the stack to sort them there. + */ + ++stackPtr; + kernel_assert(stackPtr < BVH_QSTACK_SIZE); + traversalStack[stackPtr].addr = c1; + traversalStack[stackPtr].dist = d1; + ++stackPtr; + kernel_assert(stackPtr < BVH_QSTACK_SIZE); + traversalStack[stackPtr].addr = c0; + traversalStack[stackPtr].dist = d0; + + /* Three children are hit, push all onto stack and sort 3 + * stack items, continue with closest child. + */ + r = __bscf(traverseChild); + int c2 = __float_as_int(cnodes[r]); + float d2 = ((float*)&dist)[r]; + if(traverseChild == 0) { + ++stackPtr; + kernel_assert(stackPtr < BVH_QSTACK_SIZE); + traversalStack[stackPtr].addr = c2; + traversalStack[stackPtr].dist = d2; + qbvh_stack_sort(&traversalStack[stackPtr], + &traversalStack[stackPtr - 1], + &traversalStack[stackPtr - 2]); + nodeAddr = traversalStack[stackPtr].addr; + --stackPtr; + continue; + } + + /* Four children are hit, push all onto stack and sort 4 + * stack items, continue with closest child. + */ + r = __bscf(traverseChild); + int c3 = __float_as_int(cnodes[r]); + float d3 = ((float*)&dist)[r]; + ++stackPtr; + kernel_assert(stackPtr < BVH_QSTACK_SIZE); + traversalStack[stackPtr].addr = c3; + traversalStack[stackPtr].dist = d3; + ++stackPtr; + kernel_assert(stackPtr < BVH_QSTACK_SIZE); + traversalStack[stackPtr].addr = c2; + traversalStack[stackPtr].dist = d2; + qbvh_stack_sort(&traversalStack[stackPtr], + &traversalStack[stackPtr - 1], + &traversalStack[stackPtr - 2], + &traversalStack[stackPtr - 3]); + } + + nodeAddr = traversalStack[stackPtr].addr; + --stackPtr; + } + + /* If node is leaf, fetch triangle list. */ + if(nodeAddr < 0) { + float4 leaf = kernel_tex_fetch(__bvh_leaf_nodes, (-nodeAddr-1)); + int primAddr = __float_as_int(leaf.x); + +#if BVH_FEATURE(BVH_INSTANCING) + if(primAddr >= 0) { +#endif + int primAddr2 = __float_as_int(leaf.y); + const uint type = __float_as_int(leaf.w); + const uint p_type = type & PRIMITIVE_ALL; + + /* Pop. */ + nodeAddr = traversalStack[stackPtr].addr; + --stackPtr; + + /* Primitive intersection. */ + switch(p_type) { + case PRIMITIVE_TRIANGLE: { + for(; primAddr < primAddr2; primAddr++) { + kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); + /* Only primitives from volume object. */ + uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object; + int object_flag = kernel_tex_fetch(__object_flag, tri_object); + if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { + continue; + } + /* Intersect ray against primitive. */ + triangle_intersect(kg, &isect_precalc, isect, P, visibility, object, primAddr); + } + break; + } +#if BVH_FEATURE(BVH_MOTION) + case PRIMITIVE_MOTION_TRIANGLE: { + for(; primAddr < primAddr2; primAddr++) { + kernel_assert(kernel_tex_fetch(__prim_type, primAddr) == type); + /* Only primitives from volume object. */ + uint tri_object = (object == OBJECT_NONE)? kernel_tex_fetch(__prim_object, primAddr): object; + int object_flag = kernel_tex_fetch(__object_flag, tri_object); + if((object_flag & SD_OBJECT_HAS_VOLUME) == 0) { + continue; + } + /* Intersect ray against primitive. */ + motion_triangle_intersect(kg, isect, P, dir, ray->time, visibility, object, primAddr); + } + break; + } +#endif + } + } +#if BVH_FEATURE(BVH_INSTANCING) + else { + /* Instance push. */ + object = kernel_tex_fetch(__prim_object, -primAddr-1); + int object_flag = kernel_tex_fetch(__object_flag, object); + + if(object_flag & SD_OBJECT_HAS_VOLUME) { + +# if BVH_FEATURE(BVH_MOTION) + bvh_instance_motion_push(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm); +# else + bvh_instance_push(kg, object, ray, &P, &dir, &idir, &isect->t); +# endif + + if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } + if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } + if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } + tfar = ssef(isect->t); +# if BVH_FEATURE(BVH_HAIR) + dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z)); +# endif + idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z)); +# ifdef __KERNEL_AVX2__ + P_idir = P*idir; + P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); +# endif +# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) + org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); +# endif + + triangle_intersect_precalc(dir, &isect_precalc); + + ++stackPtr; + kernel_assert(stackPtr < BVH_QSTACK_SIZE); + traversalStack[stackPtr].addr = ENTRYPOINT_SENTINEL; + + nodeAddr = kernel_tex_fetch(__object_node, object); + } + else { + /* Pop. */ + object = OBJECT_NONE; + nodeAddr = traversalStack[stackPtr].addr; + --stackPtr; + } + } + } +#endif /* FEATURE(BVH_INSTANCING) */ + } while(nodeAddr != ENTRYPOINT_SENTINEL); + +#if BVH_FEATURE(BVH_INSTANCING) + if(stackPtr >= 0) { + kernel_assert(object != OBJECT_NONE); + + /* Instance pop. */ +# if BVH_FEATURE(BVH_MOTION) + bvh_instance_motion_pop(kg, object, ray, &P, &dir, &idir, &isect->t, &ob_itfm); +# else + bvh_instance_pop(kg, object, ray, &P, &dir, &idir, &isect->t); +# endif + + if(idir.x >= 0.0f) { near_x = 0; far_x = 1; } else { near_x = 1; far_x = 0; } + if(idir.y >= 0.0f) { near_y = 2; far_y = 3; } else { near_y = 3; far_y = 2; } + if(idir.z >= 0.0f) { near_z = 4; far_z = 5; } else { near_z = 5; far_z = 4; } + tfar = ssef(isect->t); +# if BVH_FEATURE(BVH_HAIR) + dir4 = sse3f(ssef(dir.x), ssef(dir.y), ssef(dir.z)); +# endif + idir4 = sse3f(ssef(idir.x), ssef(idir.y), ssef(idir.z)); +# ifdef __KERNEL_AVX2__ + P_idir = P*idir; + P_idir4 = sse3f(P_idir.x, P_idir.y, P_idir.z); +# endif +# if BVH_FEATURE(BVH_HAIR) || !defined(__KERNEL_AVX2__) + org4 = sse3f(ssef(P.x), ssef(P.y), ssef(P.z)); +# endif + + triangle_intersect_precalc(dir, &isect_precalc); + + object = OBJECT_NONE; + nodeAddr = traversalStack[stackPtr].addr; + --stackPtr; + } +#endif /* FEATURE(BVH_INSTANCING) */ + } while(nodeAddr != ENTRYPOINT_SENTINEL); + + return (isect->prim != PRIM_NONE); +} + +#undef NODE_INTERSECT -- cgit v1.2.3