From e12c08e8d170b7ca40f204a5b0423c23a9fbc2c1 Mon Sep 17 00:00:00 2001 From: Campbell Barton Date: Wed, 17 Apr 2019 06:17:24 +0200 Subject: ClangFormat: apply to source, most of intern Apply clang format as proposed in T53211. For details on usage and instructions for migrating branches without conflicts, see: https://wiki.blender.org/wiki/Tools/ClangFormat --- .../blender/editors/uvedit/uvedit_parametrizer.c | 6861 ++++++++++---------- 1 file changed, 3458 insertions(+), 3403 deletions(-) (limited to 'source/blender/editors/uvedit/uvedit_parametrizer.c') diff --git a/source/blender/editors/uvedit/uvedit_parametrizer.c b/source/blender/editors/uvedit/uvedit_parametrizer.c index 1a4e040472e..69183d02ab9 100644 --- a/source/blender/editors/uvedit/uvedit_parametrizer.c +++ b/source/blender/editors/uvedit/uvedit_parametrizer.c @@ -37,7 +37,7 @@ #include #include -#include "BLI_sys_types.h" /* for intptr_t support */ +#include "BLI_sys_types.h" /* for intptr_t support */ #include "eigen_capi.h" @@ -50,22 +50,25 @@ # define param_test_equals_int(condition) #else # define param_assert(condition) \ - if (!(condition)) \ - { /*printf("Assertion %s:%d\n", __FILE__, __LINE__); abort();*/ } (void)0 + if (!(condition)) { /*printf("Assertion %s:%d\n", __FILE__, __LINE__); abort();*/ \ + } \ + (void)0 # define param_warning(message) \ - { /*printf("Warning %s:%d: %s\n", __FILE__, __LINE__, message);*/ } (void)0 + {/*printf("Warning %s:%d: %s\n", __FILE__, __LINE__, message);*/}(void)0 # if 0 # define param_test_equals_ptr(str, a, b) \ - if (a != b) \ - { /*printf("Equals %s => %p != %p\n", str, a, b);*/ } (void)0 + if (a != b) { /*printf("Equals %s => %p != %p\n", str, a, b);*/ \ + } \ + (void)0 # define param_test_equals_int(str, a, b) \ - if (a != b) \ - { /*printf("Equals %s => %d != %d\n", str, a, b);*/ } (void)0 + if (a != b) { /*printf("Equals %s => %d != %d\n", str, a, b);*/ \ + } \ + (void)0 # endif #endif typedef enum PBool { - P_TRUE = 1, - P_FALSE = 0, + P_TRUE = 1, + P_FALSE = 0, } PBool; /* Special Purpose Hash */ @@ -73,18 +76,16 @@ typedef enum PBool { typedef intptr_t PHashKey; typedef struct PHashLink { - struct PHashLink *next; - PHashKey key; + struct PHashLink *next; + PHashKey key; } PHashLink; typedef struct PHash { - PHashLink **list; - PHashLink **buckets; - int size, cursize, cursize_id; + PHashLink **list; + PHashLink **buckets; + int size, cursize, cursize_id; } PHash; - - struct PChart; struct PEdge; struct PFace; @@ -94,142 +95,142 @@ struct PVert; /* Simplices */ typedef struct PVert { - struct PVert *nextlink; + struct PVert *nextlink; - union PVertUnion { - PHashKey key; /* construct */ - int id; /* abf/lscm matrix index */ - float distortion; /* area smoothing */ - HeapNode *heaplink; /* edge collapsing */ - } u; + union PVertUnion { + PHashKey key; /* construct */ + int id; /* abf/lscm matrix index */ + float distortion; /* area smoothing */ + HeapNode *heaplink; /* edge collapsing */ + } u; - struct PEdge *edge; - float co[3]; - float uv[2]; - unsigned char flag; + struct PEdge *edge; + float co[3]; + float uv[2]; + unsigned char flag; } PVert; typedef struct PEdge { - struct PEdge *nextlink; - - union PEdgeUnion { - PHashKey key; /* construct */ - int id; /* abf matrix index */ - HeapNode *heaplink; /* fill holes */ - struct PEdge *nextcollapse; /* simplification */ - } u; - - struct PVert *vert; - struct PEdge *pair; - struct PEdge *next; - struct PFace *face; - float *orig_uv, old_uv[2]; - unsigned short flag; + struct PEdge *nextlink; + + union PEdgeUnion { + PHashKey key; /* construct */ + int id; /* abf matrix index */ + HeapNode *heaplink; /* fill holes */ + struct PEdge *nextcollapse; /* simplification */ + } u; + + struct PVert *vert; + struct PEdge *pair; + struct PEdge *next; + struct PFace *face; + float *orig_uv, old_uv[2]; + unsigned short flag; } PEdge; typedef struct PFace { - struct PFace *nextlink; + struct PFace *nextlink; - union PFaceUnion { - PHashKey key; /* construct */ - int chart; /* construct splitting*/ - float area3d; /* stretch */ - int id; /* abf matrix index */ - } u; + union PFaceUnion { + PHashKey key; /* construct */ + int chart; /* construct splitting*/ + float area3d; /* stretch */ + int id; /* abf matrix index */ + } u; - struct PEdge *edge; - unsigned char flag; + struct PEdge *edge; + unsigned char flag; } PFace; enum PVertFlag { - PVERT_PIN = 1, - PVERT_SELECT = 2, - PVERT_INTERIOR = 4, - PVERT_COLLAPSE = 8, - PVERT_SPLIT = 16, + PVERT_PIN = 1, + PVERT_SELECT = 2, + PVERT_INTERIOR = 4, + PVERT_COLLAPSE = 8, + PVERT_SPLIT = 16, }; enum PEdgeFlag { - PEDGE_SEAM = 1, - PEDGE_VERTEX_SPLIT = 2, - PEDGE_PIN = 4, - PEDGE_SELECT = 8, - PEDGE_DONE = 16, - PEDGE_FILLED = 32, - PEDGE_COLLAPSE = 64, - PEDGE_COLLAPSE_EDGE = 128, - PEDGE_COLLAPSE_PAIR = 256, + PEDGE_SEAM = 1, + PEDGE_VERTEX_SPLIT = 2, + PEDGE_PIN = 4, + PEDGE_SELECT = 8, + PEDGE_DONE = 16, + PEDGE_FILLED = 32, + PEDGE_COLLAPSE = 64, + PEDGE_COLLAPSE_EDGE = 128, + PEDGE_COLLAPSE_PAIR = 256, }; /* for flipping faces */ #define PEDGE_VERTEX_FLAGS (PEDGE_PIN) enum PFaceFlag { - PFACE_CONNECTED = 1, - PFACE_FILLED = 2, - PFACE_COLLAPSE = 4, + PFACE_CONNECTED = 1, + PFACE_FILLED = 2, + PFACE_COLLAPSE = 4, }; /* Chart */ typedef struct PChart { - PVert *verts; - PEdge *edges; - PFace *faces; - int nverts, nedges, nfaces; - - PVert *collapsed_verts; - PEdge *collapsed_edges; - PFace *collapsed_faces; - - union PChartUnion { - struct PChartLscm { - LinearSolver *context; - float *abf_alpha; - PVert *pin1, *pin2; - } lscm; - struct PChartPack { - float rescale, area; - float size[2] /* , trans[2] */; - } pack; - } u; - - unsigned char flag; - struct PHandle *handle; + PVert *verts; + PEdge *edges; + PFace *faces; + int nverts, nedges, nfaces; + + PVert *collapsed_verts; + PEdge *collapsed_edges; + PFace *collapsed_faces; + + union PChartUnion { + struct PChartLscm { + LinearSolver *context; + float *abf_alpha; + PVert *pin1, *pin2; + } lscm; + struct PChartPack { + float rescale, area; + float size[2] /* , trans[2] */; + } pack; + } u; + + unsigned char flag; + struct PHandle *handle; } PChart; enum PChartFlag { - PCHART_HAS_PINS = 1, + PCHART_HAS_PINS = 1, }; enum PHandleState { - PHANDLE_STATE_ALLOCATED, - PHANDLE_STATE_CONSTRUCTED, - PHANDLE_STATE_LSCM, - PHANDLE_STATE_STRETCH, + PHANDLE_STATE_ALLOCATED, + PHANDLE_STATE_CONSTRUCTED, + PHANDLE_STATE_LSCM, + PHANDLE_STATE_STRETCH, }; typedef struct PHandle { - enum PHandleState state; - MemArena *arena; - MemArena *polyfill_arena; - Heap *polyfill_heap; + enum PHandleState state; + MemArena *arena; + MemArena *polyfill_arena; + Heap *polyfill_heap; - PChart *construction_chart; - PHash *hash_verts; - PHash *hash_edges; - PHash *hash_faces; + PChart *construction_chart; + PHash *hash_verts; + PHash *hash_edges; + PHash *hash_faces; - PChart **charts; - int ncharts; + PChart **charts; + int ncharts; - float aspx, aspy; + float aspx, aspy; - RNG *rng; - float blend; - char do_aspect; + RNG *rng; + float blend; + char do_aspect; } PHandle; /* PHash @@ -239,315 +240,319 @@ typedef struct PHandle { */ static int PHashSizes[] = { - 1, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, 2053, 4099, 8209, - 16411, 32771, 65537, 131101, 262147, 524309, 1048583, 2097169, - 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, + 1, 3, 5, 11, 17, 37, 67, 131, 257, 521, + 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, + 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, }; -#define PHASH_hash(ph, item) (((uintptr_t) (item)) % ((unsigned int) (ph)->cursize)) -#define PHASH_edge(v1, v2) (((v1) < (v2)) ? ((v1) * 39) ^ ((v2) * 31) : ((v1) * 31) ^ ((v2) * 39)) +#define PHASH_hash(ph, item) (((uintptr_t)(item)) % ((unsigned int)(ph)->cursize)) +#define PHASH_edge(v1, v2) (((v1) < (v2)) ? ((v1)*39) ^ ((v2)*31) : ((v1)*31) ^ ((v2)*39)) static PHash *phash_new(PHashLink **list, int sizehint) { - PHash *ph = (PHash *)MEM_callocN(sizeof(PHash), "PHash"); - ph->size = 0; - ph->cursize_id = 0; - ph->list = list; + PHash *ph = (PHash *)MEM_callocN(sizeof(PHash), "PHash"); + ph->size = 0; + ph->cursize_id = 0; + ph->list = list; - while (PHashSizes[ph->cursize_id] < sizehint) - ph->cursize_id++; + while (PHashSizes[ph->cursize_id] < sizehint) + ph->cursize_id++; - ph->cursize = PHashSizes[ph->cursize_id]; - ph->buckets = (PHashLink **)MEM_callocN(ph->cursize * sizeof(*ph->buckets), "PHashBuckets"); + ph->cursize = PHashSizes[ph->cursize_id]; + ph->buckets = (PHashLink **)MEM_callocN(ph->cursize * sizeof(*ph->buckets), "PHashBuckets"); - return ph; + return ph; } static void phash_delete(PHash *ph) { - MEM_freeN(ph->buckets); - MEM_freeN(ph); + MEM_freeN(ph->buckets); + MEM_freeN(ph); } static int phash_size(PHash *ph) { - return ph->size; + return ph->size; } static void phash_insert(PHash *ph, PHashLink *link) { - int size = ph->cursize; - uintptr_t hash = PHASH_hash(ph, link->key); - PHashLink *lookup = ph->buckets[hash]; + int size = ph->cursize; + uintptr_t hash = PHASH_hash(ph, link->key); + PHashLink *lookup = ph->buckets[hash]; - if (lookup == NULL) { - /* insert in front of the list */ - ph->buckets[hash] = link; - link->next = *(ph->list); - *(ph->list) = link; - } - else { - /* insert after existing element */ - link->next = lookup->next; - lookup->next = link; - } + if (lookup == NULL) { + /* insert in front of the list */ + ph->buckets[hash] = link; + link->next = *(ph->list); + *(ph->list) = link; + } + else { + /* insert after existing element */ + link->next = lookup->next; + lookup->next = link; + } - ph->size++; + ph->size++; - if (ph->size > (size * 3)) { - PHashLink *next = NULL, *first = *(ph->list); + if (ph->size > (size * 3)) { + PHashLink *next = NULL, *first = *(ph->list); - ph->cursize = PHashSizes[++ph->cursize_id]; - MEM_freeN(ph->buckets); - ph->buckets = (PHashLink **)MEM_callocN(ph->cursize * sizeof(*ph->buckets), "PHashBuckets"); - ph->size = 0; - *(ph->list) = NULL; + ph->cursize = PHashSizes[++ph->cursize_id]; + MEM_freeN(ph->buckets); + ph->buckets = (PHashLink **)MEM_callocN(ph->cursize * sizeof(*ph->buckets), "PHashBuckets"); + ph->size = 0; + *(ph->list) = NULL; - for (link = first; link; link = next) { - next = link->next; - phash_insert(ph, link); - } - } + for (link = first; link; link = next) { + next = link->next; + phash_insert(ph, link); + } + } } static PHashLink *phash_lookup(PHash *ph, PHashKey key) { - PHashLink *link; - uintptr_t hash = PHASH_hash(ph, key); + PHashLink *link; + uintptr_t hash = PHASH_hash(ph, key); - for (link = ph->buckets[hash]; link; link = link->next) - if (link->key == key) - return link; - else if (PHASH_hash(ph, link->key) != hash) - return NULL; + for (link = ph->buckets[hash]; link; link = link->next) + if (link->key == key) + return link; + else if (PHASH_hash(ph, link->key) != hash) + return NULL; - return link; + return link; } static PHashLink *phash_next(PHash *ph, PHashKey key, PHashLink *link) { - uintptr_t hash = PHASH_hash(ph, key); + uintptr_t hash = PHASH_hash(ph, key); - for (link = link->next; link; link = link->next) - if (link->key == key) - return link; - else if (PHASH_hash(ph, link->key) != hash) - return NULL; + for (link = link->next; link; link = link->next) + if (link->key == key) + return link; + else if (PHASH_hash(ph, link->key) != hash) + return NULL; - return link; + return link; } /* Geometry */ static float p_vec_angle_cos(float *v1, float *v2, float *v3) { - float d1[3], d2[3]; + float d1[3], d2[3]; - d1[0] = v1[0] - v2[0]; - d1[1] = v1[1] - v2[1]; - d1[2] = v1[2] - v2[2]; + d1[0] = v1[0] - v2[0]; + d1[1] = v1[1] - v2[1]; + d1[2] = v1[2] - v2[2]; - d2[0] = v3[0] - v2[0]; - d2[1] = v3[1] - v2[1]; - d2[2] = v3[2] - v2[2]; + d2[0] = v3[0] - v2[0]; + d2[1] = v3[1] - v2[1]; + d2[2] = v3[2] - v2[2]; - normalize_v3(d1); - normalize_v3(d2); + normalize_v3(d1); + normalize_v3(d2); - return d1[0] * d2[0] + d1[1] * d2[1] + d1[2] * d2[2]; + return d1[0] * d2[0] + d1[1] * d2[1] + d1[2] * d2[2]; } static float p_vec_angle(float *v1, float *v2, float *v3) { - float dot = p_vec_angle_cos(v1, v2, v3); + float dot = p_vec_angle_cos(v1, v2, v3); - if (dot <= -1.0f) - return (float)M_PI; - else if (dot >= 1.0f) - return 0.0f; - else - return acosf(dot); + if (dot <= -1.0f) + return (float)M_PI; + else if (dot >= 1.0f) + return 0.0f; + else + return acosf(dot); } static float p_vec2_angle(float *v1, float *v2, float *v3) { - float u1[3], u2[3], u3[3]; + float u1[3], u2[3], u3[3]; - u1[0] = v1[0]; u1[1] = v1[1]; u1[2] = 0.0f; - u2[0] = v2[0]; u2[1] = v2[1]; u2[2] = 0.0f; - u3[0] = v3[0]; u3[1] = v3[1]; u3[2] = 0.0f; + u1[0] = v1[0]; + u1[1] = v1[1]; + u1[2] = 0.0f; + u2[0] = v2[0]; + u2[1] = v2[1]; + u2[2] = 0.0f; + u3[0] = v3[0]; + u3[1] = v3[1]; + u3[2] = 0.0f; - return p_vec_angle(u1, u2, u3); + return p_vec_angle(u1, u2, u3); } static void p_triangle_angles(float *v1, float *v2, float *v3, float *a1, float *a2, float *a3) { - *a1 = p_vec_angle(v3, v1, v2); - *a2 = p_vec_angle(v1, v2, v3); - *a3 = (float)M_PI - *a2 - *a1; + *a1 = p_vec_angle(v3, v1, v2); + *a2 = p_vec_angle(v1, v2, v3); + *a3 = (float)M_PI - *a2 - *a1; } static void p_face_angles(PFace *f, float *a1, float *a2, float *a3) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - p_triangle_angles(v1->co, v2->co, v3->co, a1, a2, a3); + p_triangle_angles(v1->co, v2->co, v3->co, a1, a2, a3); } static float p_face_area(PFace *f) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - return area_tri_v3(v1->co, v2->co, v3->co); + return area_tri_v3(v1->co, v2->co, v3->co); } static float p_area_signed(float *v1, float *v2, float *v3) { - return 0.5f * (((v2[0] - v1[0]) * (v3[1] - v1[1])) - - ((v3[0] - v1[0]) * (v2[1] - v1[1]))); + return 0.5f * (((v2[0] - v1[0]) * (v3[1] - v1[1])) - ((v3[0] - v1[0]) * (v2[1] - v1[1]))); } static float p_face_uv_area_signed(PFace *f) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - return 0.5f * (((v2->uv[0] - v1->uv[0]) * (v3->uv[1] - v1->uv[1])) - - ((v3->uv[0] - v1->uv[0]) * (v2->uv[1] - v1->uv[1]))); + return 0.5f * (((v2->uv[0] - v1->uv[0]) * (v3->uv[1] - v1->uv[1])) - + ((v3->uv[0] - v1->uv[0]) * (v2->uv[1] - v1->uv[1]))); } static float p_edge_length(PEdge *e) { - PVert *v1 = e->vert, *v2 = e->next->vert; - float d[3]; + PVert *v1 = e->vert, *v2 = e->next->vert; + float d[3]; - d[0] = v2->co[0] - v1->co[0]; - d[1] = v2->co[1] - v1->co[1]; - d[2] = v2->co[2] - v1->co[2]; + d[0] = v2->co[0] - v1->co[0]; + d[1] = v2->co[1] - v1->co[1]; + d[2] = v2->co[2] - v1->co[2]; - return sqrtf(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]); + return sqrtf(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]); } static float p_edge_uv_length(PEdge *e) { - PVert *v1 = e->vert, *v2 = e->next->vert; - float d[3]; + PVert *v1 = e->vert, *v2 = e->next->vert; + float d[3]; - d[0] = v2->uv[0] - v1->uv[0]; - d[1] = v2->uv[1] - v1->uv[1]; + d[0] = v2->uv[0] - v1->uv[0]; + d[1] = v2->uv[1] - v1->uv[1]; - return sqrtf(d[0] * d[0] + d[1] * d[1]); + return sqrtf(d[0] * d[0] + d[1] * d[1]); } static void p_chart_uv_bbox(PChart *chart, float minv[2], float maxv[2]) { - PVert *v; + PVert *v; - INIT_MINMAX2(minv, maxv); + INIT_MINMAX2(minv, maxv); - for (v = chart->verts; v; v = v->nextlink) { - minmax_v2v2_v2(minv, maxv, v->uv); - } + for (v = chart->verts; v; v = v->nextlink) { + minmax_v2v2_v2(minv, maxv, v->uv); + } } static void p_chart_uv_scale(PChart *chart, float scale) { - PVert *v; + PVert *v; - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] *= scale; - v->uv[1] *= scale; - } + for (v = chart->verts; v; v = v->nextlink) { + v->uv[0] *= scale; + v->uv[1] *= scale; + } } static void p_chart_uv_scale_xy(PChart *chart, float x, float y) { - PVert *v; + PVert *v; - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] *= x; - v->uv[1] *= y; - } + for (v = chart->verts; v; v = v->nextlink) { + v->uv[0] *= x; + v->uv[1] *= y; + } } static void p_chart_uv_translate(PChart *chart, float trans[2]) { - PVert *v; + PVert *v; - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] += trans[0]; - v->uv[1] += trans[1]; - } + for (v = chart->verts; v; v = v->nextlink) { + v->uv[0] += trans[0]; + v->uv[1] += trans[1]; + } } static void p_chart_uv_transform(PChart *chart, float mat[2][2]) { - PVert *v; + PVert *v; - for (v = chart->verts; v; v = v->nextlink) { - mul_m2v2(mat, v->uv); - } + for (v = chart->verts; v; v = v->nextlink) { + mul_m2v2(mat, v->uv); + } } static void p_chart_uv_to_array(PChart *chart, float (*points)[2]) { - PVert *v; - unsigned int i = 0; + PVert *v; + unsigned int i = 0; - for (v = chart->verts; v; v = v->nextlink) { - copy_v2_v2(points[i++], v->uv); - } + for (v = chart->verts; v; v = v->nextlink) { + copy_v2_v2(points[i++], v->uv); + } } static void UNUSED_FUNCTION(p_chart_uv_from_array)(PChart *chart, float (*points)[2]) { - PVert *v; - unsigned int i = 0; + PVert *v; + unsigned int i = 0; - for (v = chart->verts; v; v = v->nextlink) { - copy_v2_v2(v->uv, points[i++]); - } + for (v = chart->verts; v; v = v->nextlink) { + copy_v2_v2(v->uv, points[i++]); + } } - static PBool p_intersect_line_2d_dir(float *v1, float *dir1, float *v2, float *dir2, float *isect) { - float lmbda, div; + float lmbda, div; - div = dir2[0] * dir1[1] - dir2[1] * dir1[0]; + div = dir2[0] * dir1[1] - dir2[1] * dir1[0]; - if (div == 0.0f) - return P_FALSE; + if (div == 0.0f) + return P_FALSE; - lmbda = ((v1[1] - v2[1]) * dir1[0] - (v1[0] - v2[0]) * dir1[1]) / div; - isect[0] = v1[0] + lmbda * dir2[0]; - isect[1] = v1[1] + lmbda * dir2[1]; + lmbda = ((v1[1] - v2[1]) * dir1[0] - (v1[0] - v2[0]) * dir1[1]) / div; + isect[0] = v1[0] + lmbda * dir2[0]; + isect[1] = v1[1] + lmbda * dir2[1]; - return P_TRUE; + return P_TRUE; } #if 0 static PBool p_intersect_line_2d(float *v1, float *v2, float *v3, float *v4, float *isect) { - float dir1[2], dir2[2]; + float dir1[2], dir2[2]; - dir1[0] = v4[0] - v3[0]; - dir1[1] = v4[1] - v3[1]; + dir1[0] = v4[0] - v3[0]; + dir1[1] = v4[1] - v3[1]; - dir2[0] = v2[0] - v1[0]; - dir2[1] = v2[1] - v1[1]; + dir2[0] = v2[0] - v1[0]; + dir2[1] = v2[1] - v1[1]; - if (!p_intersect_line_2d_dir(v1, dir1, v2, dir2, isect)) { - /* parallel - should never happen in theory for polygon kernel, but - * let's give a point nearby in case things go wrong */ - isect[0] = (v1[0] + v2[0]) * 0.5f; - isect[1] = (v1[1] + v2[1]) * 0.5f; - return P_FALSE; - } + if (!p_intersect_line_2d_dir(v1, dir1, v2, dir2, isect)) { + /* parallel - should never happen in theory for polygon kernel, but + * let's give a point nearby in case things go wrong */ + isect[0] = (v1[0] + v2[0]) * 0.5f; + isect[1] = (v1[1] + v2[1]) * 0.5f; + return P_FALSE; + } - return P_TRUE; + return P_TRUE; } #endif @@ -555,75 +560,75 @@ static PBool p_intersect_line_2d(float *v1, float *v2, float *v3, float *v4, flo static PEdge *p_wheel_edge_next(PEdge *e) { - return e->next->next->pair; + return e->next->next->pair; } static PEdge *p_wheel_edge_prev(PEdge *e) { - return (e->pair) ? e->pair->next : NULL; + return (e->pair) ? e->pair->next : NULL; } static PEdge *p_boundary_edge_next(PEdge *e) { - return e->next->vert->edge; + return e->next->vert->edge; } static PEdge *p_boundary_edge_prev(PEdge *e) { - PEdge *we = e, *last; + PEdge *we = e, *last; - do { - last = we; - we = p_wheel_edge_next(we); - } while (we && (we != e)); + do { + last = we; + we = p_wheel_edge_next(we); + } while (we && (we != e)); - return last->next->next; + return last->next->next; } static PBool p_vert_interior(PVert *v) { - return (v->edge->pair != NULL); + return (v->edge->pair != NULL); } static void p_face_flip(PFace *f) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - int f1 = e1->flag, f2 = e2->flag, f3 = e3->flag; - float *orig_uv1 = e1->orig_uv, *orig_uv2 = e2->orig_uv, *orig_uv3 = e3->orig_uv; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + int f1 = e1->flag, f2 = e2->flag, f3 = e3->flag; + float *orig_uv1 = e1->orig_uv, *orig_uv2 = e2->orig_uv, *orig_uv3 = e3->orig_uv; - e1->vert = v2; - e1->next = e3; - e1->orig_uv = orig_uv2; - e1->flag = (f1 & ~PEDGE_VERTEX_FLAGS) | (f2 & PEDGE_VERTEX_FLAGS); + e1->vert = v2; + e1->next = e3; + e1->orig_uv = orig_uv2; + e1->flag = (f1 & ~PEDGE_VERTEX_FLAGS) | (f2 & PEDGE_VERTEX_FLAGS); - e2->vert = v3; - e2->next = e1; - e2->orig_uv = orig_uv3; - e2->flag = (f2 & ~PEDGE_VERTEX_FLAGS) | (f3 & PEDGE_VERTEX_FLAGS); + e2->vert = v3; + e2->next = e1; + e2->orig_uv = orig_uv3; + e2->flag = (f2 & ~PEDGE_VERTEX_FLAGS) | (f3 & PEDGE_VERTEX_FLAGS); - e3->vert = v1; - e3->next = e2; - e3->orig_uv = orig_uv1; - e3->flag = (f3 & ~PEDGE_VERTEX_FLAGS) | (f1 & PEDGE_VERTEX_FLAGS); + e3->vert = v1; + e3->next = e2; + e3->orig_uv = orig_uv1; + e3->flag = (f3 & ~PEDGE_VERTEX_FLAGS) | (f1 & PEDGE_VERTEX_FLAGS); } #if 0 static void p_chart_topological_sanity_check(PChart *chart) { - PVert *v; - PEdge *e; + PVert *v; + PEdge *e; - for (v = chart->verts; v; v = v->nextlink) - param_test_equals_ptr("v->edge->vert", v, v->edge->vert); + for (v = chart->verts; v; v = v->nextlink) + param_test_equals_ptr("v->edge->vert", v, v->edge->vert); - for (e = chart->edges; e; e = e->nextlink) { - if (e->pair) { - param_test_equals_ptr("e->pair->pair", e, e->pair->pair); - param_test_equals_ptr("pair->vert", e->vert, e->pair->next->vert); - param_test_equals_ptr("pair->next->vert", e->next->vert, e->pair->vert); - } - } + for (e = chart->edges; e; e = e->nextlink) { + if (e->pair) { + param_test_equals_ptr("e->pair->pair", e, e->pair->pair); + param_test_equals_ptr("pair->vert", e->vert, e->pair->next->vert); + param_test_equals_ptr("pair->next->vert", e->next->vert, e->pair->vert); + } + } } #endif @@ -631,737 +636,748 @@ static void p_chart_topological_sanity_check(PChart *chart) static void p_vert_load_pin_select_uvs(PHandle *handle, PVert *v) { - PEdge *e; - int nedges = 0, npins = 0; - float pinuv[2]; - - v->uv[0] = v->uv[1] = 0.0f; - pinuv[0] = pinuv[1] = 0.0f; - e = v->edge; - do { - if (e->orig_uv) { - if (e->flag & PEDGE_SELECT) - v->flag |= PVERT_SELECT; - - if (e->flag & PEDGE_PIN) { - pinuv[0] += e->orig_uv[0] * handle->aspx; - pinuv[1] += e->orig_uv[1] * handle->aspy; - npins++; - } - else { - v->uv[0] += e->orig_uv[0] * handle->aspx; - v->uv[1] += e->orig_uv[1] * handle->aspy; - } - - nedges++; - } - - e = p_wheel_edge_next(e); - } while (e && e != (v->edge)); - - if (npins > 0) { - v->uv[0] = pinuv[0] / npins; - v->uv[1] = pinuv[1] / npins; - v->flag |= PVERT_PIN; - } - else if (nedges > 0) { - v->uv[0] /= nedges; - v->uv[1] /= nedges; - } + PEdge *e; + int nedges = 0, npins = 0; + float pinuv[2]; + + v->uv[0] = v->uv[1] = 0.0f; + pinuv[0] = pinuv[1] = 0.0f; + e = v->edge; + do { + if (e->orig_uv) { + if (e->flag & PEDGE_SELECT) + v->flag |= PVERT_SELECT; + + if (e->flag & PEDGE_PIN) { + pinuv[0] += e->orig_uv[0] * handle->aspx; + pinuv[1] += e->orig_uv[1] * handle->aspy; + npins++; + } + else { + v->uv[0] += e->orig_uv[0] * handle->aspx; + v->uv[1] += e->orig_uv[1] * handle->aspy; + } + + nedges++; + } + + e = p_wheel_edge_next(e); + } while (e && e != (v->edge)); + + if (npins > 0) { + v->uv[0] = pinuv[0] / npins; + v->uv[1] = pinuv[1] / npins; + v->flag |= PVERT_PIN; + } + else if (nedges > 0) { + v->uv[0] /= nedges; + v->uv[1] /= nedges; + } } static void p_flush_uvs(PHandle *handle, PChart *chart) { - PEdge *e; + PEdge *e; - for (e = chart->edges; e; e = e->nextlink) { - if (e->orig_uv) { - e->orig_uv[0] = e->vert->uv[0] / handle->aspx; - e->orig_uv[1] = e->vert->uv[1] / handle->aspy; - } - } + for (e = chart->edges; e; e = e->nextlink) { + if (e->orig_uv) { + e->orig_uv[0] = e->vert->uv[0] / handle->aspx; + e->orig_uv[1] = e->vert->uv[1] / handle->aspy; + } + } } static void p_flush_uvs_blend(PHandle *handle, PChart *chart, float blend) { - PEdge *e; - float invblend = 1.0f - blend; + PEdge *e; + float invblend = 1.0f - blend; - for (e = chart->edges; e; e = e->nextlink) { - if (e->orig_uv) { - e->orig_uv[0] = blend * e->old_uv[0] + invblend * e->vert->uv[0] / handle->aspx; - e->orig_uv[1] = blend * e->old_uv[1] + invblend * e->vert->uv[1] / handle->aspy; - } - } + for (e = chart->edges; e; e = e->nextlink) { + if (e->orig_uv) { + e->orig_uv[0] = blend * e->old_uv[0] + invblend * e->vert->uv[0] / handle->aspx; + e->orig_uv[1] = blend * e->old_uv[1] + invblend * e->vert->uv[1] / handle->aspy; + } + } } static void p_face_backup_uvs(PFace *f) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - if (e1->orig_uv) { - e1->old_uv[0] = e1->orig_uv[0]; - e1->old_uv[1] = e1->orig_uv[1]; - } - if (e2->orig_uv) { - e2->old_uv[0] = e2->orig_uv[0]; - e2->old_uv[1] = e2->orig_uv[1]; - } - if (e3->orig_uv) { - e3->old_uv[0] = e3->orig_uv[0]; - e3->old_uv[1] = e3->orig_uv[1]; - } + if (e1->orig_uv) { + e1->old_uv[0] = e1->orig_uv[0]; + e1->old_uv[1] = e1->orig_uv[1]; + } + if (e2->orig_uv) { + e2->old_uv[0] = e2->orig_uv[0]; + e2->old_uv[1] = e2->orig_uv[1]; + } + if (e3->orig_uv) { + e3->old_uv[0] = e3->orig_uv[0]; + e3->old_uv[1] = e3->orig_uv[1]; + } } static void p_face_restore_uvs(PFace *f) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - if (e1->orig_uv) { - e1->orig_uv[0] = e1->old_uv[0]; - e1->orig_uv[1] = e1->old_uv[1]; - } - if (e2->orig_uv) { - e2->orig_uv[0] = e2->old_uv[0]; - e2->orig_uv[1] = e2->old_uv[1]; - } - if (e3->orig_uv) { - e3->orig_uv[0] = e3->old_uv[0]; - e3->orig_uv[1] = e3->old_uv[1]; - } + if (e1->orig_uv) { + e1->orig_uv[0] = e1->old_uv[0]; + e1->orig_uv[1] = e1->old_uv[1]; + } + if (e2->orig_uv) { + e2->orig_uv[0] = e2->old_uv[0]; + e2->orig_uv[1] = e2->old_uv[1]; + } + if (e3->orig_uv) { + e3->orig_uv[0] = e3->old_uv[0]; + e3->orig_uv[1] = e3->old_uv[1]; + } } /* Construction (use only during construction, relies on u.key being set */ static PVert *p_vert_add(PHandle *handle, PHashKey key, const float co[3], PEdge *e) { - PVert *v = (PVert *)BLI_memarena_alloc(handle->arena, sizeof(*v)); - copy_v3_v3(v->co, co); + PVert *v = (PVert *)BLI_memarena_alloc(handle->arena, sizeof(*v)); + copy_v3_v3(v->co, co); - /* Sanity check, a single nan/inf point causes the entire result to be invalid. - * Note that values within the calculation may _become_ non-finite, - * so the rest of the code still needs to take this possibility into account. */ - for (int i = 0; i < 3; i++) { - if (UNLIKELY(!isfinite(v->co[i]))) { - v->co[i] = 0.0f; - } - } + /* Sanity check, a single nan/inf point causes the entire result to be invalid. + * Note that values within the calculation may _become_ non-finite, + * so the rest of the code still needs to take this possibility into account. */ + for (int i = 0; i < 3; i++) { + if (UNLIKELY(!isfinite(v->co[i]))) { + v->co[i] = 0.0f; + } + } - v->u.key = key; - v->edge = e; - v->flag = 0; + v->u.key = key; + v->edge = e; + v->flag = 0; - phash_insert(handle->hash_verts, (PHashLink *)v); + phash_insert(handle->hash_verts, (PHashLink *)v); - return v; + return v; } static PVert *p_vert_lookup(PHandle *handle, PHashKey key, const float co[3], PEdge *e) { - PVert *v = (PVert *)phash_lookup(handle->hash_verts, key); + PVert *v = (PVert *)phash_lookup(handle->hash_verts, key); - if (v) - return v; - else - return p_vert_add(handle, key, co, e); + if (v) + return v; + else + return p_vert_add(handle, key, co, e); } static PVert *p_vert_copy(PChart *chart, PVert *v) { - PVert *nv = (PVert *)BLI_memarena_alloc(chart->handle->arena, sizeof(*nv)); + PVert *nv = (PVert *)BLI_memarena_alloc(chart->handle->arena, sizeof(*nv)); - copy_v3_v3(nv->co, v->co); - nv->uv[0] = v->uv[0]; - nv->uv[1] = v->uv[1]; - nv->u.key = v->u.key; - nv->edge = v->edge; - nv->flag = v->flag; + copy_v3_v3(nv->co, v->co); + nv->uv[0] = v->uv[0]; + nv->uv[1] = v->uv[1]; + nv->u.key = v->u.key; + nv->edge = v->edge; + nv->flag = v->flag; - return nv; + return nv; } static PEdge *p_edge_lookup(PHandle *handle, PHashKey *vkeys) { - PHashKey key = PHASH_edge(vkeys[0], vkeys[1]); - PEdge *e = (PEdge *)phash_lookup(handle->hash_edges, key); + PHashKey key = PHASH_edge(vkeys[0], vkeys[1]); + PEdge *e = (PEdge *)phash_lookup(handle->hash_edges, key); - while (e) { - if ((e->vert->u.key == vkeys[0]) && (e->next->vert->u.key == vkeys[1])) - return e; - else if ((e->vert->u.key == vkeys[1]) && (e->next->vert->u.key == vkeys[0])) - return e; + while (e) { + if ((e->vert->u.key == vkeys[0]) && (e->next->vert->u.key == vkeys[1])) + return e; + else if ((e->vert->u.key == vkeys[1]) && (e->next->vert->u.key == vkeys[0])) + return e; - e = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)e); - } + e = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)e); + } - return NULL; + return NULL; } static int p_face_exists(ParamHandle *phandle, ParamKey *pvkeys, int i1, int i2, int i3) { - PHandle *handle = (PHandle *)phandle; - PHashKey *vkeys = (PHashKey *)pvkeys; - PHashKey key = PHASH_edge(vkeys[i1], vkeys[i2]); - PEdge *e = (PEdge *)phash_lookup(handle->hash_edges, key); + PHandle *handle = (PHandle *)phandle; + PHashKey *vkeys = (PHashKey *)pvkeys; + PHashKey key = PHASH_edge(vkeys[i1], vkeys[i2]); + PEdge *e = (PEdge *)phash_lookup(handle->hash_edges, key); - while (e) { - if ((e->vert->u.key == vkeys[i1]) && (e->next->vert->u.key == vkeys[i2])) { - if (e->next->next->vert->u.key == vkeys[i3]) - return P_TRUE; - } - else if ((e->vert->u.key == vkeys[i2]) && (e->next->vert->u.key == vkeys[i1])) { - if (e->next->next->vert->u.key == vkeys[i3]) - return P_TRUE; - } + while (e) { + if ((e->vert->u.key == vkeys[i1]) && (e->next->vert->u.key == vkeys[i2])) { + if (e->next->next->vert->u.key == vkeys[i3]) + return P_TRUE; + } + else if ((e->vert->u.key == vkeys[i2]) && (e->next->vert->u.key == vkeys[i1])) { + if (e->next->next->vert->u.key == vkeys[i3]) + return P_TRUE; + } - e = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)e); - } + e = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)e); + } - return P_FALSE; + return P_FALSE; } static PChart *p_chart_new(PHandle *handle) { - PChart *chart = (PChart *)MEM_callocN(sizeof(*chart), "PChart"); - chart->handle = handle; + PChart *chart = (PChart *)MEM_callocN(sizeof(*chart), "PChart"); + chart->handle = handle; - return chart; + return chart; } static void p_chart_delete(PChart *chart) { - /* the actual links are free by memarena */ - MEM_freeN(chart); + /* the actual links are free by memarena */ + MEM_freeN(chart); } static PBool p_edge_implicit_seam(PEdge *e, PEdge *ep) { - float *uv1, *uv2, *uvp1, *uvp2; - float limit[2]; + float *uv1, *uv2, *uvp1, *uvp2; + float limit[2]; - limit[0] = 0.00001; - limit[1] = 0.00001; + limit[0] = 0.00001; + limit[1] = 0.00001; - uv1 = e->orig_uv; - uv2 = e->next->orig_uv; + uv1 = e->orig_uv; + uv2 = e->next->orig_uv; - if (e->vert->u.key == ep->vert->u.key) { - uvp1 = ep->orig_uv; - uvp2 = ep->next->orig_uv; - } - else { - uvp1 = ep->next->orig_uv; - uvp2 = ep->orig_uv; - } + if (e->vert->u.key == ep->vert->u.key) { + uvp1 = ep->orig_uv; + uvp2 = ep->next->orig_uv; + } + else { + uvp1 = ep->next->orig_uv; + uvp2 = ep->orig_uv; + } - if ((fabsf(uv1[0] - uvp1[0]) > limit[0]) || (fabsf(uv1[1] - uvp1[1]) > limit[1])) { - e->flag |= PEDGE_SEAM; - ep->flag |= PEDGE_SEAM; - return P_TRUE; - } - if ((fabsf(uv2[0] - uvp2[0]) > limit[0]) || (fabsf(uv2[1] - uvp2[1]) > limit[1])) { - e->flag |= PEDGE_SEAM; - ep->flag |= PEDGE_SEAM; - return P_TRUE; - } + if ((fabsf(uv1[0] - uvp1[0]) > limit[0]) || (fabsf(uv1[1] - uvp1[1]) > limit[1])) { + e->flag |= PEDGE_SEAM; + ep->flag |= PEDGE_SEAM; + return P_TRUE; + } + if ((fabsf(uv2[0] - uvp2[0]) > limit[0]) || (fabsf(uv2[1] - uvp2[1]) > limit[1])) { + e->flag |= PEDGE_SEAM; + ep->flag |= PEDGE_SEAM; + return P_TRUE; + } - return P_FALSE; + return P_FALSE; } static PBool p_edge_has_pair(PHandle *handle, PEdge *e, PEdge **pair, PBool impl) { - PHashKey key; - PEdge *pe; - PVert *v1, *v2; - PHashKey key1 = e->vert->u.key; - PHashKey key2 = e->next->vert->u.key; + PHashKey key; + PEdge *pe; + PVert *v1, *v2; + PHashKey key1 = e->vert->u.key; + PHashKey key2 = e->next->vert->u.key; - if (e->flag & PEDGE_SEAM) - return P_FALSE; + if (e->flag & PEDGE_SEAM) + return P_FALSE; - key = PHASH_edge(key1, key2); - pe = (PEdge *)phash_lookup(handle->hash_edges, key); - *pair = NULL; + key = PHASH_edge(key1, key2); + pe = (PEdge *)phash_lookup(handle->hash_edges, key); + *pair = NULL; - while (pe) { - if (pe != e) { - v1 = pe->vert; - v2 = pe->next->vert; + while (pe) { + if (pe != e) { + v1 = pe->vert; + v2 = pe->next->vert; - if (((v1->u.key == key1) && (v2->u.key == key2)) || - ((v1->u.key == key2) && (v2->u.key == key1))) - { + if (((v1->u.key == key1) && (v2->u.key == key2)) || + ((v1->u.key == key2) && (v2->u.key == key1))) { - /* don't connect seams and t-junctions */ - if ((pe->flag & PEDGE_SEAM) || *pair || - (impl && p_edge_implicit_seam(e, pe))) - { - *pair = NULL; - return P_FALSE; - } + /* don't connect seams and t-junctions */ + if ((pe->flag & PEDGE_SEAM) || *pair || (impl && p_edge_implicit_seam(e, pe))) { + *pair = NULL; + return P_FALSE; + } - *pair = pe; - } - } + *pair = pe; + } + } - pe = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)pe); - } + pe = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)pe); + } - if (*pair && (e->vert == (*pair)->vert)) { - if ((*pair)->next->pair || (*pair)->next->next->pair) { - /* non unfoldable, maybe mobius ring or klein bottle */ - *pair = NULL; - return P_FALSE; - } - } + if (*pair && (e->vert == (*pair)->vert)) { + if ((*pair)->next->pair || (*pair)->next->next->pair) { + /* non unfoldable, maybe mobius ring or klein bottle */ + *pair = NULL; + return P_FALSE; + } + } - return (*pair != NULL); + return (*pair != NULL); } static PBool p_edge_connect_pair(PHandle *handle, PEdge *e, PEdge ***stack, PBool impl) { - PEdge *pair = NULL; + PEdge *pair = NULL; - if (!e->pair && p_edge_has_pair(handle, e, &pair, impl)) { - if (e->vert == pair->vert) - p_face_flip(pair->face); + if (!e->pair && p_edge_has_pair(handle, e, &pair, impl)) { + if (e->vert == pair->vert) + p_face_flip(pair->face); - e->pair = pair; - pair->pair = e; + e->pair = pair; + pair->pair = e; - if (!(pair->face->flag & PFACE_CONNECTED)) { - **stack = pair; - (*stack)++; - } - } + if (!(pair->face->flag & PFACE_CONNECTED)) { + **stack = pair; + (*stack)++; + } + } - return (e->pair != NULL); + return (e->pair != NULL); } static int p_connect_pairs(PHandle *handle, PBool impl) { - PEdge **stackbase = MEM_mallocN(sizeof(*stackbase) * phash_size(handle->hash_faces), "Pstackbase"); - PEdge **stack = stackbase; - PFace *f, *first; - PEdge *e, *e1, *e2; - PChart *chart = handle->construction_chart; - int ncharts = 0; + PEdge **stackbase = MEM_mallocN(sizeof(*stackbase) * phash_size(handle->hash_faces), + "Pstackbase"); + PEdge **stack = stackbase; + PFace *f, *first; + PEdge *e, *e1, *e2; + PChart *chart = handle->construction_chart; + int ncharts = 0; - /* connect pairs, count edges, set vertex-edge pointer to a pairless edge */ - for (first = chart->faces; first; first = first->nextlink) { - if (first->flag & PFACE_CONNECTED) - continue; + /* connect pairs, count edges, set vertex-edge pointer to a pairless edge */ + for (first = chart->faces; first; first = first->nextlink) { + if (first->flag & PFACE_CONNECTED) + continue; - *stack = first->edge; - stack++; + *stack = first->edge; + stack++; - while (stack != stackbase) { - stack--; - e = *stack; - e1 = e->next; - e2 = e1->next; + while (stack != stackbase) { + stack--; + e = *stack; + e1 = e->next; + e2 = e1->next; - f = e->face; - f->flag |= PFACE_CONNECTED; + f = e->face; + f->flag |= PFACE_CONNECTED; - /* assign verts to charts so we can sort them later */ - f->u.chart = ncharts; + /* assign verts to charts so we can sort them later */ + f->u.chart = ncharts; - if (!p_edge_connect_pair(handle, e, &stack, impl)) - e->vert->edge = e; - if (!p_edge_connect_pair(handle, e1, &stack, impl)) - e1->vert->edge = e1; - if (!p_edge_connect_pair(handle, e2, &stack, impl)) - e2->vert->edge = e2; - } + if (!p_edge_connect_pair(handle, e, &stack, impl)) + e->vert->edge = e; + if (!p_edge_connect_pair(handle, e1, &stack, impl)) + e1->vert->edge = e1; + if (!p_edge_connect_pair(handle, e2, &stack, impl)) + e2->vert->edge = e2; + } - ncharts++; - } + ncharts++; + } - MEM_freeN(stackbase); + MEM_freeN(stackbase); - return ncharts; + return ncharts; } static void p_split_vert(PChart *chart, PEdge *e) { - PEdge *we, *lastwe = NULL; - PVert *v = e->vert; - PBool copy = P_TRUE; + PEdge *we, *lastwe = NULL; + PVert *v = e->vert; + PBool copy = P_TRUE; - if (e->flag & PEDGE_PIN) { - chart->flag |= PCHART_HAS_PINS; - } + if (e->flag & PEDGE_PIN) { + chart->flag |= PCHART_HAS_PINS; + } - if (e->flag & PEDGE_VERTEX_SPLIT) - return; + if (e->flag & PEDGE_VERTEX_SPLIT) + return; - /* rewind to start */ - lastwe = e; - for (we = p_wheel_edge_prev(e); we && (we != e); we = p_wheel_edge_prev(we)) - lastwe = we; + /* rewind to start */ + lastwe = e; + for (we = p_wheel_edge_prev(e); we && (we != e); we = p_wheel_edge_prev(we)) + lastwe = we; - /* go over all edges in wheel */ - for (we = lastwe; we; we = p_wheel_edge_next(we)) { - if (we->flag & PEDGE_VERTEX_SPLIT) - break; + /* go over all edges in wheel */ + for (we = lastwe; we; we = p_wheel_edge_next(we)) { + if (we->flag & PEDGE_VERTEX_SPLIT) + break; - we->flag |= PEDGE_VERTEX_SPLIT; + we->flag |= PEDGE_VERTEX_SPLIT; - if (we == v->edge) { - /* found it, no need to copy */ - copy = P_FALSE; - v->nextlink = chart->verts; - chart->verts = v; - chart->nverts++; - } - } + if (we == v->edge) { + /* found it, no need to copy */ + copy = P_FALSE; + v->nextlink = chart->verts; + chart->verts = v; + chart->nverts++; + } + } - if (copy) { - /* not found, copying */ - v->flag |= PVERT_SPLIT; - v = p_vert_copy(chart, v); - v->flag |= PVERT_SPLIT; + if (copy) { + /* not found, copying */ + v->flag |= PVERT_SPLIT; + v = p_vert_copy(chart, v); + v->flag |= PVERT_SPLIT; - v->nextlink = chart->verts; - chart->verts = v; - chart->nverts++; + v->nextlink = chart->verts; + chart->verts = v; + chart->nverts++; - v->edge = lastwe; + v->edge = lastwe; - we = lastwe; - do { - we->vert = v; - we = p_wheel_edge_next(we); - } while (we && (we != lastwe)); - } + we = lastwe; + do { + we->vert = v; + we = p_wheel_edge_next(we); + } while (we && (we != lastwe)); + } } static PChart **p_split_charts(PHandle *handle, PChart *chart, int ncharts) { - PChart **charts = MEM_mallocN(sizeof(*charts) * ncharts, "PCharts"), *nchart; - PFace *f, *nextf; - int i; + PChart **charts = MEM_mallocN(sizeof(*charts) * ncharts, "PCharts"), *nchart; + PFace *f, *nextf; + int i; - for (i = 0; i < ncharts; i++) - charts[i] = p_chart_new(handle); + for (i = 0; i < ncharts; i++) + charts[i] = p_chart_new(handle); - f = chart->faces; - while (f) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - nextf = f->nextlink; + f = chart->faces; + while (f) { + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + nextf = f->nextlink; - nchart = charts[f->u.chart]; + nchart = charts[f->u.chart]; - f->nextlink = nchart->faces; - nchart->faces = f; - e1->nextlink = nchart->edges; - nchart->edges = e1; - e2->nextlink = nchart->edges; - nchart->edges = e2; - e3->nextlink = nchart->edges; - nchart->edges = e3; + f->nextlink = nchart->faces; + nchart->faces = f; + e1->nextlink = nchart->edges; + nchart->edges = e1; + e2->nextlink = nchart->edges; + nchart->edges = e2; + e3->nextlink = nchart->edges; + nchart->edges = e3; - nchart->nfaces++; - nchart->nedges += 3; + nchart->nfaces++; + nchart->nedges += 3; - p_split_vert(nchart, e1); - p_split_vert(nchart, e2); - p_split_vert(nchart, e3); + p_split_vert(nchart, e1); + p_split_vert(nchart, e2); + p_split_vert(nchart, e3); - f = nextf; - } + f = nextf; + } - return charts; + return charts; } static PFace *p_face_add(PHandle *handle) { - PFace *f; - PEdge *e1, *e2, *e3; + PFace *f; + PEdge *e1, *e2, *e3; - /* allocate */ - f = (PFace *)BLI_memarena_alloc(handle->arena, sizeof(*f)); - f->flag = 0; /* init ! */ + /* allocate */ + f = (PFace *)BLI_memarena_alloc(handle->arena, sizeof(*f)); + f->flag = 0; /* init ! */ - e1 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e1)); - e2 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e2)); - e3 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e3)); + e1 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e1)); + e2 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e2)); + e3 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e3)); - /* set up edges */ - f->edge = e1; - e1->face = e2->face = e3->face = f; + /* set up edges */ + f->edge = e1; + e1->face = e2->face = e3->face = f; - e1->next = e2; - e2->next = e3; - e3->next = e1; + e1->next = e2; + e2->next = e3; + e3->next = e1; - e1->pair = NULL; - e2->pair = NULL; - e3->pair = NULL; + e1->pair = NULL; + e2->pair = NULL; + e3->pair = NULL; - e1->flag = 0; - e2->flag = 0; - e3->flag = 0; + e1->flag = 0; + e2->flag = 0; + e3->flag = 0; - return f; + return f; } -static PFace *p_face_add_construct(PHandle *handle, ParamKey key, ParamKey *vkeys, - float *co[4], float *uv[4], int i1, int i2, int i3, - ParamBool *pin, ParamBool *select) +static PFace *p_face_add_construct(PHandle *handle, + ParamKey key, + ParamKey *vkeys, + float *co[4], + float *uv[4], + int i1, + int i2, + int i3, + ParamBool *pin, + ParamBool *select) { - PFace *f = p_face_add(handle); - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PFace *f = p_face_add(handle); + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - e1->vert = p_vert_lookup(handle, vkeys[i1], co[i1], e1); - e2->vert = p_vert_lookup(handle, vkeys[i2], co[i2], e2); - e3->vert = p_vert_lookup(handle, vkeys[i3], co[i3], e3); + e1->vert = p_vert_lookup(handle, vkeys[i1], co[i1], e1); + e2->vert = p_vert_lookup(handle, vkeys[i2], co[i2], e2); + e3->vert = p_vert_lookup(handle, vkeys[i3], co[i3], e3); - e1->orig_uv = uv[i1]; - e2->orig_uv = uv[i2]; - e3->orig_uv = uv[i3]; + e1->orig_uv = uv[i1]; + e2->orig_uv = uv[i2]; + e3->orig_uv = uv[i3]; - if (pin) { - if (pin[i1]) e1->flag |= PEDGE_PIN; - if (pin[i2]) e2->flag |= PEDGE_PIN; - if (pin[i3]) e3->flag |= PEDGE_PIN; - } + if (pin) { + if (pin[i1]) + e1->flag |= PEDGE_PIN; + if (pin[i2]) + e2->flag |= PEDGE_PIN; + if (pin[i3]) + e3->flag |= PEDGE_PIN; + } - if (select) { - if (select[i1]) e1->flag |= PEDGE_SELECT; - if (select[i2]) e2->flag |= PEDGE_SELECT; - if (select[i3]) e3->flag |= PEDGE_SELECT; - } + if (select) { + if (select[i1]) + e1->flag |= PEDGE_SELECT; + if (select[i2]) + e2->flag |= PEDGE_SELECT; + if (select[i3]) + e3->flag |= PEDGE_SELECT; + } - /* insert into hash */ - f->u.key = key; - phash_insert(handle->hash_faces, (PHashLink *)f); + /* insert into hash */ + f->u.key = key; + phash_insert(handle->hash_faces, (PHashLink *)f); - e1->u.key = PHASH_edge(vkeys[i1], vkeys[i2]); - e2->u.key = PHASH_edge(vkeys[i2], vkeys[i3]); - e3->u.key = PHASH_edge(vkeys[i3], vkeys[i1]); + e1->u.key = PHASH_edge(vkeys[i1], vkeys[i2]); + e2->u.key = PHASH_edge(vkeys[i2], vkeys[i3]); + e3->u.key = PHASH_edge(vkeys[i3], vkeys[i1]); - phash_insert(handle->hash_edges, (PHashLink *)e1); - phash_insert(handle->hash_edges, (PHashLink *)e2); - phash_insert(handle->hash_edges, (PHashLink *)e3); + phash_insert(handle->hash_edges, (PHashLink *)e1); + phash_insert(handle->hash_edges, (PHashLink *)e2); + phash_insert(handle->hash_edges, (PHashLink *)e3); - return f; + return f; } static PFace *p_face_add_fill(PChart *chart, PVert *v1, PVert *v2, PVert *v3) { - PFace *f = p_face_add(chart->handle); - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PFace *f = p_face_add(chart->handle); + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - e1->vert = v1; - e2->vert = v2; - e3->vert = v3; + e1->vert = v1; + e2->vert = v2; + e3->vert = v3; - e1->orig_uv = e2->orig_uv = e3->orig_uv = NULL; + e1->orig_uv = e2->orig_uv = e3->orig_uv = NULL; - f->nextlink = chart->faces; - chart->faces = f; - e1->nextlink = chart->edges; - chart->edges = e1; - e2->nextlink = chart->edges; - chart->edges = e2; - e3->nextlink = chart->edges; - chart->edges = e3; + f->nextlink = chart->faces; + chart->faces = f; + e1->nextlink = chart->edges; + chart->edges = e1; + e2->nextlink = chart->edges; + chart->edges = e2; + e3->nextlink = chart->edges; + chart->edges = e3; - chart->nfaces++; - chart->nedges += 3; + chart->nfaces++; + chart->nedges += 3; - return f; + return f; } static PBool p_quad_split_direction(PHandle *handle, float **co, PHashKey *vkeys) { - /* slight bias to prefer one edge over the other in case they are equal, so - * that in symmetric models we choose the same split direction instead of - * depending on floating point errors to decide */ - float bias = 1.0f + 1e-6f; - float fac = len_v3v3(co[0], co[2]) * bias - len_v3v3(co[1], co[3]); - PBool dir = (fac <= 0.0f); - - /* the face exists check is there because of a special case: when - * two quads share three vertices, they can each be split into two - * triangles, resulting in two identical triangles. for example in - * suzanne's nose. */ - if (dir) { - if (p_face_exists(handle, vkeys, 0, 1, 2) || p_face_exists(handle, vkeys, 0, 2, 3)) - return !dir; - } - else { - if (p_face_exists(handle, vkeys, 0, 1, 3) || p_face_exists(handle, vkeys, 1, 2, 3)) - return !dir; - } - - return dir; + /* slight bias to prefer one edge over the other in case they are equal, so + * that in symmetric models we choose the same split direction instead of + * depending on floating point errors to decide */ + float bias = 1.0f + 1e-6f; + float fac = len_v3v3(co[0], co[2]) * bias - len_v3v3(co[1], co[3]); + PBool dir = (fac <= 0.0f); + + /* the face exists check is there because of a special case: when + * two quads share three vertices, they can each be split into two + * triangles, resulting in two identical triangles. for example in + * suzanne's nose. */ + if (dir) { + if (p_face_exists(handle, vkeys, 0, 1, 2) || p_face_exists(handle, vkeys, 0, 2, 3)) + return !dir; + } + else { + if (p_face_exists(handle, vkeys, 0, 1, 3) || p_face_exists(handle, vkeys, 1, 2, 3)) + return !dir; + } + + return dir; } /* Construction: boundary filling */ static void p_chart_boundaries(PChart *chart, int *nboundaries, PEdge **outer) { - PEdge *e, *be; - float len, maxlen = -1.0; + PEdge *e, *be; + float len, maxlen = -1.0; - if (nboundaries) - *nboundaries = 0; - if (outer) - *outer = NULL; + if (nboundaries) + *nboundaries = 0; + if (outer) + *outer = NULL; - for (e = chart->edges; e; e = e->nextlink) { - if (e->pair || (e->flag & PEDGE_DONE)) - continue; + for (e = chart->edges; e; e = e->nextlink) { + if (e->pair || (e->flag & PEDGE_DONE)) + continue; - if (nboundaries) - (*nboundaries)++; + if (nboundaries) + (*nboundaries)++; - len = 0.0f; + len = 0.0f; - be = e; - do { - be->flag |= PEDGE_DONE; - len += p_edge_length(be); - be = be->next->vert->edge; - } while (be != e); + be = e; + do { + be->flag |= PEDGE_DONE; + len += p_edge_length(be); + be = be->next->vert->edge; + } while (be != e); - if (outer && (len > maxlen)) { - *outer = e; - maxlen = len; - } - } + if (outer && (len > maxlen)) { + *outer = e; + maxlen = len; + } + } - for (e = chart->edges; e; e = e->nextlink) - e->flag &= ~PEDGE_DONE; + for (e = chart->edges; e; e = e->nextlink) + e->flag &= ~PEDGE_DONE; } static float p_edge_boundary_angle(PEdge *e) { - PEdge *we; - PVert *v, *v1, *v2; - float angle; - int n = 0; + PEdge *we; + PVert *v, *v1, *v2; + float angle; + int n = 0; - v = e->vert; + v = e->vert; - /* concave angle check -- could be better */ - angle = M_PI; + /* concave angle check -- could be better */ + angle = M_PI; - we = v->edge; - do { - v1 = we->next->vert; - v2 = we->next->next->vert; - angle -= p_vec_angle(v1->co, v->co, v2->co); + we = v->edge; + do { + v1 = we->next->vert; + v2 = we->next->next->vert; + angle -= p_vec_angle(v1->co, v->co, v2->co); - we = we->next->next->pair; - n++; - } while (we && (we != v->edge)); + we = we->next->next->pair; + n++; + } while (we && (we != v->edge)); - return angle; + return angle; } static void p_chart_fill_boundary(PChart *chart, PEdge *be, int nedges) { - PEdge *e, *e1, *e2; + PEdge *e, *e1, *e2; - PFace *f; - struct Heap *heap = BLI_heap_new(); - float angle; + PFace *f; + struct Heap *heap = BLI_heap_new(); + float angle; - e = be; - do { - angle = p_edge_boundary_angle(e); - e->u.heaplink = BLI_heap_insert(heap, angle, e); + e = be; + do { + angle = p_edge_boundary_angle(e); + e->u.heaplink = BLI_heap_insert(heap, angle, e); - e = p_boundary_edge_next(e); - } while (e != be); + e = p_boundary_edge_next(e); + } while (e != be); - if (nedges == 2) { - /* no real boundary, but an isolated seam */ - e = be->next->vert->edge; - e->pair = be; - be->pair = e; + if (nedges == 2) { + /* no real boundary, but an isolated seam */ + e = be->next->vert->edge; + e->pair = be; + be->pair = e; - BLI_heap_remove(heap, e->u.heaplink); - BLI_heap_remove(heap, be->u.heaplink); - } - else { - while (nedges > 2) { - PEdge *ne, *ne1, *ne2; + BLI_heap_remove(heap, e->u.heaplink); + BLI_heap_remove(heap, be->u.heaplink); + } + else { + while (nedges > 2) { + PEdge *ne, *ne1, *ne2; - e = (PEdge *)BLI_heap_pop_min(heap); + e = (PEdge *)BLI_heap_pop_min(heap); - e1 = p_boundary_edge_prev(e); - e2 = p_boundary_edge_next(e); + e1 = p_boundary_edge_prev(e); + e2 = p_boundary_edge_next(e); - BLI_heap_remove(heap, e1->u.heaplink); - BLI_heap_remove(heap, e2->u.heaplink); - e->u.heaplink = e1->u.heaplink = e2->u.heaplink = NULL; + BLI_heap_remove(heap, e1->u.heaplink); + BLI_heap_remove(heap, e2->u.heaplink); + e->u.heaplink = e1->u.heaplink = e2->u.heaplink = NULL; - e->flag |= PEDGE_FILLED; - e1->flag |= PEDGE_FILLED; + e->flag |= PEDGE_FILLED; + e1->flag |= PEDGE_FILLED; - f = p_face_add_fill(chart, e->vert, e1->vert, e2->vert); - f->flag |= PFACE_FILLED; + f = p_face_add_fill(chart, e->vert, e1->vert, e2->vert); + f->flag |= PFACE_FILLED; - ne = f->edge->next->next; - ne1 = f->edge; - ne2 = f->edge->next; + ne = f->edge->next->next; + ne1 = f->edge; + ne2 = f->edge->next; - ne->flag = ne1->flag = ne2->flag = PEDGE_FILLED; + ne->flag = ne1->flag = ne2->flag = PEDGE_FILLED; - e->pair = ne; - ne->pair = e; - e1->pair = ne1; - ne1->pair = e1; + e->pair = ne; + ne->pair = e; + e1->pair = ne1; + ne1->pair = e1; - ne->vert = e2->vert; - ne1->vert = e->vert; - ne2->vert = e1->vert; + ne->vert = e2->vert; + ne1->vert = e->vert; + ne2->vert = e1->vert; - if (nedges == 3) { - e2->pair = ne2; - ne2->pair = e2; - } - else { - ne2->vert->edge = ne2; + if (nedges == 3) { + e2->pair = ne2; + ne2->pair = e2; + } + else { + ne2->vert->edge = ne2; - ne2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(ne2), ne2); - e2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(e2), e2); - } + ne2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(ne2), ne2); + e2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(e2), e2); + } - nedges--; - } - } + nedges--; + } + } - BLI_heap_free(heap, NULL); + BLI_heap_free(heap, NULL); } static void p_chart_fill_boundaries(PChart *chart, PEdge *outer) { - PEdge *e, *be; /* *enext - as yet unused */ - int nedges; + PEdge *e, *be; /* *enext - as yet unused */ + int nedges; - for (e = chart->edges; e; e = e->nextlink) { - /* enext = e->nextlink; - as yet unused */ + for (e = chart->edges; e; e = e->nextlink) { + /* enext = e->nextlink; - as yet unused */ - if (e->pair || (e->flag & PEDGE_FILLED)) - continue; + if (e->pair || (e->flag & PEDGE_FILLED)) + continue; - nedges = 0; - be = e; - do { - be->flag |= PEDGE_FILLED; - be = be->next->vert->edge; - nedges++; - } while (be != e); + nedges = 0; + be = e; + do { + be->flag |= PEDGE_FILLED; + be = be->next->vert->edge; + nedges++; + } while (be != e); - if (e != outer) - p_chart_fill_boundary(chart, e, nedges); - } + if (e != outer) + p_chart_fill_boundary(chart, e, nedges); + } } #if 0 @@ -1369,116 +1385,116 @@ static void p_chart_fill_boundaries(PChart *chart, PEdge *outer) static int p_polygon_point_in(float *cp1, float *cp2, float *p) { - if ((cp1[0] == p[0]) && (cp1[1] == p[1])) - return 2; - else if ((cp2[0] == p[0]) && (cp2[1] == p[1])) - return 3; - else - return (p_area_signed(cp1, cp2, p) >= 0.0f); + if ((cp1[0] == p[0]) && (cp1[1] == p[1])) + return 2; + else if ((cp2[0] == p[0]) && (cp2[1] == p[1])) + return 3; + else + return (p_area_signed(cp1, cp2, p) >= 0.0f); } static void p_polygon_kernel_clip(float (*oldpoints)[2], int noldpoints, float (*newpoints)[2], int *nnewpoints, float *cp1, float *cp2) { - float *p2, *p1, isect[2]; - int i, p2in, p1in; - - p1 = oldpoints[noldpoints - 1]; - p1in = p_polygon_point_in(cp1, cp2, p1); - *nnewpoints = 0; - - for (i = 0; i < noldpoints; i++) { - p2 = oldpoints[i]; - p2in = p_polygon_point_in(cp1, cp2, p2); - - if ((p2in >= 2) || (p1in && p2in)) { - newpoints[*nnewpoints][0] = p2[0]; - newpoints[*nnewpoints][1] = p2[1]; - (*nnewpoints)++; - } - else if (p1in && !p2in) { - if (p1in != 3) { - p_intersect_line_2d(p1, p2, cp1, cp2, isect); - newpoints[*nnewpoints][0] = isect[0]; - newpoints[*nnewpoints][1] = isect[1]; - (*nnewpoints)++; - } - } - else if (!p1in && p2in) { - p_intersect_line_2d(p1, p2, cp1, cp2, isect); - newpoints[*nnewpoints][0] = isect[0]; - newpoints[*nnewpoints][1] = isect[1]; - (*nnewpoints)++; - - newpoints[*nnewpoints][0] = p2[0]; - newpoints[*nnewpoints][1] = p2[1]; - (*nnewpoints)++; - } - - p1in = p2in; - p1 = p2; - } + float *p2, *p1, isect[2]; + int i, p2in, p1in; + + p1 = oldpoints[noldpoints - 1]; + p1in = p_polygon_point_in(cp1, cp2, p1); + *nnewpoints = 0; + + for (i = 0; i < noldpoints; i++) { + p2 = oldpoints[i]; + p2in = p_polygon_point_in(cp1, cp2, p2); + + if ((p2in >= 2) || (p1in && p2in)) { + newpoints[*nnewpoints][0] = p2[0]; + newpoints[*nnewpoints][1] = p2[1]; + (*nnewpoints)++; + } + else if (p1in && !p2in) { + if (p1in != 3) { + p_intersect_line_2d(p1, p2, cp1, cp2, isect); + newpoints[*nnewpoints][0] = isect[0]; + newpoints[*nnewpoints][1] = isect[1]; + (*nnewpoints)++; + } + } + else if (!p1in && p2in) { + p_intersect_line_2d(p1, p2, cp1, cp2, isect); + newpoints[*nnewpoints][0] = isect[0]; + newpoints[*nnewpoints][1] = isect[1]; + (*nnewpoints)++; + + newpoints[*nnewpoints][0] = p2[0]; + newpoints[*nnewpoints][1] = p2[1]; + (*nnewpoints)++; + } + + p1in = p2in; + p1 = p2; + } } static void p_polygon_kernel_center(float (*points)[2], int npoints, float *center) { - int i, size, nnewpoints = npoints; - float (*oldpoints)[2], (*newpoints)[2], *p1, *p2; - - size = npoints * 3; - oldpoints = MEM_mallocN(sizeof(float) * 2 * size, "PPolygonOldPoints"); - newpoints = MEM_mallocN(sizeof(float) * 2 * size, "PPolygonNewPoints"); - - memcpy(oldpoints, points, sizeof(float) * 2 * npoints); - - for (i = 0; i < npoints; i++) { - p1 = points[i]; - p2 = points[(i + 1) % npoints]; - p_polygon_kernel_clip(oldpoints, nnewpoints, newpoints, &nnewpoints, p1, p2); - - if (nnewpoints == 0) { - /* degenerate case, use center of original polygon */ - memcpy(oldpoints, points, sizeof(float) * 2 * npoints); - nnewpoints = npoints; - break; - } - else if (nnewpoints == 1) { - /* degenerate case, use remaining point */ - center[0] = newpoints[0][0]; - center[1] = newpoints[0][1]; - - MEM_freeN(oldpoints); - MEM_freeN(newpoints); - - return; - } - - if (nnewpoints * 2 > size) { - size *= 2; - MEM_freeN(oldpoints); - oldpoints = MEM_mallocN(sizeof(float) * 2 * size, "oldpoints"); - memcpy(oldpoints, newpoints, sizeof(float) * 2 * nnewpoints); - MEM_freeN(newpoints); - newpoints = MEM_mallocN(sizeof(float) * 2 * size, "newpoints"); - } - else { - float (*sw_points)[2] = oldpoints; - oldpoints = newpoints; - newpoints = sw_points; - } - } - - center[0] = center[1] = 0.0f; - - for (i = 0; i < nnewpoints; i++) { - center[0] += oldpoints[i][0]; - center[1] += oldpoints[i][1]; - } - - center[0] /= nnewpoints; - center[1] /= nnewpoints; - - MEM_freeN(oldpoints); - MEM_freeN(newpoints); + int i, size, nnewpoints = npoints; + float (*oldpoints)[2], (*newpoints)[2], *p1, *p2; + + size = npoints * 3; + oldpoints = MEM_mallocN(sizeof(float) * 2 * size, "PPolygonOldPoints"); + newpoints = MEM_mallocN(sizeof(float) * 2 * size, "PPolygonNewPoints"); + + memcpy(oldpoints, points, sizeof(float) * 2 * npoints); + + for (i = 0; i < npoints; i++) { + p1 = points[i]; + p2 = points[(i + 1) % npoints]; + p_polygon_kernel_clip(oldpoints, nnewpoints, newpoints, &nnewpoints, p1, p2); + + if (nnewpoints == 0) { + /* degenerate case, use center of original polygon */ + memcpy(oldpoints, points, sizeof(float) * 2 * npoints); + nnewpoints = npoints; + break; + } + else if (nnewpoints == 1) { + /* degenerate case, use remaining point */ + center[0] = newpoints[0][0]; + center[1] = newpoints[0][1]; + + MEM_freeN(oldpoints); + MEM_freeN(newpoints); + + return; + } + + if (nnewpoints * 2 > size) { + size *= 2; + MEM_freeN(oldpoints); + oldpoints = MEM_mallocN(sizeof(float) * 2 * size, "oldpoints"); + memcpy(oldpoints, newpoints, sizeof(float) * 2 * nnewpoints); + MEM_freeN(newpoints); + newpoints = MEM_mallocN(sizeof(float) * 2 * size, "newpoints"); + } + else { + float (*sw_points)[2] = oldpoints; + oldpoints = newpoints; + newpoints = sw_points; + } + } + + center[0] = center[1] = 0.0f; + + for (i = 0; i < nnewpoints; i++) { + center[0] += oldpoints[i][0]; + center[1] += oldpoints[i][1]; + } + + center[0] /= nnewpoints; + center[1] /= nnewpoints; + + MEM_freeN(oldpoints); + MEM_freeN(newpoints); } #endif @@ -1490,809 +1506,809 @@ int NCOLLAPSEX = 0; static float p_vert_cotan(float *v1, float *v2, float *v3) { - float a[3], b[3], c[3], clen; + float a[3], b[3], c[3], clen; - sub_v3_v3v3(a, v2, v1); - sub_v3_v3v3(b, v3, v1); - cross_v3_v3v3(c, a, b); + sub_v3_v3v3(a, v2, v1); + sub_v3_v3v3(b, v3, v1); + cross_v3_v3v3(c, a, b); - clen = len_v3(c); + clen = len_v3(c); - if (clen == 0.0f) - return 0.0f; + if (clen == 0.0f) + return 0.0f; - return dot_v3v3(a, b) / clen; + return dot_v3v3(a, b) / clen; } static PBool p_vert_flipped_wheel_triangle(PVert *v) { - PEdge *e = v->edge; + PEdge *e = v->edge; - do { - if (p_face_uv_area_signed(e->face) < 0.0f) - return P_TRUE; + do { + if (p_face_uv_area_signed(e->face) < 0.0f) + return P_TRUE; - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); + e = p_wheel_edge_next(e); + } while (e && (e != v->edge)); - return P_FALSE; + return P_FALSE; } static PBool p_vert_map_harmonic_weights(PVert *v) { - float weightsum, positionsum[2], olduv[2]; + float weightsum, positionsum[2], olduv[2]; - weightsum = 0.0f; - positionsum[0] = positionsum[1] = 0.0f; + weightsum = 0.0f; + positionsum[0] = positionsum[1] = 0.0f; - if (p_vert_interior(v)) { - PEdge *e = v->edge; + if (p_vert_interior(v)) { + PEdge *e = v->edge; - do { - float t1, t2, weight; - PVert *v1, *v2; + do { + float t1, t2, weight; + PVert *v1, *v2; - v1 = e->next->vert; - v2 = e->next->next->vert; - t1 = p_vert_cotan(v2->co, e->vert->co, v1->co); + v1 = e->next->vert; + v2 = e->next->next->vert; + t1 = p_vert_cotan(v2->co, e->vert->co, v1->co); - v1 = e->pair->next->vert; - v2 = e->pair->next->next->vert; - t2 = p_vert_cotan(v2->co, e->pair->vert->co, v1->co); + v1 = e->pair->next->vert; + v2 = e->pair->next->next->vert; + t2 = p_vert_cotan(v2->co, e->pair->vert->co, v1->co); - weight = 0.5f * (t1 + t2); - weightsum += weight; - positionsum[0] += weight * e->pair->vert->uv[0]; - positionsum[1] += weight * e->pair->vert->uv[1]; + weight = 0.5f * (t1 + t2); + weightsum += weight; + positionsum[0] += weight * e->pair->vert->uv[0]; + positionsum[1] += weight * e->pair->vert->uv[1]; - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); - } - else { - PEdge *e = v->edge; + e = p_wheel_edge_next(e); + } while (e && (e != v->edge)); + } + else { + PEdge *e = v->edge; - do { - float t1, t2; - PVert *v1, *v2; + do { + float t1, t2; + PVert *v1, *v2; - v2 = e->next->vert; - v1 = e->next->next->vert; + v2 = e->next->vert; + v1 = e->next->next->vert; - t1 = p_vert_cotan(v1->co, v->co, v2->co); - t2 = p_vert_cotan(v2->co, v->co, v1->co); + t1 = p_vert_cotan(v1->co, v->co, v2->co); + t2 = p_vert_cotan(v2->co, v->co, v1->co); - weightsum += t1 + t2; - positionsum[0] += (v2->uv[1] - v1->uv[1]) + (t1 * v2->uv[0] + t2 * v1->uv[0]); - positionsum[1] += (v1->uv[0] - v2->uv[0]) + (t1 * v2->uv[1] + t2 * v1->uv[1]); + weightsum += t1 + t2; + positionsum[0] += (v2->uv[1] - v1->uv[1]) + (t1 * v2->uv[0] + t2 * v1->uv[0]); + positionsum[1] += (v1->uv[0] - v2->uv[0]) + (t1 * v2->uv[1] + t2 * v1->uv[1]); - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); - } + e = p_wheel_edge_next(e); + } while (e && (e != v->edge)); + } - if (weightsum != 0.0f) { - weightsum = 1.0f / weightsum; - positionsum[0] *= weightsum; - positionsum[1] *= weightsum; - } + if (weightsum != 0.0f) { + weightsum = 1.0f / weightsum; + positionsum[0] *= weightsum; + positionsum[1] *= weightsum; + } - olduv[0] = v->uv[0]; - olduv[1] = v->uv[1]; - v->uv[0] = positionsum[0]; - v->uv[1] = positionsum[1]; + olduv[0] = v->uv[0]; + olduv[1] = v->uv[1]; + v->uv[0] = positionsum[0]; + v->uv[1] = positionsum[1]; - if (p_vert_flipped_wheel_triangle(v)) { - v->uv[0] = olduv[0]; - v->uv[1] = olduv[1]; + if (p_vert_flipped_wheel_triangle(v)) { + v->uv[0] = olduv[0]; + v->uv[1] = olduv[1]; - return P_FALSE; - } + return P_FALSE; + } - return P_TRUE; + return P_TRUE; } static void p_vert_harmonic_insert(PVert *v) { - PEdge *e; + PEdge *e; - if (!p_vert_map_harmonic_weights(v)) { - /* do polygon kernel center insertion: this is quite slow, but should - * only be needed for 0.01 % of verts or so, when insert with harmonic - * weights fails */ + if (!p_vert_map_harmonic_weights(v)) { + /* do polygon kernel center insertion: this is quite slow, but should + * only be needed for 0.01 % of verts or so, when insert with harmonic + * weights fails */ - int npoints = 0, i; - float (*points)[2]; + int npoints = 0, i; + float (*points)[2]; - e = v->edge; - do { - npoints++; - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); + e = v->edge; + do { + npoints++; + e = p_wheel_edge_next(e); + } while (e && (e != v->edge)); - if (e == NULL) - npoints++; + if (e == NULL) + npoints++; - points = MEM_mallocN(sizeof(float) * 2 * npoints, "PHarmonicPoints"); + points = MEM_mallocN(sizeof(float) * 2 * npoints, "PHarmonicPoints"); - e = v->edge; - i = 0; - do { - PEdge *nexte = p_wheel_edge_next(e); + e = v->edge; + i = 0; + do { + PEdge *nexte = p_wheel_edge_next(e); - points[i][0] = e->next->vert->uv[0]; - points[i][1] = e->next->vert->uv[1]; + points[i][0] = e->next->vert->uv[0]; + points[i][1] = e->next->vert->uv[1]; - if (nexte == NULL) { - i++; - points[i][0] = e->next->next->vert->uv[0]; - points[i][1] = e->next->next->vert->uv[1]; - break; - } + if (nexte == NULL) { + i++; + points[i][0] = e->next->next->vert->uv[0]; + points[i][1] = e->next->next->vert->uv[1]; + break; + } - e = nexte; - i++; - } while (e != v->edge); + e = nexte; + i++; + } while (e != v->edge); - p_polygon_kernel_center(points, npoints, v->uv); + p_polygon_kernel_center(points, npoints, v->uv); - MEM_freeN(points); - } + MEM_freeN(points); + } - e = v->edge; - do { - if (!(e->next->vert->flag & PVERT_PIN)) - p_vert_map_harmonic_weights(e->next->vert); - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); + e = v->edge; + do { + if (!(e->next->vert->flag & PVERT_PIN)) + p_vert_map_harmonic_weights(e->next->vert); + e = p_wheel_edge_next(e); + } while (e && (e != v->edge)); - p_vert_map_harmonic_weights(v); + p_vert_map_harmonic_weights(v); } static void p_vert_fix_edge_pointer(PVert *v) { - PEdge *start = v->edge; + PEdge *start = v->edge; - /* set v->edge pointer to the edge with no pair, if there is one */ - while (v->edge->pair) { - v->edge = p_wheel_edge_prev(v->edge); + /* set v->edge pointer to the edge with no pair, if there is one */ + while (v->edge->pair) { + v->edge = p_wheel_edge_prev(v->edge); - if (v->edge == start) - break; - } + if (v->edge == start) + break; + } } static void p_collapsing_verts(PEdge *edge, PEdge *pair, PVert **newv, PVert **keepv) { - /* the two vertices that are involved in the collapse */ - if (edge) { - *newv = edge->vert; - *keepv = edge->next->vert; - } - else { - *newv = pair->next->vert; - *keepv = pair->vert; - } + /* the two vertices that are involved in the collapse */ + if (edge) { + *newv = edge->vert; + *keepv = edge->next->vert; + } + else { + *newv = pair->next->vert; + *keepv = pair->vert; + } } static void p_collapse_edge(PEdge *edge, PEdge *pair) { - PVert *oldv, *keepv; - PEdge *e; + PVert *oldv, *keepv; + PEdge *e; - p_collapsing_verts(edge, pair, &oldv, &keepv); + p_collapsing_verts(edge, pair, &oldv, &keepv); - /* change e->vert pointers from old vertex to the target vertex */ - e = oldv->edge; - do { - if ((e != edge) && !(pair && pair->next == e)) - e->vert = keepv; + /* change e->vert pointers from old vertex to the target vertex */ + e = oldv->edge; + do { + if ((e != edge) && !(pair && pair->next == e)) + e->vert = keepv; - e = p_wheel_edge_next(e); - } while (e && (e != oldv->edge)); + e = p_wheel_edge_next(e); + } while (e && (e != oldv->edge)); - /* set keepv->edge pointer */ - if ((edge && (keepv->edge == edge->next)) || (keepv->edge == pair)) { - if (edge && edge->next->pair) - keepv->edge = edge->next->pair->next; - else if (pair && pair->next->next->pair) - keepv->edge = pair->next->next->pair; - else if (edge && edge->next->next->pair) - keepv->edge = edge->next->next->pair; - else - keepv->edge = pair->next->pair->next; - } + /* set keepv->edge pointer */ + if ((edge && (keepv->edge == edge->next)) || (keepv->edge == pair)) { + if (edge && edge->next->pair) + keepv->edge = edge->next->pair->next; + else if (pair && pair->next->next->pair) + keepv->edge = pair->next->next->pair; + else if (edge && edge->next->next->pair) + keepv->edge = edge->next->next->pair; + else + keepv->edge = pair->next->pair->next; + } - /* update pairs and v->edge pointers */ - if (edge) { - PEdge *e1 = edge->next, *e2 = e1->next; + /* update pairs and v->edge pointers */ + if (edge) { + PEdge *e1 = edge->next, *e2 = e1->next; - if (e1->pair) - e1->pair->pair = e2->pair; + if (e1->pair) + e1->pair->pair = e2->pair; - if (e2->pair) { - e2->pair->pair = e1->pair; - e2->vert->edge = p_wheel_edge_prev(e2); - } - else - e2->vert->edge = p_wheel_edge_next(e2); + if (e2->pair) { + e2->pair->pair = e1->pair; + e2->vert->edge = p_wheel_edge_prev(e2); + } + else + e2->vert->edge = p_wheel_edge_next(e2); - p_vert_fix_edge_pointer(e2->vert); - } + p_vert_fix_edge_pointer(e2->vert); + } - if (pair) { - PEdge *e1 = pair->next, *e2 = e1->next; + if (pair) { + PEdge *e1 = pair->next, *e2 = e1->next; - if (e1->pair) - e1->pair->pair = e2->pair; + if (e1->pair) + e1->pair->pair = e2->pair; - if (e2->pair) { - e2->pair->pair = e1->pair; - e2->vert->edge = p_wheel_edge_prev(e2); - } - else - e2->vert->edge = p_wheel_edge_next(e2); + if (e2->pair) { + e2->pair->pair = e1->pair; + e2->vert->edge = p_wheel_edge_prev(e2); + } + else + e2->vert->edge = p_wheel_edge_next(e2); - p_vert_fix_edge_pointer(e2->vert); - } + p_vert_fix_edge_pointer(e2->vert); + } - p_vert_fix_edge_pointer(keepv); + p_vert_fix_edge_pointer(keepv); - /* mark for move to collapsed list later */ - oldv->flag |= PVERT_COLLAPSE; + /* mark for move to collapsed list later */ + oldv->flag |= PVERT_COLLAPSE; - if (edge) { - PFace *f = edge->face; - PEdge *e1 = edge->next, *e2 = e1->next; + if (edge) { + PFace *f = edge->face; + PEdge *e1 = edge->next, *e2 = e1->next; - f->flag |= PFACE_COLLAPSE; - edge->flag |= PEDGE_COLLAPSE; - e1->flag |= PEDGE_COLLAPSE; - e2->flag |= PEDGE_COLLAPSE; - } + f->flag |= PFACE_COLLAPSE; + edge->flag |= PEDGE_COLLAPSE; + e1->flag |= PEDGE_COLLAPSE; + e2->flag |= PEDGE_COLLAPSE; + } - if (pair) { - PFace *f = pair->face; - PEdge *e1 = pair->next, *e2 = e1->next; + if (pair) { + PFace *f = pair->face; + PEdge *e1 = pair->next, *e2 = e1->next; - f->flag |= PFACE_COLLAPSE; - pair->flag |= PEDGE_COLLAPSE; - e1->flag |= PEDGE_COLLAPSE; - e2->flag |= PEDGE_COLLAPSE; - } + f->flag |= PFACE_COLLAPSE; + pair->flag |= PEDGE_COLLAPSE; + e1->flag |= PEDGE_COLLAPSE; + e2->flag |= PEDGE_COLLAPSE; + } } static void p_split_vertex(PEdge *edge, PEdge *pair) { - PVert *newv, *keepv; - PEdge *e; + PVert *newv, *keepv; + PEdge *e; - p_collapsing_verts(edge, pair, &newv, &keepv); + p_collapsing_verts(edge, pair, &newv, &keepv); - /* update edge pairs */ - if (edge) { - PEdge *e1 = edge->next, *e2 = e1->next; + /* update edge pairs */ + if (edge) { + PEdge *e1 = edge->next, *e2 = e1->next; - if (e1->pair) - e1->pair->pair = e1; - if (e2->pair) - e2->pair->pair = e2; + if (e1->pair) + e1->pair->pair = e1; + if (e2->pair) + e2->pair->pair = e2; - e2->vert->edge = e2; - p_vert_fix_edge_pointer(e2->vert); - keepv->edge = e1; - } + e2->vert->edge = e2; + p_vert_fix_edge_pointer(e2->vert); + keepv->edge = e1; + } - if (pair) { - PEdge *e1 = pair->next, *e2 = e1->next; + if (pair) { + PEdge *e1 = pair->next, *e2 = e1->next; - if (e1->pair) - e1->pair->pair = e1; - if (e2->pair) - e2->pair->pair = e2; + if (e1->pair) + e1->pair->pair = e1; + if (e2->pair) + e2->pair->pair = e2; - e2->vert->edge = e2; - p_vert_fix_edge_pointer(e2->vert); - keepv->edge = pair; - } + e2->vert->edge = e2; + p_vert_fix_edge_pointer(e2->vert); + keepv->edge = pair; + } - p_vert_fix_edge_pointer(keepv); + p_vert_fix_edge_pointer(keepv); - /* set e->vert pointers to restored vertex */ - e = newv->edge; - do { - e->vert = newv; - e = p_wheel_edge_next(e); - } while (e && (e != newv->edge)); + /* set e->vert pointers to restored vertex */ + e = newv->edge; + do { + e->vert = newv; + e = p_wheel_edge_next(e); + } while (e && (e != newv->edge)); } static PBool p_collapse_allowed_topologic(PEdge *edge, PEdge *pair) { - PVert *oldv, *keepv; + PVert *oldv, *keepv; - p_collapsing_verts(edge, pair, &oldv, &keepv); + p_collapsing_verts(edge, pair, &oldv, &keepv); - /* boundary edges */ - if (!edge || !pair) { - /* avoid collapsing chart into an edge */ - if (edge && !edge->next->pair && !edge->next->next->pair) - return P_FALSE; - else if (pair && !pair->next->pair && !pair->next->next->pair) - return P_FALSE; - } - /* avoid merging two boundaries (oldv and keepv are on the 'other side' of - * the chart) */ - else if (!p_vert_interior(oldv) && !p_vert_interior(keepv)) - return P_FALSE; + /* boundary edges */ + if (!edge || !pair) { + /* avoid collapsing chart into an edge */ + if (edge && !edge->next->pair && !edge->next->next->pair) + return P_FALSE; + else if (pair && !pair->next->pair && !pair->next->next->pair) + return P_FALSE; + } + /* avoid merging two boundaries (oldv and keepv are on the 'other side' of + * the chart) */ + else if (!p_vert_interior(oldv) && !p_vert_interior(keepv)) + return P_FALSE; - return P_TRUE; + return P_TRUE; } static PBool p_collapse_normal_flipped(float *v1, float *v2, float *vold, float *vnew) { - float nold[3], nnew[3], sub1[3], sub2[3]; + float nold[3], nnew[3], sub1[3], sub2[3]; - sub_v3_v3v3(sub1, vold, v1); - sub_v3_v3v3(sub2, vold, v2); - cross_v3_v3v3(nold, sub1, sub2); + sub_v3_v3v3(sub1, vold, v1); + sub_v3_v3v3(sub2, vold, v2); + cross_v3_v3v3(nold, sub1, sub2); - sub_v3_v3v3(sub1, vnew, v1); - sub_v3_v3v3(sub2, vnew, v2); - cross_v3_v3v3(nnew, sub1, sub2); + sub_v3_v3v3(sub1, vnew, v1); + sub_v3_v3v3(sub2, vnew, v2); + cross_v3_v3v3(nnew, sub1, sub2); - return (dot_v3v3(nold, nnew) <= 0.0f); + return (dot_v3v3(nold, nnew) <= 0.0f); } static PBool p_collapse_allowed_geometric(PEdge *edge, PEdge *pair) { - PVert *oldv, *keepv; - PEdge *e; - float angulardefect, angle; + PVert *oldv, *keepv; + PEdge *e; + float angulardefect, angle; - p_collapsing_verts(edge, pair, &oldv, &keepv); + p_collapsing_verts(edge, pair, &oldv, &keepv); - angulardefect = 2 * M_PI; + angulardefect = 2 * M_PI; - e = oldv->edge; - do { - float a[3], b[3], minangle, maxangle; - PEdge *e1 = e->next, *e2 = e1->next; - PVert *v1 = e1->vert, *v2 = e2->vert; - int i; + e = oldv->edge; + do { + float a[3], b[3], minangle, maxangle; + PEdge *e1 = e->next, *e2 = e1->next; + PVert *v1 = e1->vert, *v2 = e2->vert; + int i; - angle = p_vec_angle(v1->co, oldv->co, v2->co); - angulardefect -= angle; + angle = p_vec_angle(v1->co, oldv->co, v2->co); + angulardefect -= angle; - /* skip collapsing faces */ - if (v1 == keepv || v2 == keepv) { - e = p_wheel_edge_next(e); - continue; - } + /* skip collapsing faces */ + if (v1 == keepv || v2 == keepv) { + e = p_wheel_edge_next(e); + continue; + } - if (p_collapse_normal_flipped(v1->co, v2->co, oldv->co, keepv->co)) - return P_FALSE; + if (p_collapse_normal_flipped(v1->co, v2->co, oldv->co, keepv->co)) + return P_FALSE; - a[0] = angle; - a[1] = p_vec_angle(v2->co, v1->co, oldv->co); - a[2] = M_PI - a[0] - a[1]; + a[0] = angle; + a[1] = p_vec_angle(v2->co, v1->co, oldv->co); + a[2] = M_PI - a[0] - a[1]; - b[0] = p_vec_angle(v1->co, keepv->co, v2->co); - b[1] = p_vec_angle(v2->co, v1->co, keepv->co); - b[2] = M_PI - b[0] - b[1]; + b[0] = p_vec_angle(v1->co, keepv->co, v2->co); + b[1] = p_vec_angle(v2->co, v1->co, keepv->co); + b[2] = M_PI - b[0] - b[1]; - /* abf criterion 1: avoid sharp and obtuse angles */ - minangle = 15.0f * M_PI / 180.0f; - maxangle = M_PI - minangle; + /* abf criterion 1: avoid sharp and obtuse angles */ + minangle = 15.0f * M_PI / 180.0f; + maxangle = M_PI - minangle; - for (i = 0; i < 3; i++) { - if ((b[i] < a[i]) && (b[i] < minangle)) - return P_FALSE; - else if ((b[i] > a[i]) && (b[i] > maxangle)) - return P_FALSE; - } + for (i = 0; i < 3; i++) { + if ((b[i] < a[i]) && (b[i] < minangle)) + return P_FALSE; + else if ((b[i] > a[i]) && (b[i] > maxangle)) + return P_FALSE; + } - e = p_wheel_edge_next(e); - } while (e && (e != oldv->edge)); + e = p_wheel_edge_next(e); + } while (e && (e != oldv->edge)); - if (p_vert_interior(oldv)) { - /* hlscm criterion: angular defect smaller than threshold */ - if (fabsf(angulardefect) > (float)(M_PI * 30.0 / 180.0)) - return P_FALSE; - } - else { - PVert *v1 = p_boundary_edge_next(oldv->edge)->vert; - PVert *v2 = p_boundary_edge_prev(oldv->edge)->vert; + if (p_vert_interior(oldv)) { + /* hlscm criterion: angular defect smaller than threshold */ + if (fabsf(angulardefect) > (float)(M_PI * 30.0 / 180.0)) + return P_FALSE; + } + else { + PVert *v1 = p_boundary_edge_next(oldv->edge)->vert; + PVert *v2 = p_boundary_edge_prev(oldv->edge)->vert; - /* abf++ criterion 2: avoid collapsing verts inwards */ - if (p_vert_interior(keepv)) - return P_FALSE; + /* abf++ criterion 2: avoid collapsing verts inwards */ + if (p_vert_interior(keepv)) + return P_FALSE; - /* don't collapse significant boundary changes */ - angle = p_vec_angle(v1->co, oldv->co, v2->co); - if (angle < (M_PI * 160.0 / 180.0)) - return P_FALSE; - } + /* don't collapse significant boundary changes */ + angle = p_vec_angle(v1->co, oldv->co, v2->co); + if (angle < (M_PI * 160.0 / 180.0)) + return P_FALSE; + } - return P_TRUE; + return P_TRUE; } static PBool p_collapse_allowed(PEdge *edge, PEdge *pair) { - PVert *oldv, *keepv; + PVert *oldv, *keepv; - p_collapsing_verts(edge, pair, &oldv, &keepv); + p_collapsing_verts(edge, pair, &oldv, &keepv); - if (oldv->flag & PVERT_PIN) - return P_FALSE; + if (oldv->flag & PVERT_PIN) + return P_FALSE; - return (p_collapse_allowed_topologic(edge, pair) && - p_collapse_allowed_geometric(edge, pair)); + return (p_collapse_allowed_topologic(edge, pair) && + p_collapse_allowed_geometric(edge, pair)); } static float p_collapse_cost(PEdge *edge, PEdge *pair) { - /* based on volume and boundary optimization from: - * "Fast and Memory Efficient Polygonal Simplification" P. Lindstrom, G. Turk */ + /* based on volume and boundary optimization from: + * "Fast and Memory Efficient Polygonal Simplification" P. Lindstrom, G. Turk */ - PVert *oldv, *keepv; - PEdge *e; - PFace *oldf1, *oldf2; - float volumecost = 0.0f, areacost = 0.0f, edgevec[3], cost, weight, elen; - float shapecost = 0.0f; - float shapeold = 0.0f, shapenew = 0.0f; - int nshapeold = 0, nshapenew = 0; + PVert *oldv, *keepv; + PEdge *e; + PFace *oldf1, *oldf2; + float volumecost = 0.0f, areacost = 0.0f, edgevec[3], cost, weight, elen; + float shapecost = 0.0f; + float shapeold = 0.0f, shapenew = 0.0f; + int nshapeold = 0, nshapenew = 0; - p_collapsing_verts(edge, pair, &oldv, &keepv); - oldf1 = (edge) ? edge->face : NULL; - oldf2 = (pair) ? pair->face : NULL; + p_collapsing_verts(edge, pair, &oldv, &keepv); + oldf1 = (edge) ? edge->face : NULL; + oldf2 = (pair) ? pair->face : NULL; - sub_v3_v3v3(edgevec, keepv->co, oldv->co); + sub_v3_v3v3(edgevec, keepv->co, oldv->co); - e = oldv->edge; - do { - float a1, a2, a3; - float *co1 = e->next->vert->co; - float *co2 = e->next->next->vert->co; + e = oldv->edge; + do { + float a1, a2, a3; + float *co1 = e->next->vert->co; + float *co2 = e->next->next->vert->co; - if ((e->face != oldf1) && (e->face != oldf2)) { - float tetrav2[3], tetrav3[3], c[3]; + if ((e->face != oldf1) && (e->face != oldf2)) { + float tetrav2[3], tetrav3[3], c[3]; - /* tetrahedron volume = (1/3!)*|a.(b x c)| */ - sub_v3_v3v3(tetrav2, co1, oldv->co); - sub_v3_v3v3(tetrav3, co2, oldv->co); - cross_v3_v3v3(c, tetrav2, tetrav3); + /* tetrahedron volume = (1/3!)*|a.(b x c)| */ + sub_v3_v3v3(tetrav2, co1, oldv->co); + sub_v3_v3v3(tetrav3, co2, oldv->co); + cross_v3_v3v3(c, tetrav2, tetrav3); - volumecost += fabsf(dot_v3v3(edgevec, c) / 6.0f); -#if 0 - shapecost += dot_v3v3(co1, keepv->co); + volumecost += fabsf(dot_v3v3(edgevec, c) / 6.0f); +# if 0 + shapecost += dot_v3v3(co1, keepv->co); - if (p_wheel_edge_next(e) == NULL) - shapecost += dot_v3v3(co2, keepv->co); -#endif + if (p_wheel_edge_next(e) == NULL) + shapecost += dot_v3v3(co2, keepv->co); +# endif - p_triangle_angles(oldv->co, co1, co2, &a1, &a2, &a3); - a1 = a1 - M_PI / 3.0; - a2 = a2 - M_PI / 3.0; - a3 = a3 - M_PI / 3.0; - shapeold = (a1 * a1 + a2 * a2 + a3 * a3) / ((M_PI / 2) * (M_PI / 2)); - - nshapeold++; - } - else { - p_triangle_angles(keepv->co, co1, co2, &a1, &a2, &a3); - a1 = a1 - M_PI / 3.0; - a2 = a2 - M_PI / 3.0; - a3 = a3 - M_PI / 3.0; - shapenew = (a1 * a1 + a2 * a2 + a3 * a3) / ((M_PI / 2) * (M_PI / 2)); - - nshapenew++; - } - - e = p_wheel_edge_next(e); - } while (e && (e != oldv->edge)); - - if (!p_vert_interior(oldv)) { - PVert *v1 = p_boundary_edge_prev(oldv->edge)->vert; - PVert *v2 = p_boundary_edge_next(oldv->edge)->vert; - - areacost = area_tri_v3(oldv->co, v1->co, v2->co); - } - - elen = len_v3(edgevec); - weight = 1.0f; /* 0.2f */ - cost = weight * volumecost * volumecost + elen * elen * areacost * areacost; -#if 0 - cost += shapecost; -#else - shapeold /= nshapeold; - shapenew /= nshapenew; - shapecost = (shapeold + 0.00001) / (shapenew + 0.00001); + p_triangle_angles(oldv->co, co1, co2, &a1, &a2, &a3); + a1 = a1 - M_PI / 3.0; + a2 = a2 - M_PI / 3.0; + a3 = a3 - M_PI / 3.0; + shapeold = (a1 * a1 + a2 * a2 + a3 * a3) / ((M_PI / 2) * (M_PI / 2)); + + nshapeold++; + } + else { + p_triangle_angles(keepv->co, co1, co2, &a1, &a2, &a3); + a1 = a1 - M_PI / 3.0; + a2 = a2 - M_PI / 3.0; + a3 = a3 - M_PI / 3.0; + shapenew = (a1 * a1 + a2 * a2 + a3 * a3) / ((M_PI / 2) * (M_PI / 2)); + + nshapenew++; + } + + e = p_wheel_edge_next(e); + } while (e && (e != oldv->edge)); + + if (!p_vert_interior(oldv)) { + PVert *v1 = p_boundary_edge_prev(oldv->edge)->vert; + PVert *v2 = p_boundary_edge_next(oldv->edge)->vert; + + areacost = area_tri_v3(oldv->co, v1->co, v2->co); + } + + elen = len_v3(edgevec); + weight = 1.0f; /* 0.2f */ + cost = weight * volumecost * volumecost + elen * elen * areacost * areacost; +# if 0 + cost += shapecost; +# else + shapeold /= nshapeold; + shapenew /= nshapenew; + shapecost = (shapeold + 0.00001) / (shapenew + 0.00001); - cost *= shapecost; -#endif + cost *= shapecost; +# endif - return cost; + return cost; } static void p_collapse_cost_vertex(PVert *vert, float *mincost, PEdge **mine) { - PEdge *e, *enext, *pair; + PEdge *e, *enext, *pair; - *mine = NULL; - *mincost = 0.0f; - e = vert->edge; - do { - if (p_collapse_allowed(e, e->pair)) { - float cost = p_collapse_cost(e, e->pair); + *mine = NULL; + *mincost = 0.0f; + e = vert->edge; + do { + if (p_collapse_allowed(e, e->pair)) { + float cost = p_collapse_cost(e, e->pair); - if ((*mine == NULL) || (cost < *mincost)) { - *mincost = cost; - *mine = e; - } - } + if ((*mine == NULL) || (cost < *mincost)) { + *mincost = cost; + *mine = e; + } + } - enext = p_wheel_edge_next(e); + enext = p_wheel_edge_next(e); - if (enext == NULL) { - /* the other boundary edge, where we only have the pair halfedge */ - pair = e->next->next; + if (enext == NULL) { + /* the other boundary edge, where we only have the pair halfedge */ + pair = e->next->next; - if (p_collapse_allowed(NULL, pair)) { - float cost = p_collapse_cost(NULL, pair); + if (p_collapse_allowed(NULL, pair)) { + float cost = p_collapse_cost(NULL, pair); - if ((*mine == NULL) || (cost < *mincost)) { - *mincost = cost; - *mine = pair; - } - } + if ((*mine == NULL) || (cost < *mincost)) { + *mincost = cost; + *mine = pair; + } + } - break; - } + break; + } - e = enext; - } while (e != vert->edge); + e = enext; + } while (e != vert->edge); } static void p_chart_post_collapse_flush(PChart *chart, PEdge *collapsed) { - /* move to collapsed_ */ - - PVert *v, *nextv = NULL, *verts = chart->verts; - PEdge *e, *nexte = NULL, *edges = chart->edges, *laste = NULL; - PFace *f, *nextf = NULL, *faces = chart->faces; - - chart->verts = chart->collapsed_verts = NULL; - chart->edges = chart->collapsed_edges = NULL; - chart->faces = chart->collapsed_faces = NULL; - - chart->nverts = chart->nedges = chart->nfaces = 0; - - for (v = verts; v; v = nextv) { - nextv = v->nextlink; - - if (v->flag & PVERT_COLLAPSE) { - v->nextlink = chart->collapsed_verts; - chart->collapsed_verts = v; - } - else { - v->nextlink = chart->verts; - chart->verts = v; - chart->nverts++; - } - } - - for (e = edges; e; e = nexte) { - nexte = e->nextlink; - - if (!collapsed || !(e->flag & PEDGE_COLLAPSE_EDGE)) { - if (e->flag & PEDGE_COLLAPSE) { - e->nextlink = chart->collapsed_edges; - chart->collapsed_edges = e; - } - else { - e->nextlink = chart->edges; - chart->edges = e; - chart->nedges++; - } - } - } - - /* these are added last so they can be popped of in the right order - * for splitting */ - for (e = collapsed; e; e = e->nextlink) { - e->nextlink = e->u.nextcollapse; - laste = e; - } - if (laste) { - laste->nextlink = chart->collapsed_edges; - chart->collapsed_edges = collapsed; - } - - for (f = faces; f; f = nextf) { - nextf = f->nextlink; - - if (f->flag & PFACE_COLLAPSE) { - f->nextlink = chart->collapsed_faces; - chart->collapsed_faces = f; - } - else { - f->nextlink = chart->faces; - chart->faces = f; - chart->nfaces++; - } - } + /* move to collapsed_ */ + + PVert *v, *nextv = NULL, *verts = chart->verts; + PEdge *e, *nexte = NULL, *edges = chart->edges, *laste = NULL; + PFace *f, *nextf = NULL, *faces = chart->faces; + + chart->verts = chart->collapsed_verts = NULL; + chart->edges = chart->collapsed_edges = NULL; + chart->faces = chart->collapsed_faces = NULL; + + chart->nverts = chart->nedges = chart->nfaces = 0; + + for (v = verts; v; v = nextv) { + nextv = v->nextlink; + + if (v->flag & PVERT_COLLAPSE) { + v->nextlink = chart->collapsed_verts; + chart->collapsed_verts = v; + } + else { + v->nextlink = chart->verts; + chart->verts = v; + chart->nverts++; + } + } + + for (e = edges; e; e = nexte) { + nexte = e->nextlink; + + if (!collapsed || !(e->flag & PEDGE_COLLAPSE_EDGE)) { + if (e->flag & PEDGE_COLLAPSE) { + e->nextlink = chart->collapsed_edges; + chart->collapsed_edges = e; + } + else { + e->nextlink = chart->edges; + chart->edges = e; + chart->nedges++; + } + } + } + + /* these are added last so they can be popped of in the right order + * for splitting */ + for (e = collapsed; e; e = e->nextlink) { + e->nextlink = e->u.nextcollapse; + laste = e; + } + if (laste) { + laste->nextlink = chart->collapsed_edges; + chart->collapsed_edges = collapsed; + } + + for (f = faces; f; f = nextf) { + nextf = f->nextlink; + + if (f->flag & PFACE_COLLAPSE) { + f->nextlink = chart->collapsed_faces; + chart->collapsed_faces = f; + } + else { + f->nextlink = chart->faces; + chart->faces = f; + chart->nfaces++; + } + } } static void p_chart_post_split_flush(PChart *chart) { - /* move from collapsed_ */ + /* move from collapsed_ */ - PVert *v, *nextv = NULL; - PEdge *e, *nexte = NULL; - PFace *f, *nextf = NULL; + PVert *v, *nextv = NULL; + PEdge *e, *nexte = NULL; + PFace *f, *nextf = NULL; - for (v = chart->collapsed_verts; v; v = nextv) { - nextv = v->nextlink; - v->nextlink = chart->verts; - chart->verts = v; - chart->nverts++; - } + for (v = chart->collapsed_verts; v; v = nextv) { + nextv = v->nextlink; + v->nextlink = chart->verts; + chart->verts = v; + chart->nverts++; + } - for (e = chart->collapsed_edges; e; e = nexte) { - nexte = e->nextlink; - e->nextlink = chart->edges; - chart->edges = e; - chart->nedges++; - } + for (e = chart->collapsed_edges; e; e = nexte) { + nexte = e->nextlink; + e->nextlink = chart->edges; + chart->edges = e; + chart->nedges++; + } - for (f = chart->collapsed_faces; f; f = nextf) { - nextf = f->nextlink; - f->nextlink = chart->faces; - chart->faces = f; - chart->nfaces++; - } + for (f = chart->collapsed_faces; f; f = nextf) { + nextf = f->nextlink; + f->nextlink = chart->faces; + chart->faces = f; + chart->nfaces++; + } - chart->collapsed_verts = NULL; - chart->collapsed_edges = NULL; - chart->collapsed_faces = NULL; + chart->collapsed_verts = NULL; + chart->collapsed_edges = NULL; + chart->collapsed_faces = NULL; } static void p_chart_simplify_compute(PChart *chart) { - /* Computes a list of edge collapses / vertex splits. The collapsed - * simplices go in the chart->collapsed_* lists, The original and - * collapsed may then be view as stacks, where the next collapse/split - * is at the top of the respective lists. */ + /* Computes a list of edge collapses / vertex splits. The collapsed + * simplices go in the chart->collapsed_* lists, The original and + * collapsed may then be view as stacks, where the next collapse/split + * is at the top of the respective lists. */ - Heap *heap = BLI_heap_new(); - PVert *v, **wheelverts; - PEdge *collapsededges = NULL, *e; - int nwheelverts, i, ncollapsed = 0; + Heap *heap = BLI_heap_new(); + PVert *v, **wheelverts; + PEdge *collapsededges = NULL, *e; + int nwheelverts, i, ncollapsed = 0; - wheelverts = MEM_mallocN(sizeof(PVert *) * chart->nverts, "PChartWheelVerts"); + wheelverts = MEM_mallocN(sizeof(PVert *) * chart->nverts, "PChartWheelVerts"); - /* insert all potential collapses into heap */ - for (v = chart->verts; v; v = v->nextlink) { - float cost; - PEdge *e = NULL; + /* insert all potential collapses into heap */ + for (v = chart->verts; v; v = v->nextlink) { + float cost; + PEdge *e = NULL; - p_collapse_cost_vertex(v, &cost, &e); + p_collapse_cost_vertex(v, &cost, &e); - if (e) - v->u.heaplink = BLI_heap_insert(heap, cost, e); - else - v->u.heaplink = NULL; - } + if (e) + v->u.heaplink = BLI_heap_insert(heap, cost, e); + else + v->u.heaplink = NULL; + } - for (e = chart->edges; e; e = e->nextlink) - e->u.nextcollapse = NULL; + for (e = chart->edges; e; e = e->nextlink) + e->u.nextcollapse = NULL; - /* pop edge collapse out of heap one by one */ - while (!BLI_heap_is_empty(heap)) { - if (ncollapsed == NCOLLAPSE) - break; + /* pop edge collapse out of heap one by one */ + while (!BLI_heap_is_empty(heap)) { + if (ncollapsed == NCOLLAPSE) + break; - HeapNode *link = BLI_heap_top(heap); - PEdge *edge = (PEdge *)BLI_heap_pop_min(heap), *pair = edge->pair; - PVert *oldv, *keepv; - PEdge *wheele, *nexte; + HeapNode *link = BLI_heap_top(heap); + PEdge *edge = (PEdge *)BLI_heap_pop_min(heap), *pair = edge->pair; + PVert *oldv, *keepv; + PEdge *wheele, *nexte; - /* remember the edges we collapsed */ - edge->u.nextcollapse = collapsededges; - collapsededges = edge; + /* remember the edges we collapsed */ + edge->u.nextcollapse = collapsededges; + collapsededges = edge; - if (edge->vert->u.heaplink != link) { - edge->flag |= (PEDGE_COLLAPSE_EDGE | PEDGE_COLLAPSE_PAIR); - edge->next->vert->u.heaplink = NULL; - SWAP(PEdge *, edge, pair); - } - else { - edge->flag |= PEDGE_COLLAPSE_EDGE; - edge->vert->u.heaplink = NULL; - } + if (edge->vert->u.heaplink != link) { + edge->flag |= (PEDGE_COLLAPSE_EDGE | PEDGE_COLLAPSE_PAIR); + edge->next->vert->u.heaplink = NULL; + SWAP(PEdge *, edge, pair); + } + else { + edge->flag |= PEDGE_COLLAPSE_EDGE; + edge->vert->u.heaplink = NULL; + } - p_collapsing_verts(edge, pair, &oldv, &keepv); + p_collapsing_verts(edge, pair, &oldv, &keepv); - /* gather all wheel verts and remember them before collapse */ - nwheelverts = 0; - wheele = oldv->edge; + /* gather all wheel verts and remember them before collapse */ + nwheelverts = 0; + wheele = oldv->edge; - do { - wheelverts[nwheelverts++] = wheele->next->vert; - nexte = p_wheel_edge_next(wheele); + do { + wheelverts[nwheelverts++] = wheele->next->vert; + nexte = p_wheel_edge_next(wheele); - if (nexte == NULL) - wheelverts[nwheelverts++] = wheele->next->next->vert; + if (nexte == NULL) + wheelverts[nwheelverts++] = wheele->next->next->vert; - wheele = nexte; - } while (wheele && (wheele != oldv->edge)); + wheele = nexte; + } while (wheele && (wheele != oldv->edge)); - /* collapse */ - p_collapse_edge(edge, pair); + /* collapse */ + p_collapse_edge(edge, pair); - for (i = 0; i < nwheelverts; i++) { - float cost; - PEdge *collapse = NULL; + for (i = 0; i < nwheelverts; i++) { + float cost; + PEdge *collapse = NULL; - v = wheelverts[i]; + v = wheelverts[i]; - if (v->u.heaplink) { - BLI_heap_remove(heap, v->u.heaplink); - v->u.heaplink = NULL; - } + if (v->u.heaplink) { + BLI_heap_remove(heap, v->u.heaplink); + v->u.heaplink = NULL; + } - p_collapse_cost_vertex(v, &cost, &collapse); + p_collapse_cost_vertex(v, &cost, &collapse); - if (collapse) - v->u.heaplink = BLI_heap_insert(heap, cost, collapse); - } + if (collapse) + v->u.heaplink = BLI_heap_insert(heap, cost, collapse); + } - ncollapsed++; - } + ncollapsed++; + } - MEM_freeN(wheelverts); - BLI_heap_free(heap, NULL); + MEM_freeN(wheelverts); + BLI_heap_free(heap, NULL); - p_chart_post_collapse_flush(chart, collapsededges); + p_chart_post_collapse_flush(chart, collapsededges); } static void p_chart_complexify(PChart *chart) { - PEdge *e, *pair, *edge; - PVert *newv, *keepv; - int x = 0; + PEdge *e, *pair, *edge; + PVert *newv, *keepv; + int x = 0; - for (e = chart->collapsed_edges; e; e = e->nextlink) { - if (!(e->flag & PEDGE_COLLAPSE_EDGE)) - break; + for (e = chart->collapsed_edges; e; e = e->nextlink) { + if (!(e->flag & PEDGE_COLLAPSE_EDGE)) + break; - edge = e; - pair = e->pair; + edge = e; + pair = e->pair; - if (edge->flag & PEDGE_COLLAPSE_PAIR) { - SWAP(PEdge *, edge, pair); - } + if (edge->flag & PEDGE_COLLAPSE_PAIR) { + SWAP(PEdge *, edge, pair); + } - p_split_vertex(edge, pair); - p_collapsing_verts(edge, pair, &newv, &keepv); + p_split_vertex(edge, pair); + p_collapsing_verts(edge, pair, &newv, &keepv); - if (x >= NCOLLAPSEX) { - newv->uv[0] = keepv->uv[0]; - newv->uv[1] = keepv->uv[1]; - } - else { - p_vert_harmonic_insert(newv); - x++; - } - } + if (x >= NCOLLAPSEX) { + newv->uv[0] = keepv->uv[0]; + newv->uv[1] = keepv->uv[1]; + } + else { + p_vert_harmonic_insert(newv); + x++; + } + } - p_chart_post_split_flush(chart); + p_chart_post_split_flush(chart); } -#if 0 +# if 0 static void p_chart_simplify(PChart *chart) { - /* Not implemented, needs proper reordering in split_flush. */ + /* Not implemented, needs proper reordering in split_flush. */ } -#endif +# endif #endif /* ABF */ @@ -2300,925 +2316,937 @@ static void p_chart_simplify(PChart *chart) #define ABF_MAX_ITER 20 typedef struct PAbfSystem { - int ninterior, nfaces, nangles; - float *alpha, *beta, *sine, *cosine, *weight; - float *bAlpha, *bTriangle, *bInterior; - float *lambdaTriangle, *lambdaPlanar, *lambdaLength; - float (*J2dt)[3], *bstar, *dstar; - float minangle, maxangle; + int ninterior, nfaces, nangles; + float *alpha, *beta, *sine, *cosine, *weight; + float *bAlpha, *bTriangle, *bInterior; + float *lambdaTriangle, *lambdaPlanar, *lambdaLength; + float (*J2dt)[3], *bstar, *dstar; + float minangle, maxangle; } PAbfSystem; static void p_abf_setup_system(PAbfSystem *sys) { - int i; + int i; - sys->alpha = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFalpha"); - sys->beta = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFbeta"); - sys->sine = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFsine"); - sys->cosine = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFcosine"); - sys->weight = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFweight"); + sys->alpha = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFalpha"); + sys->beta = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFbeta"); + sys->sine = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFsine"); + sys->cosine = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFcosine"); + sys->weight = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFweight"); - sys->bAlpha = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFbalpha"); - sys->bTriangle = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFbtriangle"); - sys->bInterior = (float *)MEM_mallocN(sizeof(float) * 2 * sys->ninterior, "ABFbinterior"); + sys->bAlpha = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFbalpha"); + sys->bTriangle = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFbtriangle"); + sys->bInterior = (float *)MEM_mallocN(sizeof(float) * 2 * sys->ninterior, "ABFbinterior"); - sys->lambdaTriangle = (float *)MEM_callocN(sizeof(float) * sys->nfaces, "ABFlambdatri"); - sys->lambdaPlanar = (float *)MEM_callocN(sizeof(float) * sys->ninterior, "ABFlamdaplane"); - sys->lambdaLength = (float *)MEM_mallocN(sizeof(float) * sys->ninterior, "ABFlambdalen"); + sys->lambdaTriangle = (float *)MEM_callocN(sizeof(float) * sys->nfaces, "ABFlambdatri"); + sys->lambdaPlanar = (float *)MEM_callocN(sizeof(float) * sys->ninterior, "ABFlamdaplane"); + sys->lambdaLength = (float *)MEM_mallocN(sizeof(float) * sys->ninterior, "ABFlambdalen"); - sys->J2dt = MEM_mallocN(sizeof(float) * sys->nangles * 3, "ABFj2dt"); - sys->bstar = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFbstar"); - sys->dstar = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFdstar"); + sys->J2dt = MEM_mallocN(sizeof(float) * sys->nangles * 3, "ABFj2dt"); + sys->bstar = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFbstar"); + sys->dstar = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFdstar"); - for (i = 0; i < sys->ninterior; i++) - sys->lambdaLength[i] = 1.0; + for (i = 0; i < sys->ninterior; i++) + sys->lambdaLength[i] = 1.0; - sys->minangle = 1.0 * M_PI / 180.0; - sys->maxangle = (float)M_PI - sys->minangle; + sys->minangle = 1.0 * M_PI / 180.0; + sys->maxangle = (float)M_PI - sys->minangle; } static void p_abf_free_system(PAbfSystem *sys) { - MEM_freeN(sys->alpha); - MEM_freeN(sys->beta); - MEM_freeN(sys->sine); - MEM_freeN(sys->cosine); - MEM_freeN(sys->weight); - MEM_freeN(sys->bAlpha); - MEM_freeN(sys->bTriangle); - MEM_freeN(sys->bInterior); - MEM_freeN(sys->lambdaTriangle); - MEM_freeN(sys->lambdaPlanar); - MEM_freeN(sys->lambdaLength); - MEM_freeN(sys->J2dt); - MEM_freeN(sys->bstar); - MEM_freeN(sys->dstar); + MEM_freeN(sys->alpha); + MEM_freeN(sys->beta); + MEM_freeN(sys->sine); + MEM_freeN(sys->cosine); + MEM_freeN(sys->weight); + MEM_freeN(sys->bAlpha); + MEM_freeN(sys->bTriangle); + MEM_freeN(sys->bInterior); + MEM_freeN(sys->lambdaTriangle); + MEM_freeN(sys->lambdaPlanar); + MEM_freeN(sys->lambdaLength); + MEM_freeN(sys->J2dt); + MEM_freeN(sys->bstar); + MEM_freeN(sys->dstar); } static void p_abf_compute_sines(PAbfSystem *sys) { - int i; - float *sine = sys->sine, *cosine = sys->cosine, *alpha = sys->alpha; + int i; + float *sine = sys->sine, *cosine = sys->cosine, *alpha = sys->alpha; - for (i = 0; i < sys->nangles; i++, sine++, cosine++, alpha++) { - *sine = sinf(*alpha); - *cosine = cosf(*alpha); - } + for (i = 0; i < sys->nangles; i++, sine++, cosine++, alpha++) { + *sine = sinf(*alpha); + *cosine = cosf(*alpha); + } } static float p_abf_compute_sin_product(PAbfSystem *sys, PVert *v, int aid) { - PEdge *e, *e1, *e2; - float sin1, sin2; + PEdge *e, *e1, *e2; + float sin1, sin2; - sin1 = sin2 = 1.0; + sin1 = sin2 = 1.0; - e = v->edge; - do { - e1 = e->next; - e2 = e->next->next; + e = v->edge; + do { + e1 = e->next; + e2 = e->next->next; - if (aid == e1->u.id) { - /* we are computing a derivative for this angle, - * so we use cos and drop the other part */ - sin1 *= sys->cosine[e1->u.id]; - sin2 = 0.0; - } - else - sin1 *= sys->sine[e1->u.id]; + if (aid == e1->u.id) { + /* we are computing a derivative for this angle, + * so we use cos and drop the other part */ + sin1 *= sys->cosine[e1->u.id]; + sin2 = 0.0; + } + else + sin1 *= sys->sine[e1->u.id]; - if (aid == e2->u.id) { - /* see above */ - sin1 = 0.0; - sin2 *= sys->cosine[e2->u.id]; - } - else - sin2 *= sys->sine[e2->u.id]; + if (aid == e2->u.id) { + /* see above */ + sin1 = 0.0; + sin2 *= sys->cosine[e2->u.id]; + } + else + sin2 *= sys->sine[e2->u.id]; - e = e->next->next->pair; - } while (e && (e != v->edge)); + e = e->next->next->pair; + } while (e && (e != v->edge)); - return (sin1 - sin2); + return (sin1 - sin2); } static float p_abf_compute_grad_alpha(PAbfSystem *sys, PFace *f, PEdge *e) { - PVert *v = e->vert, *v1 = e->next->vert, *v2 = e->next->next->vert; - float deriv; + PVert *v = e->vert, *v1 = e->next->vert, *v2 = e->next->next->vert; + float deriv; - deriv = (sys->alpha[e->u.id] - sys->beta[e->u.id]) * sys->weight[e->u.id]; - deriv += sys->lambdaTriangle[f->u.id]; + deriv = (sys->alpha[e->u.id] - sys->beta[e->u.id]) * sys->weight[e->u.id]; + deriv += sys->lambdaTriangle[f->u.id]; - if (v->flag & PVERT_INTERIOR) { - deriv += sys->lambdaPlanar[v->u.id]; - } + if (v->flag & PVERT_INTERIOR) { + deriv += sys->lambdaPlanar[v->u.id]; + } - if (v1->flag & PVERT_INTERIOR) { - float product = p_abf_compute_sin_product(sys, v1, e->u.id); - deriv += sys->lambdaLength[v1->u.id] * product; - } + if (v1->flag & PVERT_INTERIOR) { + float product = p_abf_compute_sin_product(sys, v1, e->u.id); + deriv += sys->lambdaLength[v1->u.id] * product; + } - if (v2->flag & PVERT_INTERIOR) { - float product = p_abf_compute_sin_product(sys, v2, e->u.id); - deriv += sys->lambdaLength[v2->u.id] * product; - } + if (v2->flag & PVERT_INTERIOR) { + float product = p_abf_compute_sin_product(sys, v2, e->u.id); + deriv += sys->lambdaLength[v2->u.id] * product; + } - return deriv; + return deriv; } static float p_abf_compute_gradient(PAbfSystem *sys, PChart *chart) { - PFace *f; - PEdge *e; - PVert *v; - float norm = 0.0; + PFace *f; + PEdge *e; + PVert *v; + float norm = 0.0; - for (f = chart->faces; f; f = f->nextlink) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - float gtriangle, galpha1, galpha2, galpha3; + for (f = chart->faces; f; f = f->nextlink) { + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + float gtriangle, galpha1, galpha2, galpha3; - galpha1 = p_abf_compute_grad_alpha(sys, f, e1); - galpha2 = p_abf_compute_grad_alpha(sys, f, e2); - galpha3 = p_abf_compute_grad_alpha(sys, f, e3); + galpha1 = p_abf_compute_grad_alpha(sys, f, e1); + galpha2 = p_abf_compute_grad_alpha(sys, f, e2); + galpha3 = p_abf_compute_grad_alpha(sys, f, e3); - sys->bAlpha[e1->u.id] = -galpha1; - sys->bAlpha[e2->u.id] = -galpha2; - sys->bAlpha[e3->u.id] = -galpha3; + sys->bAlpha[e1->u.id] = -galpha1; + sys->bAlpha[e2->u.id] = -galpha2; + sys->bAlpha[e3->u.id] = -galpha3; - norm += galpha1 * galpha1 + galpha2 * galpha2 + galpha3 * galpha3; + norm += galpha1 * galpha1 + galpha2 * galpha2 + galpha3 * galpha3; - gtriangle = sys->alpha[e1->u.id] + sys->alpha[e2->u.id] + sys->alpha[e3->u.id] - (float)M_PI; - sys->bTriangle[f->u.id] = -gtriangle; - norm += gtriangle * gtriangle; - } + gtriangle = sys->alpha[e1->u.id] + sys->alpha[e2->u.id] + sys->alpha[e3->u.id] - (float)M_PI; + sys->bTriangle[f->u.id] = -gtriangle; + norm += gtriangle * gtriangle; + } - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_INTERIOR) { - float gplanar = -2 * M_PI, glength; + for (v = chart->verts; v; v = v->nextlink) { + if (v->flag & PVERT_INTERIOR) { + float gplanar = -2 * M_PI, glength; - e = v->edge; - do { - gplanar += sys->alpha[e->u.id]; - e = e->next->next->pair; - } while (e && (e != v->edge)); + e = v->edge; + do { + gplanar += sys->alpha[e->u.id]; + e = e->next->next->pair; + } while (e && (e != v->edge)); - sys->bInterior[v->u.id] = -gplanar; - norm += gplanar * gplanar; + sys->bInterior[v->u.id] = -gplanar; + norm += gplanar * gplanar; - glength = p_abf_compute_sin_product(sys, v, -1); - sys->bInterior[sys->ninterior + v->u.id] = -glength; - norm += glength * glength; - } - } + glength = p_abf_compute_sin_product(sys, v, -1); + sys->bInterior[sys->ninterior + v->u.id] = -glength; + norm += glength * glength; + } + } - return norm; + return norm; } static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart) { - PFace *f; - PEdge *e; - int i, j, ninterior = sys->ninterior, nvar = 2 * sys->ninterior; - PBool success; - LinearSolver *context; - - context = EIG_linear_solver_new(0, nvar, 1); - - for (i = 0; i < nvar; i++) - EIG_linear_solver_right_hand_side_add(context, 0, i, sys->bInterior[i]); - - for (f = chart->faces; f; f = f->nextlink) { - float wi1, wi2, wi3, b, si, beta[3], j2[3][3], W[3][3]; - float row1[6], row2[6], row3[6]; - int vid[6]; - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - wi1 = 1.0f / sys->weight[e1->u.id]; - wi2 = 1.0f / sys->weight[e2->u.id]; - wi3 = 1.0f / sys->weight[e3->u.id]; - - /* bstar1 = (J1*dInv*bAlpha - bTriangle) */ - b = sys->bAlpha[e1->u.id] * wi1; - b += sys->bAlpha[e2->u.id] * wi2; - b += sys->bAlpha[e3->u.id] * wi3; - b -= sys->bTriangle[f->u.id]; - - /* si = J1*d*J1t */ - si = 1.0f / (wi1 + wi2 + wi3); - - /* J1t*si*bstar1 - bAlpha */ - beta[0] = b * si - sys->bAlpha[e1->u.id]; - beta[1] = b * si - sys->bAlpha[e2->u.id]; - beta[2] = b * si - sys->bAlpha[e3->u.id]; - - /* use this later for computing other lambda's */ - sys->bstar[f->u.id] = b; - sys->dstar[f->u.id] = si; - - /* set matrix */ - W[0][0] = si - sys->weight[e1->u.id]; W[0][1] = si; W[0][2] = si; - W[1][0] = si; W[1][1] = si - sys->weight[e2->u.id]; W[1][2] = si; - W[2][0] = si; W[2][1] = si; W[2][2] = si - sys->weight[e3->u.id]; - - vid[0] = vid[1] = vid[2] = vid[3] = vid[4] = vid[5] = -1; - - if (v1->flag & PVERT_INTERIOR) { - vid[0] = v1->u.id; - vid[3] = ninterior + v1->u.id; - - sys->J2dt[e1->u.id][0] = j2[0][0] = 1.0f * wi1; - sys->J2dt[e2->u.id][0] = j2[1][0] = p_abf_compute_sin_product(sys, v1, e2->u.id) * wi2; - sys->J2dt[e3->u.id][0] = j2[2][0] = p_abf_compute_sin_product(sys, v1, e3->u.id) * wi3; - - EIG_linear_solver_right_hand_side_add(context, 0, v1->u.id, j2[0][0] * beta[0]); - EIG_linear_solver_right_hand_side_add(context, 0, ninterior + v1->u.id, j2[1][0] * beta[1] + j2[2][0] * beta[2]); - - row1[0] = j2[0][0] * W[0][0]; - row2[0] = j2[0][0] * W[1][0]; - row3[0] = j2[0][0] * W[2][0]; - - row1[3] = j2[1][0] * W[0][1] + j2[2][0] * W[0][2]; - row2[3] = j2[1][0] * W[1][1] + j2[2][0] * W[1][2]; - row3[3] = j2[1][0] * W[2][1] + j2[2][0] * W[2][2]; - } - - if (v2->flag & PVERT_INTERIOR) { - vid[1] = v2->u.id; - vid[4] = ninterior + v2->u.id; - - sys->J2dt[e1->u.id][1] = j2[0][1] = p_abf_compute_sin_product(sys, v2, e1->u.id) * wi1; - sys->J2dt[e2->u.id][1] = j2[1][1] = 1.0f * wi2; - sys->J2dt[e3->u.id][1] = j2[2][1] = p_abf_compute_sin_product(sys, v2, e3->u.id) * wi3; - - EIG_linear_solver_right_hand_side_add(context, 0, v2->u.id, j2[1][1] * beta[1]); - EIG_linear_solver_right_hand_side_add(context, 0, ninterior + v2->u.id, j2[0][1] * beta[0] + j2[2][1] * beta[2]); - - row1[1] = j2[1][1] * W[0][1]; - row2[1] = j2[1][1] * W[1][1]; - row3[1] = j2[1][1] * W[2][1]; - - row1[4] = j2[0][1] * W[0][0] + j2[2][1] * W[0][2]; - row2[4] = j2[0][1] * W[1][0] + j2[2][1] * W[1][2]; - row3[4] = j2[0][1] * W[2][0] + j2[2][1] * W[2][2]; - } - - if (v3->flag & PVERT_INTERIOR) { - vid[2] = v3->u.id; - vid[5] = ninterior + v3->u.id; - - sys->J2dt[e1->u.id][2] = j2[0][2] = p_abf_compute_sin_product(sys, v3, e1->u.id) * wi1; - sys->J2dt[e2->u.id][2] = j2[1][2] = p_abf_compute_sin_product(sys, v3, e2->u.id) * wi2; - sys->J2dt[e3->u.id][2] = j2[2][2] = 1.0f * wi3; - - EIG_linear_solver_right_hand_side_add(context, 0, v3->u.id, j2[2][2] * beta[2]); - EIG_linear_solver_right_hand_side_add(context, 0, ninterior + v3->u.id, j2[0][2] * beta[0] + j2[1][2] * beta[1]); - - row1[2] = j2[2][2] * W[0][2]; - row2[2] = j2[2][2] * W[1][2]; - row3[2] = j2[2][2] * W[2][2]; - - row1[5] = j2[0][2] * W[0][0] + j2[1][2] * W[0][1]; - row2[5] = j2[0][2] * W[1][0] + j2[1][2] * W[1][1]; - row3[5] = j2[0][2] * W[2][0] + j2[1][2] * W[2][1]; - } - - for (i = 0; i < 3; i++) { - int r = vid[i]; - - if (r == -1) - continue; - - for (j = 0; j < 6; j++) { - int c = vid[j]; - - if (c == -1) - continue; - - if (i == 0) - EIG_linear_solver_matrix_add(context, r, c, j2[0][i] * row1[j]); - else - EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[0][i] * row1[j]); - - if (i == 1) - EIG_linear_solver_matrix_add(context, r, c, j2[1][i] * row2[j]); - else - EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[1][i] * row2[j]); - - - if (i == 2) - EIG_linear_solver_matrix_add(context, r, c, j2[2][i] * row3[j]); - else - EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[2][i] * row3[j]); - } - } - } - - success = EIG_linear_solver_solve(context); - - if (success) { - for (f = chart->faces; f; f = f->nextlink) { - float dlambda1, pre[3], dalpha; - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - pre[0] = pre[1] = pre[2] = 0.0; - - if (v1->flag & PVERT_INTERIOR) { - float x = EIG_linear_solver_variable_get(context, 0, v1->u.id); - float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v1->u.id); - pre[0] += sys->J2dt[e1->u.id][0] * x; - pre[1] += sys->J2dt[e2->u.id][0] * x2; - pre[2] += sys->J2dt[e3->u.id][0] * x2; - } - - if (v2->flag & PVERT_INTERIOR) { - float x = EIG_linear_solver_variable_get(context, 0, v2->u.id); - float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v2->u.id); - pre[0] += sys->J2dt[e1->u.id][1] * x2; - pre[1] += sys->J2dt[e2->u.id][1] * x; - pre[2] += sys->J2dt[e3->u.id][1] * x2; - } - - if (v3->flag & PVERT_INTERIOR) { - float x = EIG_linear_solver_variable_get(context, 0, v3->u.id); - float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v3->u.id); - pre[0] += sys->J2dt[e1->u.id][2] * x2; - pre[1] += sys->J2dt[e2->u.id][2] * x2; - pre[2] += sys->J2dt[e3->u.id][2] * x; - } - - dlambda1 = pre[0] + pre[1] + pre[2]; - dlambda1 = sys->dstar[f->u.id] * (sys->bstar[f->u.id] - dlambda1); - - sys->lambdaTriangle[f->u.id] += dlambda1; - - dalpha = (sys->bAlpha[e1->u.id] - dlambda1); - sys->alpha[e1->u.id] += dalpha / sys->weight[e1->u.id] - pre[0]; - - dalpha = (sys->bAlpha[e2->u.id] - dlambda1); - sys->alpha[e2->u.id] += dalpha / sys->weight[e2->u.id] - pre[1]; - - dalpha = (sys->bAlpha[e3->u.id] - dlambda1); - sys->alpha[e3->u.id] += dalpha / sys->weight[e3->u.id] - pre[2]; - - /* clamp */ - e = f->edge; - do { - if (sys->alpha[e->u.id] > (float)M_PI) - sys->alpha[e->u.id] = (float)M_PI; - else if (sys->alpha[e->u.id] < 0.0f) - sys->alpha[e->u.id] = 0.0f; - } while (e != f->edge); - } - - for (i = 0; i < ninterior; i++) { - sys->lambdaPlanar[i] += (float)EIG_linear_solver_variable_get(context, 0, i); - sys->lambdaLength[i] += (float)EIG_linear_solver_variable_get(context, 0, ninterior + i); - } - } - - EIG_linear_solver_delete(context); - - return success; + PFace *f; + PEdge *e; + int i, j, ninterior = sys->ninterior, nvar = 2 * sys->ninterior; + PBool success; + LinearSolver *context; + + context = EIG_linear_solver_new(0, nvar, 1); + + for (i = 0; i < nvar; i++) + EIG_linear_solver_right_hand_side_add(context, 0, i, sys->bInterior[i]); + + for (f = chart->faces; f; f = f->nextlink) { + float wi1, wi2, wi3, b, si, beta[3], j2[3][3], W[3][3]; + float row1[6], row2[6], row3[6]; + int vid[6]; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + + wi1 = 1.0f / sys->weight[e1->u.id]; + wi2 = 1.0f / sys->weight[e2->u.id]; + wi3 = 1.0f / sys->weight[e3->u.id]; + + /* bstar1 = (J1*dInv*bAlpha - bTriangle) */ + b = sys->bAlpha[e1->u.id] * wi1; + b += sys->bAlpha[e2->u.id] * wi2; + b += sys->bAlpha[e3->u.id] * wi3; + b -= sys->bTriangle[f->u.id]; + + /* si = J1*d*J1t */ + si = 1.0f / (wi1 + wi2 + wi3); + + /* J1t*si*bstar1 - bAlpha */ + beta[0] = b * si - sys->bAlpha[e1->u.id]; + beta[1] = b * si - sys->bAlpha[e2->u.id]; + beta[2] = b * si - sys->bAlpha[e3->u.id]; + + /* use this later for computing other lambda's */ + sys->bstar[f->u.id] = b; + sys->dstar[f->u.id] = si; + + /* set matrix */ + W[0][0] = si - sys->weight[e1->u.id]; + W[0][1] = si; + W[0][2] = si; + W[1][0] = si; + W[1][1] = si - sys->weight[e2->u.id]; + W[1][2] = si; + W[2][0] = si; + W[2][1] = si; + W[2][2] = si - sys->weight[e3->u.id]; + + vid[0] = vid[1] = vid[2] = vid[3] = vid[4] = vid[5] = -1; + + if (v1->flag & PVERT_INTERIOR) { + vid[0] = v1->u.id; + vid[3] = ninterior + v1->u.id; + + sys->J2dt[e1->u.id][0] = j2[0][0] = 1.0f * wi1; + sys->J2dt[e2->u.id][0] = j2[1][0] = p_abf_compute_sin_product(sys, v1, e2->u.id) * wi2; + sys->J2dt[e3->u.id][0] = j2[2][0] = p_abf_compute_sin_product(sys, v1, e3->u.id) * wi3; + + EIG_linear_solver_right_hand_side_add(context, 0, v1->u.id, j2[0][0] * beta[0]); + EIG_linear_solver_right_hand_side_add( + context, 0, ninterior + v1->u.id, j2[1][0] * beta[1] + j2[2][0] * beta[2]); + + row1[0] = j2[0][0] * W[0][0]; + row2[0] = j2[0][0] * W[1][0]; + row3[0] = j2[0][0] * W[2][0]; + + row1[3] = j2[1][0] * W[0][1] + j2[2][0] * W[0][2]; + row2[3] = j2[1][0] * W[1][1] + j2[2][0] * W[1][2]; + row3[3] = j2[1][0] * W[2][1] + j2[2][0] * W[2][2]; + } + + if (v2->flag & PVERT_INTERIOR) { + vid[1] = v2->u.id; + vid[4] = ninterior + v2->u.id; + + sys->J2dt[e1->u.id][1] = j2[0][1] = p_abf_compute_sin_product(sys, v2, e1->u.id) * wi1; + sys->J2dt[e2->u.id][1] = j2[1][1] = 1.0f * wi2; + sys->J2dt[e3->u.id][1] = j2[2][1] = p_abf_compute_sin_product(sys, v2, e3->u.id) * wi3; + + EIG_linear_solver_right_hand_side_add(context, 0, v2->u.id, j2[1][1] * beta[1]); + EIG_linear_solver_right_hand_side_add( + context, 0, ninterior + v2->u.id, j2[0][1] * beta[0] + j2[2][1] * beta[2]); + + row1[1] = j2[1][1] * W[0][1]; + row2[1] = j2[1][1] * W[1][1]; + row3[1] = j2[1][1] * W[2][1]; + + row1[4] = j2[0][1] * W[0][0] + j2[2][1] * W[0][2]; + row2[4] = j2[0][1] * W[1][0] + j2[2][1] * W[1][2]; + row3[4] = j2[0][1] * W[2][0] + j2[2][1] * W[2][2]; + } + + if (v3->flag & PVERT_INTERIOR) { + vid[2] = v3->u.id; + vid[5] = ninterior + v3->u.id; + + sys->J2dt[e1->u.id][2] = j2[0][2] = p_abf_compute_sin_product(sys, v3, e1->u.id) * wi1; + sys->J2dt[e2->u.id][2] = j2[1][2] = p_abf_compute_sin_product(sys, v3, e2->u.id) * wi2; + sys->J2dt[e3->u.id][2] = j2[2][2] = 1.0f * wi3; + + EIG_linear_solver_right_hand_side_add(context, 0, v3->u.id, j2[2][2] * beta[2]); + EIG_linear_solver_right_hand_side_add( + context, 0, ninterior + v3->u.id, j2[0][2] * beta[0] + j2[1][2] * beta[1]); + + row1[2] = j2[2][2] * W[0][2]; + row2[2] = j2[2][2] * W[1][2]; + row3[2] = j2[2][2] * W[2][2]; + + row1[5] = j2[0][2] * W[0][0] + j2[1][2] * W[0][1]; + row2[5] = j2[0][2] * W[1][0] + j2[1][2] * W[1][1]; + row3[5] = j2[0][2] * W[2][0] + j2[1][2] * W[2][1]; + } + + for (i = 0; i < 3; i++) { + int r = vid[i]; + + if (r == -1) + continue; + + for (j = 0; j < 6; j++) { + int c = vid[j]; + + if (c == -1) + continue; + + if (i == 0) + EIG_linear_solver_matrix_add(context, r, c, j2[0][i] * row1[j]); + else + EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[0][i] * row1[j]); + + if (i == 1) + EIG_linear_solver_matrix_add(context, r, c, j2[1][i] * row2[j]); + else + EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[1][i] * row2[j]); + + if (i == 2) + EIG_linear_solver_matrix_add(context, r, c, j2[2][i] * row3[j]); + else + EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[2][i] * row3[j]); + } + } + } + + success = EIG_linear_solver_solve(context); + + if (success) { + for (f = chart->faces; f; f = f->nextlink) { + float dlambda1, pre[3], dalpha; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + + pre[0] = pre[1] = pre[2] = 0.0; + + if (v1->flag & PVERT_INTERIOR) { + float x = EIG_linear_solver_variable_get(context, 0, v1->u.id); + float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v1->u.id); + pre[0] += sys->J2dt[e1->u.id][0] * x; + pre[1] += sys->J2dt[e2->u.id][0] * x2; + pre[2] += sys->J2dt[e3->u.id][0] * x2; + } + + if (v2->flag & PVERT_INTERIOR) { + float x = EIG_linear_solver_variable_get(context, 0, v2->u.id); + float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v2->u.id); + pre[0] += sys->J2dt[e1->u.id][1] * x2; + pre[1] += sys->J2dt[e2->u.id][1] * x; + pre[2] += sys->J2dt[e3->u.id][1] * x2; + } + + if (v3->flag & PVERT_INTERIOR) { + float x = EIG_linear_solver_variable_get(context, 0, v3->u.id); + float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v3->u.id); + pre[0] += sys->J2dt[e1->u.id][2] * x2; + pre[1] += sys->J2dt[e2->u.id][2] * x2; + pre[2] += sys->J2dt[e3->u.id][2] * x; + } + + dlambda1 = pre[0] + pre[1] + pre[2]; + dlambda1 = sys->dstar[f->u.id] * (sys->bstar[f->u.id] - dlambda1); + + sys->lambdaTriangle[f->u.id] += dlambda1; + + dalpha = (sys->bAlpha[e1->u.id] - dlambda1); + sys->alpha[e1->u.id] += dalpha / sys->weight[e1->u.id] - pre[0]; + + dalpha = (sys->bAlpha[e2->u.id] - dlambda1); + sys->alpha[e2->u.id] += dalpha / sys->weight[e2->u.id] - pre[1]; + + dalpha = (sys->bAlpha[e3->u.id] - dlambda1); + sys->alpha[e3->u.id] += dalpha / sys->weight[e3->u.id] - pre[2]; + + /* clamp */ + e = f->edge; + do { + if (sys->alpha[e->u.id] > (float)M_PI) + sys->alpha[e->u.id] = (float)M_PI; + else if (sys->alpha[e->u.id] < 0.0f) + sys->alpha[e->u.id] = 0.0f; + } while (e != f->edge); + } + + for (i = 0; i < ninterior; i++) { + sys->lambdaPlanar[i] += (float)EIG_linear_solver_variable_get(context, 0, i); + sys->lambdaLength[i] += (float)EIG_linear_solver_variable_get(context, 0, ninterior + i); + } + } + + EIG_linear_solver_delete(context); + + return success; } static PBool p_chart_abf_solve(PChart *chart) { - PVert *v; - PFace *f; - PEdge *e, *e1, *e2, *e3; - PAbfSystem sys; - int i; - float /* lastnorm, */ /* UNUSED */ limit = (chart->nfaces > 100) ? 1.0f : 0.001f; - - /* setup id's */ - sys.ninterior = sys.nfaces = sys.nangles = 0; - - for (v = chart->verts; v; v = v->nextlink) { - if (p_vert_interior(v)) { - v->flag |= PVERT_INTERIOR; - v->u.id = sys.ninterior++; - } - else - v->flag &= ~PVERT_INTERIOR; - } - - for (f = chart->faces; f; f = f->nextlink) { - e1 = f->edge; e2 = e1->next; e3 = e2->next; - f->u.id = sys.nfaces++; - - /* angle id's are conveniently stored in half edges */ - e1->u.id = sys.nangles++; - e2->u.id = sys.nangles++; - e3->u.id = sys.nangles++; - } - - p_abf_setup_system(&sys); - - /* compute initial angles */ - for (f = chart->faces; f; f = f->nextlink) { - float a1, a2, a3; - - e1 = f->edge; e2 = e1->next; e3 = e2->next; - p_face_angles(f, &a1, &a2, &a3); - - if (a1 < sys.minangle) - a1 = sys.minangle; - else if (a1 > sys.maxangle) - a1 = sys.maxangle; - if (a2 < sys.minangle) - a2 = sys.minangle; - else if (a2 > sys.maxangle) - a2 = sys.maxangle; - if (a3 < sys.minangle) - a3 = sys.minangle; - else if (a3 > sys.maxangle) - a3 = sys.maxangle; - - sys.alpha[e1->u.id] = sys.beta[e1->u.id] = a1; - sys.alpha[e2->u.id] = sys.beta[e2->u.id] = a2; - sys.alpha[e3->u.id] = sys.beta[e3->u.id] = a3; - - sys.weight[e1->u.id] = 2.0f / (a1 * a1); - sys.weight[e2->u.id] = 2.0f / (a2 * a2); - sys.weight[e3->u.id] = 2.0f / (a3 * a3); - } - - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_INTERIOR) { - float anglesum = 0.0, scale; - - e = v->edge; - do { - anglesum += sys.beta[e->u.id]; - e = e->next->next->pair; - } while (e && (e != v->edge)); - - scale = (anglesum == 0.0f) ? 0.0f : 2.0f * (float)M_PI / anglesum; - - e = v->edge; - do { - sys.beta[e->u.id] = sys.alpha[e->u.id] = sys.beta[e->u.id] * scale; - e = e->next->next->pair; - } while (e && (e != v->edge)); - } - } - - if (sys.ninterior > 0) { - p_abf_compute_sines(&sys); - - /* iteration */ - /* lastnorm = 1e10; */ /* UNUSED */ - - for (i = 0; i < ABF_MAX_ITER; i++) { - float norm = p_abf_compute_gradient(&sys, chart); - - /* lastnorm = norm; */ /* UNUSED */ - - if (norm < limit) - break; - - if (!p_abf_matrix_invert(&sys, chart)) { - param_warning("ABF failed to invert matrix"); - p_abf_free_system(&sys); - return P_FALSE; - } - - p_abf_compute_sines(&sys); - } - - if (i == ABF_MAX_ITER) { - param_warning("ABF maximum iterations reached"); - p_abf_free_system(&sys); - return P_FALSE; - } - } - - chart->u.lscm.abf_alpha = MEM_dupallocN(sys.alpha); - p_abf_free_system(&sys); - - return P_TRUE; + PVert *v; + PFace *f; + PEdge *e, *e1, *e2, *e3; + PAbfSystem sys; + int i; + float /* lastnorm, */ /* UNUSED */ limit = (chart->nfaces > 100) ? 1.0f : 0.001f; + + /* setup id's */ + sys.ninterior = sys.nfaces = sys.nangles = 0; + + for (v = chart->verts; v; v = v->nextlink) { + if (p_vert_interior(v)) { + v->flag |= PVERT_INTERIOR; + v->u.id = sys.ninterior++; + } + else + v->flag &= ~PVERT_INTERIOR; + } + + for (f = chart->faces; f; f = f->nextlink) { + e1 = f->edge; + e2 = e1->next; + e3 = e2->next; + f->u.id = sys.nfaces++; + + /* angle id's are conveniently stored in half edges */ + e1->u.id = sys.nangles++; + e2->u.id = sys.nangles++; + e3->u.id = sys.nangles++; + } + + p_abf_setup_system(&sys); + + /* compute initial angles */ + for (f = chart->faces; f; f = f->nextlink) { + float a1, a2, a3; + + e1 = f->edge; + e2 = e1->next; + e3 = e2->next; + p_face_angles(f, &a1, &a2, &a3); + + if (a1 < sys.minangle) + a1 = sys.minangle; + else if (a1 > sys.maxangle) + a1 = sys.maxangle; + if (a2 < sys.minangle) + a2 = sys.minangle; + else if (a2 > sys.maxangle) + a2 = sys.maxangle; + if (a3 < sys.minangle) + a3 = sys.minangle; + else if (a3 > sys.maxangle) + a3 = sys.maxangle; + + sys.alpha[e1->u.id] = sys.beta[e1->u.id] = a1; + sys.alpha[e2->u.id] = sys.beta[e2->u.id] = a2; + sys.alpha[e3->u.id] = sys.beta[e3->u.id] = a3; + + sys.weight[e1->u.id] = 2.0f / (a1 * a1); + sys.weight[e2->u.id] = 2.0f / (a2 * a2); + sys.weight[e3->u.id] = 2.0f / (a3 * a3); + } + + for (v = chart->verts; v; v = v->nextlink) { + if (v->flag & PVERT_INTERIOR) { + float anglesum = 0.0, scale; + + e = v->edge; + do { + anglesum += sys.beta[e->u.id]; + e = e->next->next->pair; + } while (e && (e != v->edge)); + + scale = (anglesum == 0.0f) ? 0.0f : 2.0f * (float)M_PI / anglesum; + + e = v->edge; + do { + sys.beta[e->u.id] = sys.alpha[e->u.id] = sys.beta[e->u.id] * scale; + e = e->next->next->pair; + } while (e && (e != v->edge)); + } + } + + if (sys.ninterior > 0) { + p_abf_compute_sines(&sys); + + /* iteration */ + /* lastnorm = 1e10; */ /* UNUSED */ + + for (i = 0; i < ABF_MAX_ITER; i++) { + float norm = p_abf_compute_gradient(&sys, chart); + + /* lastnorm = norm; */ /* UNUSED */ + + if (norm < limit) + break; + + if (!p_abf_matrix_invert(&sys, chart)) { + param_warning("ABF failed to invert matrix"); + p_abf_free_system(&sys); + return P_FALSE; + } + + p_abf_compute_sines(&sys); + } + + if (i == ABF_MAX_ITER) { + param_warning("ABF maximum iterations reached"); + p_abf_free_system(&sys); + return P_FALSE; + } + } + + chart->u.lscm.abf_alpha = MEM_dupallocN(sys.alpha); + p_abf_free_system(&sys); + + return P_TRUE; } /* Least Squares Conformal Maps */ static void p_chart_pin_positions(PChart *chart, PVert **pin1, PVert **pin2) { - if (!*pin1 || !*pin2 || *pin1 == *pin2) { - /* degenerate case */ - PFace *f = chart->faces; - *pin1 = f->edge->vert; - *pin2 = f->edge->next->vert; - - (*pin1)->uv[0] = 0.0f; - (*pin1)->uv[1] = 0.5f; - (*pin2)->uv[0] = 1.0f; - (*pin2)->uv[1] = 0.5f; - } - else { - int diru, dirv, dirx, diry; - float sub[3]; - - sub_v3_v3v3(sub, (*pin1)->co, (*pin2)->co); - sub[0] = fabsf(sub[0]); - sub[1] = fabsf(sub[1]); - sub[2] = fabsf(sub[2]); - - if ((sub[0] > sub[1]) && (sub[0] > sub[2])) { - dirx = 0; - diry = (sub[1] > sub[2]) ? 1 : 2; - } - else if ((sub[1] > sub[0]) && (sub[1] > sub[2])) { - dirx = 1; - diry = (sub[0] > sub[2]) ? 0 : 2; - } - else { - dirx = 2; - diry = (sub[0] > sub[1]) ? 0 : 1; - } - - if (dirx == 2) { - diru = 1; - dirv = 0; - } - else { - diru = 0; - dirv = 1; - } - - (*pin1)->uv[diru] = (*pin1)->co[dirx]; - (*pin1)->uv[dirv] = (*pin1)->co[diry]; - (*pin2)->uv[diru] = (*pin2)->co[dirx]; - (*pin2)->uv[dirv] = (*pin2)->co[diry]; - } + if (!*pin1 || !*pin2 || *pin1 == *pin2) { + /* degenerate case */ + PFace *f = chart->faces; + *pin1 = f->edge->vert; + *pin2 = f->edge->next->vert; + + (*pin1)->uv[0] = 0.0f; + (*pin1)->uv[1] = 0.5f; + (*pin2)->uv[0] = 1.0f; + (*pin2)->uv[1] = 0.5f; + } + else { + int diru, dirv, dirx, diry; + float sub[3]; + + sub_v3_v3v3(sub, (*pin1)->co, (*pin2)->co); + sub[0] = fabsf(sub[0]); + sub[1] = fabsf(sub[1]); + sub[2] = fabsf(sub[2]); + + if ((sub[0] > sub[1]) && (sub[0] > sub[2])) { + dirx = 0; + diry = (sub[1] > sub[2]) ? 1 : 2; + } + else if ((sub[1] > sub[0]) && (sub[1] > sub[2])) { + dirx = 1; + diry = (sub[0] > sub[2]) ? 0 : 2; + } + else { + dirx = 2; + diry = (sub[0] > sub[1]) ? 0 : 1; + } + + if (dirx == 2) { + diru = 1; + dirv = 0; + } + else { + diru = 0; + dirv = 1; + } + + (*pin1)->uv[diru] = (*pin1)->co[dirx]; + (*pin1)->uv[dirv] = (*pin1)->co[diry]; + (*pin2)->uv[diru] = (*pin2)->co[dirx]; + (*pin2)->uv[dirv] = (*pin2)->co[diry]; + } } static PBool p_chart_symmetry_pins(PChart *chart, PEdge *outer, PVert **pin1, PVert **pin2) { - PEdge *be, *lastbe = NULL, *maxe1 = NULL, *maxe2 = NULL, *be1, *be2; - PEdge *cure = NULL, *firste1 = NULL, *firste2 = NULL, *nextbe; - float maxlen = 0.0f, curlen = 0.0f, totlen = 0.0f, firstlen = 0.0f; - float len1, len2; - - /* find longest series of verts split in the chart itself, these are - * marked during construction */ - be = outer; - lastbe = p_boundary_edge_prev(be); - do { - float len = p_edge_length(be); - totlen += len; - - nextbe = p_boundary_edge_next(be); - - if ((be->vert->flag & PVERT_SPLIT) || - (lastbe->vert->flag & nextbe->vert->flag & PVERT_SPLIT)) - { - if (!cure) { - if (be == outer) - firste1 = be; - cure = be; - } - else - curlen += p_edge_length(lastbe); - } - else if (cure) { - if (curlen > maxlen) { - maxlen = curlen; - maxe1 = cure; - maxe2 = lastbe; - } - - if (firste1 == cure) { - firstlen = curlen; - firste2 = lastbe; - } - - curlen = 0.0f; - cure = NULL; - } - - lastbe = be; - be = nextbe; - } while (be != outer); - - /* make sure we also count a series of splits over the starting point */ - if (cure && (cure != outer)) { - firstlen += curlen + p_edge_length(be); - - if (firstlen > maxlen) { - maxlen = firstlen; - maxe1 = cure; - maxe2 = firste2; - } - } - - if (!maxe1 || !maxe2 || (maxlen < 0.5f * totlen)) - return P_FALSE; - - /* find pin1 in the split vertices */ - be1 = maxe1; - be2 = maxe2; - len1 = 0.0f; - len2 = 0.0f; - - do { - if (len1 < len2) { - len1 += p_edge_length(be1); - be1 = p_boundary_edge_next(be1); - } - else { - be2 = p_boundary_edge_prev(be2); - len2 += p_edge_length(be2); - } - } while (be1 != be2); - - *pin1 = be1->vert; - - /* find pin2 outside the split vertices */ - be1 = maxe1; - be2 = maxe2; - len1 = 0.0f; - len2 = 0.0f; - - do { - if (len1 < len2) { - be1 = p_boundary_edge_prev(be1); - len1 += p_edge_length(be1); - } - else { - len2 += p_edge_length(be2); - be2 = p_boundary_edge_next(be2); - } - } while (be1 != be2); - - *pin2 = be1->vert; - - p_chart_pin_positions(chart, pin1, pin2); - - return !equals_v3v3((*pin1)->co, (*pin2)->co); + PEdge *be, *lastbe = NULL, *maxe1 = NULL, *maxe2 = NULL, *be1, *be2; + PEdge *cure = NULL, *firste1 = NULL, *firste2 = NULL, *nextbe; + float maxlen = 0.0f, curlen = 0.0f, totlen = 0.0f, firstlen = 0.0f; + float len1, len2; + + /* find longest series of verts split in the chart itself, these are + * marked during construction */ + be = outer; + lastbe = p_boundary_edge_prev(be); + do { + float len = p_edge_length(be); + totlen += len; + + nextbe = p_boundary_edge_next(be); + + if ((be->vert->flag & PVERT_SPLIT) || + (lastbe->vert->flag & nextbe->vert->flag & PVERT_SPLIT)) { + if (!cure) { + if (be == outer) + firste1 = be; + cure = be; + } + else + curlen += p_edge_length(lastbe); + } + else if (cure) { + if (curlen > maxlen) { + maxlen = curlen; + maxe1 = cure; + maxe2 = lastbe; + } + + if (firste1 == cure) { + firstlen = curlen; + firste2 = lastbe; + } + + curlen = 0.0f; + cure = NULL; + } + + lastbe = be; + be = nextbe; + } while (be != outer); + + /* make sure we also count a series of splits over the starting point */ + if (cure && (cure != outer)) { + firstlen += curlen + p_edge_length(be); + + if (firstlen > maxlen) { + maxlen = firstlen; + maxe1 = cure; + maxe2 = firste2; + } + } + + if (!maxe1 || !maxe2 || (maxlen < 0.5f * totlen)) + return P_FALSE; + + /* find pin1 in the split vertices */ + be1 = maxe1; + be2 = maxe2; + len1 = 0.0f; + len2 = 0.0f; + + do { + if (len1 < len2) { + len1 += p_edge_length(be1); + be1 = p_boundary_edge_next(be1); + } + else { + be2 = p_boundary_edge_prev(be2); + len2 += p_edge_length(be2); + } + } while (be1 != be2); + + *pin1 = be1->vert; + + /* find pin2 outside the split vertices */ + be1 = maxe1; + be2 = maxe2; + len1 = 0.0f; + len2 = 0.0f; + + do { + if (len1 < len2) { + be1 = p_boundary_edge_prev(be1); + len1 += p_edge_length(be1); + } + else { + len2 += p_edge_length(be2); + be2 = p_boundary_edge_next(be2); + } + } while (be1 != be2); + + *pin2 = be1->vert; + + p_chart_pin_positions(chart, pin1, pin2); + + return !equals_v3v3((*pin1)->co, (*pin2)->co); } static void p_chart_extrema_verts(PChart *chart, PVert **pin1, PVert **pin2) { - float minv[3], maxv[3], dirlen; - PVert *v, *minvert[3], *maxvert[3]; - int i, dir; + float minv[3], maxv[3], dirlen; + PVert *v, *minvert[3], *maxvert[3]; + int i, dir; - /* find minimum and maximum verts over x/y/z axes */ - minv[0] = minv[1] = minv[2] = 1e20; - maxv[0] = maxv[1] = maxv[2] = -1e20; + /* find minimum and maximum verts over x/y/z axes */ + minv[0] = minv[1] = minv[2] = 1e20; + maxv[0] = maxv[1] = maxv[2] = -1e20; - minvert[0] = minvert[1] = minvert[2] = NULL; - maxvert[0] = maxvert[1] = maxvert[2] = NULL; + minvert[0] = minvert[1] = minvert[2] = NULL; + maxvert[0] = maxvert[1] = maxvert[2] = NULL; - for (v = chart->verts; v; v = v->nextlink) { - for (i = 0; i < 3; i++) { - if (v->co[i] < minv[i]) { - minv[i] = v->co[i]; - minvert[i] = v; - } - if (v->co[i] > maxv[i]) { - maxv[i] = v->co[i]; - maxvert[i] = v; - } - } - } + for (v = chart->verts; v; v = v->nextlink) { + for (i = 0; i < 3; i++) { + if (v->co[i] < minv[i]) { + minv[i] = v->co[i]; + minvert[i] = v; + } + if (v->co[i] > maxv[i]) { + maxv[i] = v->co[i]; + maxvert[i] = v; + } + } + } - /* find axes with longest distance */ - dir = 0; - dirlen = -1.0; + /* find axes with longest distance */ + dir = 0; + dirlen = -1.0; - for (i = 0; i < 3; i++) { - if (maxv[i] - minv[i] > dirlen) { - dir = i; - dirlen = maxv[i] - minv[i]; - } - } + for (i = 0; i < 3; i++) { + if (maxv[i] - minv[i] > dirlen) { + dir = i; + dirlen = maxv[i] - minv[i]; + } + } - *pin1 = minvert[dir]; - *pin2 = maxvert[dir]; + *pin1 = minvert[dir]; + *pin2 = maxvert[dir]; - p_chart_pin_positions(chart, pin1, pin2); + p_chart_pin_positions(chart, pin1, pin2); } static void p_chart_lscm_load_solution(PChart *chart) { - LinearSolver *context = chart->u.lscm.context; - PVert *v; + LinearSolver *context = chart->u.lscm.context; + PVert *v; - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id); - v->uv[1] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id + 1); - } + for (v = chart->verts; v; v = v->nextlink) { + v->uv[0] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id); + v->uv[1] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id + 1); + } } static void p_chart_lscm_begin(PChart *chart, PBool live, PBool abf) { - PVert *v, *pin1, *pin2; - PBool select = P_FALSE, deselect = P_FALSE; - int npins = 0, id = 0; - - /* give vertices matrix indices and count pins */ - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_PIN) { - npins++; - if (v->flag & PVERT_SELECT) - select = P_TRUE; - } - - if (!(v->flag & PVERT_SELECT)) - deselect = P_TRUE; - } - - if ((live && (!select || !deselect)) || (npins == 1)) { - chart->u.lscm.context = NULL; - } - else { + PVert *v, *pin1, *pin2; + PBool select = P_FALSE, deselect = P_FALSE; + int npins = 0, id = 0; + + /* give vertices matrix indices and count pins */ + for (v = chart->verts; v; v = v->nextlink) { + if (v->flag & PVERT_PIN) { + npins++; + if (v->flag & PVERT_SELECT) + select = P_TRUE; + } + + if (!(v->flag & PVERT_SELECT)) + deselect = P_TRUE; + } + + if ((live && (!select || !deselect)) || (npins == 1)) { + chart->u.lscm.context = NULL; + } + else { #if 0 - p_chart_simplify_compute(chart); - p_chart_topological_sanity_check(chart); + p_chart_simplify_compute(chart); + p_chart_topological_sanity_check(chart); #endif - if (abf) { - if (!p_chart_abf_solve(chart)) - param_warning("ABF solving failed: falling back to LSCM.\n"); - } + if (abf) { + if (!p_chart_abf_solve(chart)) + param_warning("ABF solving failed: falling back to LSCM.\n"); + } - if (npins <= 1) { - /* not enough pins, lets find some ourself */ - PEdge *outer; + if (npins <= 1) { + /* not enough pins, lets find some ourself */ + PEdge *outer; - p_chart_boundaries(chart, NULL, &outer); + p_chart_boundaries(chart, NULL, &outer); - /* outer can be NULL with non-finite coords. */ - if (!(outer && p_chart_symmetry_pins(chart, outer, &pin1, &pin2))) { - p_chart_extrema_verts(chart, &pin1, &pin2); - } + /* outer can be NULL with non-finite coords. */ + if (!(outer && p_chart_symmetry_pins(chart, outer, &pin1, &pin2))) { + p_chart_extrema_verts(chart, &pin1, &pin2); + } - chart->u.lscm.pin1 = pin1; - chart->u.lscm.pin2 = pin2; - } + chart->u.lscm.pin1 = pin1; + chart->u.lscm.pin2 = pin2; + } - for (v = chart->verts; v; v = v->nextlink) - v->u.id = id++; + for (v = chart->verts; v; v = v->nextlink) + v->u.id = id++; - chart->u.lscm.context = EIG_linear_least_squares_solver_new(2 * chart->nfaces, 2 * chart->nverts, 1); - } + chart->u.lscm.context = EIG_linear_least_squares_solver_new( + 2 * chart->nfaces, 2 * chart->nverts, 1); + } } static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart) { - LinearSolver *context = chart->u.lscm.context; - PVert *v, *pin1 = chart->u.lscm.pin1, *pin2 = chart->u.lscm.pin2; - PFace *f; - float *alpha = chart->u.lscm.abf_alpha; - float area_pinned_up, area_pinned_down; - bool flip_faces; - int row; + LinearSolver *context = chart->u.lscm.context; + PVert *v, *pin1 = chart->u.lscm.pin1, *pin2 = chart->u.lscm.pin2; + PFace *f; + float *alpha = chart->u.lscm.abf_alpha; + float area_pinned_up, area_pinned_down; + bool flip_faces; + int row; #if 0 - /* TODO: make loading pins work for simplify/complexify. */ + /* TODO: make loading pins work for simplify/complexify. */ #endif - for (v = chart->verts; v; v = v->nextlink) - if (v->flag & PVERT_PIN) - p_vert_load_pin_select_uvs(handle, v); /* reload for live */ - - if (chart->u.lscm.pin1) { - EIG_linear_solver_variable_lock(context, 2 * pin1->u.id); - EIG_linear_solver_variable_lock(context, 2 * pin1->u.id + 1); - EIG_linear_solver_variable_lock(context, 2 * pin2->u.id); - EIG_linear_solver_variable_lock(context, 2 * pin2->u.id + 1); - - EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id, pin1->uv[0]); - EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id + 1, pin1->uv[1]); - EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id, pin2->uv[0]); - EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id + 1, pin2->uv[1]); - } - else { - /* set and lock the pins */ - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_PIN) { - EIG_linear_solver_variable_lock(context, 2 * v->u.id); - EIG_linear_solver_variable_lock(context, 2 * v->u.id + 1); - - EIG_linear_solver_variable_set(context, 0, 2 * v->u.id, v->uv[0]); - EIG_linear_solver_variable_set(context, 0, 2 * v->u.id + 1, v->uv[1]); - } - } - } - - /* detect up direction based on pinned vertices */ - area_pinned_up = 0.0f; - area_pinned_down = 0.0f; - - for (f = chart->faces; f; f = f->nextlink) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - if ((v1->flag & PVERT_PIN) && (v2->flag & PVERT_PIN) && (v3->flag & PVERT_PIN)) { - float area = p_face_uv_area_signed(f); - - if (area > 0.0f) - area_pinned_up += area; - else - area_pinned_down -= area; - } - } - - flip_faces = (area_pinned_down > area_pinned_up); - - /* construct matrix */ - - row = 0; - for (f = chart->faces; f; f = f->nextlink) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - float a1, a2, a3, ratio, cosine, sine; - float sina1, sina2, sina3, sinmax; - - if (alpha) { - /* use abf angles if passed on */ - a1 = *(alpha++); - a2 = *(alpha++); - a3 = *(alpha++); - } - else - p_face_angles(f, &a1, &a2, &a3); - - if (flip_faces) { - SWAP(float, a2, a3); - SWAP(PEdge *, e2, e3); - SWAP(PVert *, v2, v3); - } - - sina1 = sinf(a1); - sina2 = sinf(a2); - sina3 = sinf(a3); - - sinmax = max_fff(sina1, sina2, sina3); - - /* shift vertices to find most stable order */ - if (sina3 != sinmax) { - SHIFT3(PVert *, v1, v2, v3); - SHIFT3(float, a1, a2, a3); - SHIFT3(float, sina1, sina2, sina3); - - if (sina2 == sinmax) { - SHIFT3(PVert *, v1, v2, v3); - SHIFT3(float, a1, a2, a3); - SHIFT3(float, sina1, sina2, sina3); - } - } - - /* angle based lscm formulation */ - ratio = (sina3 == 0.0f) ? 1.0f : sina2 / sina3; - cosine = cosf(a1) * ratio; - sine = sina1 * ratio; - - EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, cosine - 1.0f); - EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, -sine); - EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -cosine); - EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, sine); - EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id, 1.0); - row++; - - EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, sine); - EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, cosine - 1.0f); - EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -sine); - EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, -cosine); - EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id + 1, 1.0); - row++; - } - - if (EIG_linear_solver_solve(context)) { - p_chart_lscm_load_solution(chart); - return P_TRUE; - } - else { - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] = 0.0f; - v->uv[1] = 0.0f; - } - } - - return P_FALSE; + for (v = chart->verts; v; v = v->nextlink) + if (v->flag & PVERT_PIN) + p_vert_load_pin_select_uvs(handle, v); /* reload for live */ + + if (chart->u.lscm.pin1) { + EIG_linear_solver_variable_lock(context, 2 * pin1->u.id); + EIG_linear_solver_variable_lock(context, 2 * pin1->u.id + 1); + EIG_linear_solver_variable_lock(context, 2 * pin2->u.id); + EIG_linear_solver_variable_lock(context, 2 * pin2->u.id + 1); + + EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id, pin1->uv[0]); + EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id + 1, pin1->uv[1]); + EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id, pin2->uv[0]); + EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id + 1, pin2->uv[1]); + } + else { + /* set and lock the pins */ + for (v = chart->verts; v; v = v->nextlink) { + if (v->flag & PVERT_PIN) { + EIG_linear_solver_variable_lock(context, 2 * v->u.id); + EIG_linear_solver_variable_lock(context, 2 * v->u.id + 1); + + EIG_linear_solver_variable_set(context, 0, 2 * v->u.id, v->uv[0]); + EIG_linear_solver_variable_set(context, 0, 2 * v->u.id + 1, v->uv[1]); + } + } + } + + /* detect up direction based on pinned vertices */ + area_pinned_up = 0.0f; + area_pinned_down = 0.0f; + + for (f = chart->faces; f; f = f->nextlink) { + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + + if ((v1->flag & PVERT_PIN) && (v2->flag & PVERT_PIN) && (v3->flag & PVERT_PIN)) { + float area = p_face_uv_area_signed(f); + + if (area > 0.0f) + area_pinned_up += area; + else + area_pinned_down -= area; + } + } + + flip_faces = (area_pinned_down > area_pinned_up); + + /* construct matrix */ + + row = 0; + for (f = chart->faces; f; f = f->nextlink) { + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + float a1, a2, a3, ratio, cosine, sine; + float sina1, sina2, sina3, sinmax; + + if (alpha) { + /* use abf angles if passed on */ + a1 = *(alpha++); + a2 = *(alpha++); + a3 = *(alpha++); + } + else + p_face_angles(f, &a1, &a2, &a3); + + if (flip_faces) { + SWAP(float, a2, a3); + SWAP(PEdge *, e2, e3); + SWAP(PVert *, v2, v3); + } + + sina1 = sinf(a1); + sina2 = sinf(a2); + sina3 = sinf(a3); + + sinmax = max_fff(sina1, sina2, sina3); + + /* shift vertices to find most stable order */ + if (sina3 != sinmax) { + SHIFT3(PVert *, v1, v2, v3); + SHIFT3(float, a1, a2, a3); + SHIFT3(float, sina1, sina2, sina3); + + if (sina2 == sinmax) { + SHIFT3(PVert *, v1, v2, v3); + SHIFT3(float, a1, a2, a3); + SHIFT3(float, sina1, sina2, sina3); + } + } + + /* angle based lscm formulation */ + ratio = (sina3 == 0.0f) ? 1.0f : sina2 / sina3; + cosine = cosf(a1) * ratio; + sine = sina1 * ratio; + + EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, cosine - 1.0f); + EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, -sine); + EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -cosine); + EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, sine); + EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id, 1.0); + row++; + + EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, sine); + EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, cosine - 1.0f); + EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -sine); + EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, -cosine); + EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id + 1, 1.0); + row++; + } + + if (EIG_linear_solver_solve(context)) { + p_chart_lscm_load_solution(chart); + return P_TRUE; + } + else { + for (v = chart->verts; v; v = v->nextlink) { + v->uv[0] = 0.0f; + v->uv[1] = 0.0f; + } + } + + return P_FALSE; } static void p_chart_lscm_end(PChart *chart) { - if (chart->u.lscm.context) - EIG_linear_solver_delete(chart->u.lscm.context); + if (chart->u.lscm.context) + EIG_linear_solver_delete(chart->u.lscm.context); - if (chart->u.lscm.abf_alpha) { - MEM_freeN(chart->u.lscm.abf_alpha); - chart->u.lscm.abf_alpha = NULL; - } + if (chart->u.lscm.abf_alpha) { + MEM_freeN(chart->u.lscm.abf_alpha); + chart->u.lscm.abf_alpha = NULL; + } - chart->u.lscm.context = NULL; - chart->u.lscm.pin1 = NULL; - chart->u.lscm.pin2 = NULL; + chart->u.lscm.context = NULL; + chart->u.lscm.pin1 = NULL; + chart->u.lscm.pin2 = NULL; } /* Stretch */ @@ -3227,386 +3255,386 @@ static void p_chart_lscm_end(PChart *chart) static void p_stretch_pin_boundary(PChart *chart) { - PVert *v; + PVert *v; - for (v = chart->verts; v; v = v->nextlink) - if (v->edge->pair == NULL) - v->flag |= PVERT_PIN; - else - v->flag &= ~PVERT_PIN; + for (v = chart->verts; v; v = v->nextlink) + if (v->edge->pair == NULL) + v->flag |= PVERT_PIN; + else + v->flag &= ~PVERT_PIN; } static float p_face_stretch(PFace *f) { - float T, w, tmp[3]; - float Ps[3], Pt[3]; - float a, c, area; - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; + float T, w, tmp[3]; + float Ps[3], Pt[3]; + float a, c, area; + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - area = p_face_uv_area_signed(f); + area = p_face_uv_area_signed(f); - if (area <= 0.0f) /* flipped face -> infinite stretch */ - return 1e10f; + if (area <= 0.0f) /* flipped face -> infinite stretch */ + return 1e10f; - w = 1.0f / (2.0f * area); + w = 1.0f / (2.0f * area); - /* compute derivatives */ - copy_v3_v3(Ps, v1->co); - mul_v3_fl(Ps, (v2->uv[1] - v3->uv[1])); + /* compute derivatives */ + copy_v3_v3(Ps, v1->co); + mul_v3_fl(Ps, (v2->uv[1] - v3->uv[1])); - copy_v3_v3(tmp, v2->co); - mul_v3_fl(tmp, (v3->uv[1] - v1->uv[1])); - add_v3_v3(Ps, tmp); + copy_v3_v3(tmp, v2->co); + mul_v3_fl(tmp, (v3->uv[1] - v1->uv[1])); + add_v3_v3(Ps, tmp); - copy_v3_v3(tmp, v3->co); - mul_v3_fl(tmp, (v1->uv[1] - v2->uv[1])); - add_v3_v3(Ps, tmp); + copy_v3_v3(tmp, v3->co); + mul_v3_fl(tmp, (v1->uv[1] - v2->uv[1])); + add_v3_v3(Ps, tmp); - mul_v3_fl(Ps, w); + mul_v3_fl(Ps, w); - copy_v3_v3(Pt, v1->co); - mul_v3_fl(Pt, (v3->uv[0] - v2->uv[0])); + copy_v3_v3(Pt, v1->co); + mul_v3_fl(Pt, (v3->uv[0] - v2->uv[0])); - copy_v3_v3(tmp, v2->co); - mul_v3_fl(tmp, (v1->uv[0] - v3->uv[0])); - add_v3_v3(Pt, tmp); + copy_v3_v3(tmp, v2->co); + mul_v3_fl(tmp, (v1->uv[0] - v3->uv[0])); + add_v3_v3(Pt, tmp); - copy_v3_v3(tmp, v3->co); - mul_v3_fl(tmp, (v2->uv[0] - v1->uv[0])); - add_v3_v3(Pt, tmp); + copy_v3_v3(tmp, v3->co); + mul_v3_fl(tmp, (v2->uv[0] - v1->uv[0])); + add_v3_v3(Pt, tmp); - mul_v3_fl(Pt, w); + mul_v3_fl(Pt, w); - /* Sander Tensor */ - a = dot_v3v3(Ps, Ps); - c = dot_v3v3(Pt, Pt); + /* Sander Tensor */ + a = dot_v3v3(Ps, Ps); + c = dot_v3v3(Pt, Pt); - T = sqrtf(0.5f * (a + c)); - if (f->flag & PFACE_FILLED) - T *= 0.2f; + T = sqrtf(0.5f * (a + c)); + if (f->flag & PFACE_FILLED) + T *= 0.2f; - return T; + return T; } static float p_stretch_compute_vertex(PVert *v) { - PEdge *e = v->edge; - float sum = 0.0f; + PEdge *e = v->edge; + float sum = 0.0f; - do { - sum += p_face_stretch(e->face); - e = p_wheel_edge_next(e); - } while (e && e != (v->edge)); + do { + sum += p_face_stretch(e->face); + e = p_wheel_edge_next(e); + } while (e && e != (v->edge)); - return sum; + return sum; } static void p_chart_stretch_minimize(PChart *chart, RNG *rng) { - PVert *v; - PEdge *e; - int j, nedges; - float orig_stretch, low, stretch_low, high, stretch_high, mid, stretch; - float orig_uv[2], dir[2], random_angle, trusted_radius; - - for (v = chart->verts; v; v = v->nextlink) { - if ((v->flag & PVERT_PIN) || !(v->flag & PVERT_SELECT)) - continue; - - orig_stretch = p_stretch_compute_vertex(v); - orig_uv[0] = v->uv[0]; - orig_uv[1] = v->uv[1]; - - /* move vertex in a random direction */ - trusted_radius = 0.0f; - nedges = 0; - e = v->edge; - - do { - trusted_radius += p_edge_uv_length(e); - nedges++; - - e = p_wheel_edge_next(e); - } while (e && e != (v->edge)); - - trusted_radius /= 2 * nedges; - - random_angle = BLI_rng_get_float(rng) * 2.0f * (float)M_PI; - dir[0] = trusted_radius * cosf(random_angle); - dir[1] = trusted_radius * sinf(random_angle); - - /* calculate old and new stretch */ - low = 0; - stretch_low = orig_stretch; - - add_v2_v2v2(v->uv, orig_uv, dir); - high = 1; - stretch = stretch_high = p_stretch_compute_vertex(v); - - /* binary search for lowest stretch position */ - for (j = 0; j < P_STRETCH_ITER; j++) { - mid = 0.5f * (low + high); - v->uv[0] = orig_uv[0] + mid * dir[0]; - v->uv[1] = orig_uv[1] + mid * dir[1]; - stretch = p_stretch_compute_vertex(v); - - if (stretch_low < stretch_high) { - high = mid; - stretch_high = stretch; - } - else { - low = mid; - stretch_low = stretch; - } - } - - /* no luck, stretch has increased, reset to old values */ - if (stretch >= orig_stretch) - copy_v2_v2(v->uv, orig_uv); - } + PVert *v; + PEdge *e; + int j, nedges; + float orig_stretch, low, stretch_low, high, stretch_high, mid, stretch; + float orig_uv[2], dir[2], random_angle, trusted_radius; + + for (v = chart->verts; v; v = v->nextlink) { + if ((v->flag & PVERT_PIN) || !(v->flag & PVERT_SELECT)) + continue; + + orig_stretch = p_stretch_compute_vertex(v); + orig_uv[0] = v->uv[0]; + orig_uv[1] = v->uv[1]; + + /* move vertex in a random direction */ + trusted_radius = 0.0f; + nedges = 0; + e = v->edge; + + do { + trusted_radius += p_edge_uv_length(e); + nedges++; + + e = p_wheel_edge_next(e); + } while (e && e != (v->edge)); + + trusted_radius /= 2 * nedges; + + random_angle = BLI_rng_get_float(rng) * 2.0f * (float)M_PI; + dir[0] = trusted_radius * cosf(random_angle); + dir[1] = trusted_radius * sinf(random_angle); + + /* calculate old and new stretch */ + low = 0; + stretch_low = orig_stretch; + + add_v2_v2v2(v->uv, orig_uv, dir); + high = 1; + stretch = stretch_high = p_stretch_compute_vertex(v); + + /* binary search for lowest stretch position */ + for (j = 0; j < P_STRETCH_ITER; j++) { + mid = 0.5f * (low + high); + v->uv[0] = orig_uv[0] + mid * dir[0]; + v->uv[1] = orig_uv[1] + mid * dir[1]; + stretch = p_stretch_compute_vertex(v); + + if (stretch_low < stretch_high) { + high = mid; + stretch_high = stretch; + } + else { + low = mid; + stretch_low = stretch; + } + } + + /* no luck, stretch has increased, reset to old values */ + if (stretch >= orig_stretch) + copy_v2_v2(v->uv, orig_uv); + } } /* Minimum area enclosing rectangle for packing */ static int p_compare_geometric_uv(const void *a, const void *b) { - const PVert *v1 = *(const PVert * const *)a; - const PVert *v2 = *(const PVert * const *)b; + const PVert *v1 = *(const PVert *const *)a; + const PVert *v2 = *(const PVert *const *)b; - if (v1->uv[0] < v2->uv[0]) - return -1; - else if (v1->uv[0] == v2->uv[0]) { - if (v1->uv[1] < v2->uv[1]) - return -1; - else if (v1->uv[1] == v2->uv[1]) - return 0; - else - return 1; - } - else - return 1; + if (v1->uv[0] < v2->uv[0]) + return -1; + else if (v1->uv[0] == v2->uv[0]) { + if (v1->uv[1] < v2->uv[1]) + return -1; + else if (v1->uv[1] == v2->uv[1]) + return 0; + else + return 1; + } + else + return 1; } static PBool p_chart_convex_hull(PChart *chart, PVert ***verts, int *nverts, int *right) { - /* Graham algorithm, taken from: - * http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117225 */ + /* Graham algorithm, taken from: + * http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117225 */ - PEdge *be, *e; - int npoints = 0, i, ulen, llen; - PVert **U, **L, **points, **p; + PEdge *be, *e; + int npoints = 0, i, ulen, llen; + PVert **U, **L, **points, **p; - p_chart_boundaries(chart, NULL, &be); + p_chart_boundaries(chart, NULL, &be); - if (!be) - return P_FALSE; + if (!be) + return P_FALSE; - e = be; - do { - npoints++; - e = p_boundary_edge_next(e); - } while (e != be); + e = be; + do { + npoints++; + e = p_boundary_edge_next(e); + } while (e != be); - p = points = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints * 2, "PCHullpoints"); - U = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints, "PCHullU"); - L = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints, "PCHullL"); + p = points = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints * 2, "PCHullpoints"); + U = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints, "PCHullU"); + L = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints, "PCHullL"); - e = be; - do { - *p = e->vert; - p++; - e = p_boundary_edge_next(e); - } while (e != be); + e = be; + do { + *p = e->vert; + p++; + e = p_boundary_edge_next(e); + } while (e != be); - qsort(points, npoints, sizeof(PVert *), p_compare_geometric_uv); + qsort(points, npoints, sizeof(PVert *), p_compare_geometric_uv); - ulen = llen = 0; - for (p = points, i = 0; i < npoints; i++, p++) { - while ((ulen > 1) && (p_area_signed(U[ulen - 2]->uv, (*p)->uv, U[ulen - 1]->uv) <= 0)) - ulen--; - while ((llen > 1) && (p_area_signed(L[llen - 2]->uv, (*p)->uv, L[llen - 1]->uv) >= 0)) - llen--; + ulen = llen = 0; + for (p = points, i = 0; i < npoints; i++, p++) { + while ((ulen > 1) && (p_area_signed(U[ulen - 2]->uv, (*p)->uv, U[ulen - 1]->uv) <= 0)) + ulen--; + while ((llen > 1) && (p_area_signed(L[llen - 2]->uv, (*p)->uv, L[llen - 1]->uv) >= 0)) + llen--; - U[ulen] = *p; - ulen++; - L[llen] = *p; - llen++; - } + U[ulen] = *p; + ulen++; + L[llen] = *p; + llen++; + } - npoints = 0; - for (p = points, i = 0; i < ulen; i++, p++, npoints++) - *p = U[i]; + npoints = 0; + for (p = points, i = 0; i < ulen; i++, p++, npoints++) + *p = U[i]; - /* the first and last point in L are left out, since they are also in U */ - for (i = llen - 2; i > 0; i--, p++, npoints++) - *p = L[i]; + /* the first and last point in L are left out, since they are also in U */ + for (i = llen - 2; i > 0; i--, p++, npoints++) + *p = L[i]; - *verts = points; - *nverts = npoints; - *right = ulen - 1; + *verts = points; + *nverts = npoints; + *right = ulen - 1; - MEM_freeN(U); - MEM_freeN(L); + MEM_freeN(U); + MEM_freeN(L); - return P_TRUE; + return P_TRUE; } static float p_rectangle_area(float *p1, float *dir, float *p2, float *p3, float *p4) { - /* given 4 points on the rectangle edges and the direction of on edge, - * compute the area of the rectangle */ + /* given 4 points on the rectangle edges and the direction of on edge, + * compute the area of the rectangle */ - float orthodir[2], corner1[2], corner2[2], corner3[2]; + float orthodir[2], corner1[2], corner2[2], corner3[2]; - orthodir[0] = dir[1]; - orthodir[1] = -dir[0]; + orthodir[0] = dir[1]; + orthodir[1] = -dir[0]; - if (!p_intersect_line_2d_dir(p1, dir, p2, orthodir, corner1)) - return 1e10; + if (!p_intersect_line_2d_dir(p1, dir, p2, orthodir, corner1)) + return 1e10; - if (!p_intersect_line_2d_dir(p1, dir, p4, orthodir, corner2)) - return 1e10; + if (!p_intersect_line_2d_dir(p1, dir, p4, orthodir, corner2)) + return 1e10; - if (!p_intersect_line_2d_dir(p3, dir, p4, orthodir, corner3)) - return 1e10; + if (!p_intersect_line_2d_dir(p3, dir, p4, orthodir, corner3)) + return 1e10; - return len_v2v2(corner1, corner2) * len_v2v2(corner2, corner3); + return len_v2v2(corner1, corner2) * len_v2v2(corner2, corner3); } static float p_chart_minimum_area_angle(PChart *chart) { - /* minimum area enclosing rectangle with rotating calipers, info: - * http://cgm.cs.mcgill.ca/~orm/maer.html */ - - float rotated, minarea, minangle, area, len; - float *angles, miny, maxy, v[2], a[4], mina; - int npoints, right, i_min, i_max, i, idx[4], nextidx; - PVert **points, *p1, *p2, *p3, *p4, *p1n; - - /* compute convex hull */ - if (!p_chart_convex_hull(chart, &points, &npoints, &right)) - return 0.0; - - /* find left/top/right/bottom points, and compute angle for each point */ - angles = MEM_mallocN(sizeof(float) * npoints, "PMinAreaAngles"); - - i_min = i_max = 0; - miny = 1e10; - maxy = -1e10; + /* minimum area enclosing rectangle with rotating calipers, info: + * http://cgm.cs.mcgill.ca/~orm/maer.html */ + + float rotated, minarea, minangle, area, len; + float *angles, miny, maxy, v[2], a[4], mina; + int npoints, right, i_min, i_max, i, idx[4], nextidx; + PVert **points, *p1, *p2, *p3, *p4, *p1n; + + /* compute convex hull */ + if (!p_chart_convex_hull(chart, &points, &npoints, &right)) + return 0.0; + + /* find left/top/right/bottom points, and compute angle for each point */ + angles = MEM_mallocN(sizeof(float) * npoints, "PMinAreaAngles"); + + i_min = i_max = 0; + miny = 1e10; + maxy = -1e10; - for (i = 0; i < npoints; i++) { - p1 = (i == 0) ? points[npoints - 1] : points[i - 1]; - p2 = points[i]; - p3 = (i == npoints - 1) ? points[0] : points[i + 1]; + for (i = 0; i < npoints; i++) { + p1 = (i == 0) ? points[npoints - 1] : points[i - 1]; + p2 = points[i]; + p3 = (i == npoints - 1) ? points[0] : points[i + 1]; - angles[i] = (float)M_PI - p_vec2_angle(p1->uv, p2->uv, p3->uv); + angles[i] = (float)M_PI - p_vec2_angle(p1->uv, p2->uv, p3->uv); - if (points[i]->uv[1] < miny) { - miny = points[i]->uv[1]; - i_min = i; - } - if (points[i]->uv[1] > maxy) { - maxy = points[i]->uv[1]; - i_max = i; - } - } + if (points[i]->uv[1] < miny) { + miny = points[i]->uv[1]; + i_min = i; + } + if (points[i]->uv[1] > maxy) { + maxy = points[i]->uv[1]; + i_max = i; + } + } - /* left, top, right, bottom */ - idx[0] = 0; - idx[1] = i_max; - idx[2] = right; - idx[3] = i_min; + /* left, top, right, bottom */ + idx[0] = 0; + idx[1] = i_max; + idx[2] = right; + idx[3] = i_min; - v[0] = points[idx[0]]->uv[0]; - v[1] = points[idx[0]]->uv[1] + 1.0f; - a[0] = p_vec2_angle(points[(idx[0] + 1) % npoints]->uv, points[idx[0]]->uv, v); + v[0] = points[idx[0]]->uv[0]; + v[1] = points[idx[0]]->uv[1] + 1.0f; + a[0] = p_vec2_angle(points[(idx[0] + 1) % npoints]->uv, points[idx[0]]->uv, v); - v[0] = points[idx[1]]->uv[0] + 1.0f; - v[1] = points[idx[1]]->uv[1]; - a[1] = p_vec2_angle(points[(idx[1] + 1) % npoints]->uv, points[idx[1]]->uv, v); + v[0] = points[idx[1]]->uv[0] + 1.0f; + v[1] = points[idx[1]]->uv[1]; + a[1] = p_vec2_angle(points[(idx[1] + 1) % npoints]->uv, points[idx[1]]->uv, v); - v[0] = points[idx[2]]->uv[0]; - v[1] = points[idx[2]]->uv[1] - 1.0f; - a[2] = p_vec2_angle(points[(idx[2] + 1) % npoints]->uv, points[idx[2]]->uv, v); + v[0] = points[idx[2]]->uv[0]; + v[1] = points[idx[2]]->uv[1] - 1.0f; + a[2] = p_vec2_angle(points[(idx[2] + 1) % npoints]->uv, points[idx[2]]->uv, v); - v[0] = points[idx[3]]->uv[0] - 1.0f; - v[1] = points[idx[3]]->uv[1]; - a[3] = p_vec2_angle(points[(idx[3] + 1) % npoints]->uv, points[idx[3]]->uv, v); + v[0] = points[idx[3]]->uv[0] - 1.0f; + v[1] = points[idx[3]]->uv[1]; + a[3] = p_vec2_angle(points[(idx[3] + 1) % npoints]->uv, points[idx[3]]->uv, v); - /* 4 rotating calipers */ + /* 4 rotating calipers */ - rotated = 0.0; - minarea = 1e10; - minangle = 0.0; + rotated = 0.0; + minarea = 1e10; + minangle = 0.0; - while (rotated <= (float)(M_PI / 2.0)) { /* INVESTIGATE: how far to rotate? */ - /* rotate with the smallest angle */ - i_min = 0; - mina = 1e10; + while (rotated <= (float)(M_PI / 2.0)) { /* INVESTIGATE: how far to rotate? */ + /* rotate with the smallest angle */ + i_min = 0; + mina = 1e10; - for (i = 0; i < 4; i++) - if (a[i] < mina) { - mina = a[i]; - i_min = i; - } + for (i = 0; i < 4; i++) + if (a[i] < mina) { + mina = a[i]; + i_min = i; + } - rotated += mina; - nextidx = (idx[i_min] + 1) % npoints; + rotated += mina; + nextidx = (idx[i_min] + 1) % npoints; - a[i_min] = angles[nextidx]; - a[(i_min + 1) % 4] = a[(i_min + 1) % 4] - mina; - a[(i_min + 2) % 4] = a[(i_min + 2) % 4] - mina; - a[(i_min + 3) % 4] = a[(i_min + 3) % 4] - mina; + a[i_min] = angles[nextidx]; + a[(i_min + 1) % 4] = a[(i_min + 1) % 4] - mina; + a[(i_min + 2) % 4] = a[(i_min + 2) % 4] - mina; + a[(i_min + 3) % 4] = a[(i_min + 3) % 4] - mina; - /* compute area */ - p1 = points[idx[i_min]]; - p1n = points[nextidx]; - p2 = points[idx[(i_min + 1) % 4]]; - p3 = points[idx[(i_min + 2) % 4]]; - p4 = points[idx[(i_min + 3) % 4]]; + /* compute area */ + p1 = points[idx[i_min]]; + p1n = points[nextidx]; + p2 = points[idx[(i_min + 1) % 4]]; + p3 = points[idx[(i_min + 2) % 4]]; + p4 = points[idx[(i_min + 3) % 4]]; - len = len_v2v2(p1->uv, p1n->uv); + len = len_v2v2(p1->uv, p1n->uv); - if (len > 0.0f) { - len = 1.0f / len; - v[0] = (p1n->uv[0] - p1->uv[0]) * len; - v[1] = (p1n->uv[1] - p1->uv[1]) * len; + if (len > 0.0f) { + len = 1.0f / len; + v[0] = (p1n->uv[0] - p1->uv[0]) * len; + v[1] = (p1n->uv[1] - p1->uv[1]) * len; - area = p_rectangle_area(p1->uv, v, p2->uv, p3->uv, p4->uv); + area = p_rectangle_area(p1->uv, v, p2->uv, p3->uv, p4->uv); - /* remember smallest area */ - if (area < minarea) { - minarea = area; - minangle = rotated; - } - } + /* remember smallest area */ + if (area < minarea) { + minarea = area; + minangle = rotated; + } + } - idx[i_min] = nextidx; - } + idx[i_min] = nextidx; + } - /* try keeping rotation as small as possible */ - if (minangle > (float)(M_PI / 4)) - minangle -= (float)(M_PI / 2.0); + /* try keeping rotation as small as possible */ + if (minangle > (float)(M_PI / 4)) + minangle -= (float)(M_PI / 2.0); - MEM_freeN(angles); - MEM_freeN(points); - - return minangle; + MEM_freeN(angles); + MEM_freeN(points); + + return minangle; } static void p_chart_rotate_minimum_area(PChart *chart) { - float angle = p_chart_minimum_area_angle(chart); - float sine = sinf(angle); - float cosine = cosf(angle); - PVert *v; + float angle = p_chart_minimum_area_angle(chart); + float sine = sinf(angle); + float cosine = cosf(angle); + PVert *v; - for (v = chart->verts; v; v = v->nextlink) { - float oldu = v->uv[0], oldv = v->uv[1]; - v->uv[0] = cosine * oldu - sine * oldv; - v->uv[1] = sine * oldu + cosine * oldv; - } + for (v = chart->verts; v; v = v->nextlink) { + float oldu = v->uv[0], oldv = v->uv[1]; + v->uv[0] = cosine * oldu - sine * oldv; + v->uv[1] = sine * oldu + cosine * oldv; + } } /* Area Smoothing */ @@ -3614,1083 +3642,1110 @@ static void p_chart_rotate_minimum_area(PChart *chart) /* 2d bsp tree for inverse mapping - that's a bit silly */ typedef struct SmoothTriangle { - float co1[2], co2[2], co3[2]; - float oco1[2], oco2[2], oco3[2]; + float co1[2], co2[2], co3[2]; + float oco1[2], oco2[2], oco3[2]; } SmoothTriangle; typedef struct SmoothNode { - struct SmoothNode *c1, *c2; - SmoothTriangle **tri; - float split; - int axis, ntri; + struct SmoothNode *c1, *c2; + SmoothTriangle **tri; + float split; + int axis, ntri; } SmoothNode; -static void p_barycentric_2d(const float v1[2], const float v2[2], const float v3[2], const float p[2], float b[3]) +static void p_barycentric_2d( + const float v1[2], const float v2[2], const float v3[2], const float p[2], float b[3]) { - float a[2], c[2], h[2], div; + float a[2], c[2], h[2], div; - a[0] = v2[0] - v1[0]; - a[1] = v2[1] - v1[1]; - c[0] = v3[0] - v1[0]; - c[1] = v3[1] - v1[1]; + a[0] = v2[0] - v1[0]; + a[1] = v2[1] - v1[1]; + c[0] = v3[0] - v1[0]; + c[1] = v3[1] - v1[1]; - div = a[0] * c[1] - a[1] * c[0]; + div = a[0] * c[1] - a[1] * c[0]; - if (div == 0.0f) { - b[0] = 1.0f / 3.0f; - b[1] = 1.0f / 3.0f; - b[2] = 1.0f / 3.0f; - } - else { - h[0] = p[0] - v1[0]; - h[1] = p[1] - v1[1]; + if (div == 0.0f) { + b[0] = 1.0f / 3.0f; + b[1] = 1.0f / 3.0f; + b[2] = 1.0f / 3.0f; + } + else { + h[0] = p[0] - v1[0]; + h[1] = p[1] - v1[1]; - div = 1.0f / div; + div = 1.0f / div; - b[1] = (h[0] * c[1] - h[1] * c[0]) * div; - b[2] = (a[0] * h[1] - a[1] * h[0]) * div; - b[0] = 1.0f - b[1] - b[2]; - } + b[1] = (h[0] * c[1] - h[1] * c[0]) * div; + b[2] = (a[0] * h[1] - a[1] * h[0]) * div; + b[0] = 1.0f - b[1] - b[2]; + } } static PBool p_triangle_inside(SmoothTriangle *t, float co[2]) { - float b[3]; + float b[3]; - p_barycentric_2d(t->co1, t->co2, t->co3, co, b); + p_barycentric_2d(t->co1, t->co2, t->co3, co, b); - if ((b[0] >= 0.0f) && (b[1] >= 0.0f) && (b[2] >= 0.0f)) { - co[0] = t->oco1[0] * b[0] + t->oco2[0] * b[1] + t->oco3[0] * b[2]; - co[1] = t->oco1[1] * b[0] + t->oco2[1] * b[1] + t->oco3[1] * b[2]; - return P_TRUE; - } + if ((b[0] >= 0.0f) && (b[1] >= 0.0f) && (b[2] >= 0.0f)) { + co[0] = t->oco1[0] * b[0] + t->oco2[0] * b[1] + t->oco3[0] * b[2]; + co[1] = t->oco1[1] * b[0] + t->oco2[1] * b[1] + t->oco3[1] * b[2]; + return P_TRUE; + } - return P_FALSE; + return P_FALSE; } -static SmoothNode *p_node_new(MemArena *arena, SmoothTriangle **tri, int ntri, float *bmin, float *bmax, int depth) +static SmoothNode *p_node_new( + MemArena *arena, SmoothTriangle **tri, int ntri, float *bmin, float *bmax, int depth) { - SmoothNode *node = BLI_memarena_alloc(arena, sizeof(*node)); - int axis, i, t1size = 0, t2size = 0; - float split, /* mi, */ /* UNUSED */ mx; - SmoothTriangle **t1, **t2, *t; + SmoothNode *node = BLI_memarena_alloc(arena, sizeof(*node)); + int axis, i, t1size = 0, t2size = 0; + float split, /* mi, */ /* UNUSED */ mx; + SmoothTriangle **t1, **t2, *t; - node->tri = tri; - node->ntri = ntri; + node->tri = tri; + node->ntri = ntri; - if (ntri <= 10 || depth >= 15) - return node; + if (ntri <= 10 || depth >= 15) + return node; - t1 = MEM_mallocN(sizeof(*t1) * ntri, "PNodeTri1"); - t2 = MEM_mallocN(sizeof(*t2) * ntri, "PNodeTri1"); + t1 = MEM_mallocN(sizeof(*t1) * ntri, "PNodeTri1"); + t2 = MEM_mallocN(sizeof(*t2) * ntri, "PNodeTri1"); - axis = (bmax[0] - bmin[0] > bmax[1] - bmin[1]) ? 0 : 1; - split = 0.5f * (bmin[axis] + bmax[axis]); + axis = (bmax[0] - bmin[0] > bmax[1] - bmin[1]) ? 0 : 1; + split = 0.5f * (bmin[axis] + bmax[axis]); - for (i = 0; i < ntri; i++) { - t = tri[i]; + for (i = 0; i < ntri; i++) { + t = tri[i]; - if ((t->co1[axis] <= split) || (t->co2[axis] <= split) || (t->co3[axis] <= split)) { - t1[t1size] = t; - t1size++; - } - if ((t->co1[axis] >= split) || (t->co2[axis] >= split) || (t->co3[axis] >= split)) { - t2[t2size] = t; - t2size++; - } - } + if ((t->co1[axis] <= split) || (t->co2[axis] <= split) || (t->co3[axis] <= split)) { + t1[t1size] = t; + t1size++; + } + if ((t->co1[axis] >= split) || (t->co2[axis] >= split) || (t->co3[axis] >= split)) { + t2[t2size] = t; + t2size++; + } + } - if ((t1size == t2size) && (t1size == ntri)) { - MEM_freeN(t1); - MEM_freeN(t2); - return node; - } + if ((t1size == t2size) && (t1size == ntri)) { + MEM_freeN(t1); + MEM_freeN(t2); + return node; + } - node->tri = NULL; - node->ntri = 0; - MEM_freeN(tri); + node->tri = NULL; + node->ntri = 0; + MEM_freeN(tri); - node->axis = axis; - node->split = split; + node->axis = axis; + node->split = split; - /* mi = bmin[axis]; */ /* UNUSED */ - mx = bmax[axis]; - bmax[axis] = split; - node->c1 = p_node_new(arena, t1, t1size, bmin, bmax, depth + 1); + /* mi = bmin[axis]; */ /* UNUSED */ + mx = bmax[axis]; + bmax[axis] = split; + node->c1 = p_node_new(arena, t1, t1size, bmin, bmax, depth + 1); - bmin[axis] = bmax[axis]; - bmax[axis] = mx; - node->c2 = p_node_new(arena, t2, t2size, bmin, bmax, depth + 1); + bmin[axis] = bmax[axis]; + bmax[axis] = mx; + node->c2 = p_node_new(arena, t2, t2size, bmin, bmax, depth + 1); - return node; + return node; } static void p_node_delete(SmoothNode *node) { - if (node->c1) - p_node_delete(node->c1); - if (node->c2) - p_node_delete(node->c2); - if (node->tri) - MEM_freeN(node->tri); + if (node->c1) + p_node_delete(node->c1); + if (node->c2) + p_node_delete(node->c2); + if (node->tri) + MEM_freeN(node->tri); } static PBool p_node_intersect(SmoothNode *node, float co[2]) { - int i; - - if (node->tri) { - for (i = 0; i < node->ntri; i++) - if (p_triangle_inside(node->tri[i], co)) - return P_TRUE; + int i; - return P_FALSE; - } - else { - if (co[node->axis] < node->split) - return p_node_intersect(node->c1, co); - else - return p_node_intersect(node->c2, co); - } + if (node->tri) { + for (i = 0; i < node->ntri; i++) + if (p_triangle_inside(node->tri[i], co)) + return P_TRUE; + return P_FALSE; + } + else { + if (co[node->axis] < node->split) + return p_node_intersect(node->c1, co); + else + return p_node_intersect(node->c2, co); + } } /* smoothing */ static int p_compare_float(const void *a_, const void *b_) { - const float a = *(const float *)a_; - const float b = *(const float *)b_; + const float a = *(const float *)a_; + const float b = *(const float *)b_; - if (a < b) - return -1; - else if (a == b) - return 0; - else - return 1; + if (a < b) + return -1; + else if (a == b) + return 0; + else + return 1; } static float p_smooth_median_edge_length(PChart *chart) { - PEdge *e; - float *lengths = MEM_mallocN(sizeof(chart->edges) * chart->nedges, "PMedianLength"); - float median; - int i; + PEdge *e; + float *lengths = MEM_mallocN(sizeof(chart->edges) * chart->nedges, "PMedianLength"); + float median; + int i; - /* ok, so i'm lazy */ - for (i = 0, e = chart->edges; e; e = e->nextlink, i++) - lengths[i] = p_edge_length(e); + /* ok, so i'm lazy */ + for (i = 0, e = chart->edges; e; e = e->nextlink, i++) + lengths[i] = p_edge_length(e); - qsort(lengths, i, sizeof(float), p_compare_float); + qsort(lengths, i, sizeof(float), p_compare_float); - median = lengths[i / 2]; - MEM_freeN(lengths); + median = lengths[i / 2]; + MEM_freeN(lengths); - return median; + return median; } static float p_smooth_distortion(PEdge *e, float avg2d, float avg3d) { - float len2d = p_edge_uv_length(e) * avg3d; - float len3d = p_edge_length(e) * avg2d; + float len2d = p_edge_uv_length(e) * avg3d; + float len3d = p_edge_length(e) * avg2d; - return (len3d == 0.0f) ? 0.0f : len2d / len3d; + return (len3d == 0.0f) ? 0.0f : len2d / len3d; } static void p_smooth(PChart *chart) { - PEdge *e; - PVert *v; - PFace *f; - int j, it2, maxiter2, it; - int nedges = chart->nedges, nwheel, gridx, gridy; - int edgesx, edgesy, nsize, esize, i, x, y, maxiter, totiter; - float minv[2], maxv[2], median, invmedian, avglen2d, avglen3d; - float center[2], dx, dy, *nodes, dlimit, d, *oldnodesx, *oldnodesy; - float *nodesx, *nodesy, *hedges, *vedges, climit, moved, padding; - SmoothTriangle *triangles, *t, *t2, **tri, **trip; - SmoothNode *root; - MemArena *arena; - - if (nedges == 0) - return; - - p_chart_uv_bbox(chart, minv, maxv); - median = p_smooth_median_edge_length(chart) * 0.10f; - - if (median == 0.0f) - return; - - invmedian = 1.0f / median; - - /* compute edge distortion */ - avglen2d = avglen3d = 0.0; - - for (e = chart->edges; e; e = e->nextlink) { - avglen2d += p_edge_uv_length(e); - avglen3d += p_edge_length(e); - } - - avglen2d /= nedges; - avglen3d /= nedges; - - for (v = chart->verts; v; v = v->nextlink) { - v->u.distortion = 0.0; - nwheel = 0; - - e = v->edge; - do { - v->u.distortion += p_smooth_distortion(e, avglen2d, avglen3d); - nwheel++; - - e = e->next->next->pair; - } while (e && (e != v->edge)); - - v->u.distortion /= nwheel; - } - - /* need to do excessive grid size checking still */ - center[0] = 0.5f * (minv[0] + maxv[0]); - center[1] = 0.5f * (minv[1] + maxv[1]); - - dx = 0.5f * (maxv[0] - minv[0]); - dy = 0.5f * (maxv[1] - minv[1]); - - padding = 0.15f; - dx += padding * dx + 2.0f * median; - dy += padding * dy + 2.0f * median; - - gridx = (int)(dx * invmedian); - gridy = (int)(dy * invmedian); - - minv[0] = center[0] - median * gridx; - minv[1] = center[1] - median * gridy; - maxv[0] = center[0] + median * gridx; - maxv[1] = center[1] + median * gridy; - - /* create grid */ - gridx = gridx * 2 + 1; - gridy = gridy * 2 + 1; - - if ((gridx <= 2) || (gridy <= 2)) - return; - - edgesx = gridx - 1; - edgesy = gridy - 1; - nsize = gridx * gridy; - esize = edgesx * edgesy; - - nodes = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodes"); - nodesx = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodesX"); - nodesy = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodesY"); - oldnodesx = MEM_mallocN(sizeof(float) * nsize, "PSmoothOldNodesX"); - oldnodesy = MEM_mallocN(sizeof(float) * nsize, "PSmoothOldNodesY"); - hedges = MEM_mallocN(sizeof(float) * esize, "PSmoothHEdges"); - vedges = MEM_mallocN(sizeof(float) * esize, "PSmoothVEdges"); - - if (!nodes || !nodesx || !nodesy || !oldnodesx || !oldnodesy || !hedges || !vedges) { - if (nodes) MEM_freeN(nodes); - if (nodesx) MEM_freeN(nodesx); - if (nodesy) MEM_freeN(nodesy); - if (oldnodesx) MEM_freeN(oldnodesx); - if (oldnodesy) MEM_freeN(oldnodesy); - if (hedges) MEM_freeN(hedges); - if (vedges) MEM_freeN(vedges); - - // printf("Not enough memory for area smoothing grid"); - return; - } - - for (x = 0; x < gridx; x++) { - for (y = 0; y < gridy; y++) { - i = x + y * gridx; - - nodesx[i] = minv[0] + median * x; - nodesy[i] = minv[1] + median * y; - - nodes[i] = 1.0f; - } - } - - /* embed in grid */ - for (f = chart->faces; f; f = f->nextlink) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - float fmin[2], fmax[2]; - int bx1, by1, bx2, by2; - - INIT_MINMAX2(fmin, fmax); + PEdge *e; + PVert *v; + PFace *f; + int j, it2, maxiter2, it; + int nedges = chart->nedges, nwheel, gridx, gridy; + int edgesx, edgesy, nsize, esize, i, x, y, maxiter, totiter; + float minv[2], maxv[2], median, invmedian, avglen2d, avglen3d; + float center[2], dx, dy, *nodes, dlimit, d, *oldnodesx, *oldnodesy; + float *nodesx, *nodesy, *hedges, *vedges, climit, moved, padding; + SmoothTriangle *triangles, *t, *t2, **tri, **trip; + SmoothNode *root; + MemArena *arena; + + if (nedges == 0) + return; + + p_chart_uv_bbox(chart, minv, maxv); + median = p_smooth_median_edge_length(chart) * 0.10f; + + if (median == 0.0f) + return; + + invmedian = 1.0f / median; + + /* compute edge distortion */ + avglen2d = avglen3d = 0.0; + + for (e = chart->edges; e; e = e->nextlink) { + avglen2d += p_edge_uv_length(e); + avglen3d += p_edge_length(e); + } + + avglen2d /= nedges; + avglen3d /= nedges; + + for (v = chart->verts; v; v = v->nextlink) { + v->u.distortion = 0.0; + nwheel = 0; + + e = v->edge; + do { + v->u.distortion += p_smooth_distortion(e, avglen2d, avglen3d); + nwheel++; + + e = e->next->next->pair; + } while (e && (e != v->edge)); + + v->u.distortion /= nwheel; + } + + /* need to do excessive grid size checking still */ + center[0] = 0.5f * (minv[0] + maxv[0]); + center[1] = 0.5f * (minv[1] + maxv[1]); + + dx = 0.5f * (maxv[0] - minv[0]); + dy = 0.5f * (maxv[1] - minv[1]); + + padding = 0.15f; + dx += padding * dx + 2.0f * median; + dy += padding * dy + 2.0f * median; + + gridx = (int)(dx * invmedian); + gridy = (int)(dy * invmedian); + + minv[0] = center[0] - median * gridx; + minv[1] = center[1] - median * gridy; + maxv[0] = center[0] + median * gridx; + maxv[1] = center[1] + median * gridy; + + /* create grid */ + gridx = gridx * 2 + 1; + gridy = gridy * 2 + 1; + + if ((gridx <= 2) || (gridy <= 2)) + return; + + edgesx = gridx - 1; + edgesy = gridy - 1; + nsize = gridx * gridy; + esize = edgesx * edgesy; + + nodes = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodes"); + nodesx = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodesX"); + nodesy = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodesY"); + oldnodesx = MEM_mallocN(sizeof(float) * nsize, "PSmoothOldNodesX"); + oldnodesy = MEM_mallocN(sizeof(float) * nsize, "PSmoothOldNodesY"); + hedges = MEM_mallocN(sizeof(float) * esize, "PSmoothHEdges"); + vedges = MEM_mallocN(sizeof(float) * esize, "PSmoothVEdges"); + + if (!nodes || !nodesx || !nodesy || !oldnodesx || !oldnodesy || !hedges || !vedges) { + if (nodes) + MEM_freeN(nodes); + if (nodesx) + MEM_freeN(nodesx); + if (nodesy) + MEM_freeN(nodesy); + if (oldnodesx) + MEM_freeN(oldnodesx); + if (oldnodesy) + MEM_freeN(oldnodesy); + if (hedges) + MEM_freeN(hedges); + if (vedges) + MEM_freeN(vedges); + + // printf("Not enough memory for area smoothing grid"); + return; + } + + for (x = 0; x < gridx; x++) { + for (y = 0; y < gridy; y++) { + i = x + y * gridx; + + nodesx[i] = minv[0] + median * x; + nodesy[i] = minv[1] + median * y; + + nodes[i] = 1.0f; + } + } + + /* embed in grid */ + for (f = chart->faces; f; f = f->nextlink) { + PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; + float fmin[2], fmax[2]; + int bx1, by1, bx2, by2; + + INIT_MINMAX2(fmin, fmax); + + minmax_v2v2_v2(fmin, fmax, e1->vert->uv); + minmax_v2v2_v2(fmin, fmax, e2->vert->uv); + minmax_v2v2_v2(fmin, fmax, e3->vert->uv); + + bx1 = (int)((fmin[0] - minv[0]) * invmedian); + by1 = (int)((fmin[1] - minv[1]) * invmedian); + bx2 = (int)((fmax[0] - minv[0]) * invmedian + 2); + by2 = (int)((fmax[1] - minv[1]) * invmedian + 2); + + for (x = bx1; x < bx2; x++) { + for (y = by1; y < by2; y++) { + float p[2], b[3]; + + i = x + y * gridx; + + p[0] = nodesx[i]; + p[1] = nodesy[i]; + + p_barycentric_2d(e1->vert->uv, e2->vert->uv, e3->vert->uv, p, b); + + if ((b[0] > 0.0f) && (b[1] > 0.0f) && (b[2] > 0.0f)) { + nodes[i] = e1->vert->u.distortion * b[0]; + nodes[i] += e2->vert->u.distortion * b[1]; + nodes[i] += e3->vert->u.distortion * b[2]; + } + } + } + } + + /* smooth the grid */ + maxiter = 10; + totiter = 0; + climit = 0.00001f * nsize; + + for (it = 0; it < maxiter; it++) { + moved = 0.0f; + + for (x = 0; x < edgesx; x++) { + for (y = 0; y < edgesy; y++) { + i = x + y * gridx; + j = x + y * edgesx; + + hedges[j] = (nodes[i] + nodes[i + 1]) * 0.5f; + vedges[j] = (nodes[i] + nodes[i + gridx]) * 0.5f; + + /* we do *inverse* mapping */ + hedges[j] = 1.0f / hedges[j]; + vedges[j] = 1.0f / vedges[j]; + } + } + + maxiter2 = 50; + dlimit = 0.0001f; + + for (it2 = 0; it2 < maxiter2; it2++) { + d = 0.0f; + totiter += 1; + + memcpy(oldnodesx, nodesx, sizeof(float) * nsize); + memcpy(oldnodesy, nodesy, sizeof(float) * nsize); - minmax_v2v2_v2(fmin, fmax, e1->vert->uv); - minmax_v2v2_v2(fmin, fmax, e2->vert->uv); - minmax_v2v2_v2(fmin, fmax, e3->vert->uv); - - bx1 = (int)((fmin[0] - minv[0]) * invmedian); - by1 = (int)((fmin[1] - minv[1]) * invmedian); - bx2 = (int)((fmax[0] - minv[0]) * invmedian + 2); - by2 = (int)((fmax[1] - minv[1]) * invmedian + 2); - - for (x = bx1; x < bx2; x++) { - for (y = by1; y < by2; y++) { - float p[2], b[3]; - - i = x + y * gridx; - - p[0] = nodesx[i]; - p[1] = nodesy[i]; - - p_barycentric_2d(e1->vert->uv, e2->vert->uv, e3->vert->uv, p, b); - - if ((b[0] > 0.0f) && (b[1] > 0.0f) && (b[2] > 0.0f)) { - nodes[i] = e1->vert->u.distortion * b[0]; - nodes[i] += e2->vert->u.distortion * b[1]; - nodes[i] += e3->vert->u.distortion * b[2]; - } - } - } - } - - /* smooth the grid */ - maxiter = 10; - totiter = 0; - climit = 0.00001f * nsize; - - for (it = 0; it < maxiter; it++) { - moved = 0.0f; - - for (x = 0; x < edgesx; x++) { - for (y = 0; y < edgesy; y++) { - i = x + y * gridx; - j = x + y * edgesx; - - hedges[j] = (nodes[i] + nodes[i + 1]) * 0.5f; - vedges[j] = (nodes[i] + nodes[i + gridx]) * 0.5f; - - /* we do *inverse* mapping */ - hedges[j] = 1.0f / hedges[j]; - vedges[j] = 1.0f / vedges[j]; - } - } + for (x = 1; x < gridx - 1; x++) { + for (y = 1; y < gridy - 1; y++) { + float p[2], oldp[2], sum1, sum2, diff[2], length; - maxiter2 = 50; - dlimit = 0.0001f; + i = x + gridx * y; + j = x + edgesx * y; - for (it2 = 0; it2 < maxiter2; it2++) { - d = 0.0f; - totiter += 1; + oldp[0] = oldnodesx[i]; + oldp[1] = oldnodesy[i]; - memcpy(oldnodesx, nodesx, sizeof(float) * nsize); - memcpy(oldnodesy, nodesy, sizeof(float) * nsize); + sum1 = hedges[j - 1] * oldnodesx[i - 1]; + sum1 += hedges[j] * oldnodesx[i + 1]; + sum1 += vedges[j - edgesx] * oldnodesx[i - gridx]; + sum1 += vedges[j] * oldnodesx[i + gridx]; - for (x = 1; x < gridx - 1; x++) { - for (y = 1; y < gridy - 1; y++) { - float p[2], oldp[2], sum1, sum2, diff[2], length; + sum2 = hedges[j - 1]; + sum2 += hedges[j]; + sum2 += vedges[j - edgesx]; + sum2 += vedges[j]; - i = x + gridx * y; - j = x + edgesx * y; + nodesx[i] = sum1 / sum2; - oldp[0] = oldnodesx[i]; - oldp[1] = oldnodesy[i]; + sum1 = hedges[j - 1] * oldnodesy[i - 1]; + sum1 += hedges[j] * oldnodesy[i + 1]; + sum1 += vedges[j - edgesx] * oldnodesy[i - gridx]; + sum1 += vedges[j] * oldnodesy[i + gridx]; - sum1 = hedges[j - 1] * oldnodesx[i - 1]; - sum1 += hedges[j] * oldnodesx[i + 1]; - sum1 += vedges[j - edgesx] * oldnodesx[i - gridx]; - sum1 += vedges[j] * oldnodesx[i + gridx]; + nodesy[i] = sum1 / sum2; - sum2 = hedges[j - 1]; - sum2 += hedges[j]; - sum2 += vedges[j - edgesx]; - sum2 += vedges[j]; + p[0] = nodesx[i]; + p[1] = nodesy[i]; - nodesx[i] = sum1 / sum2; + diff[0] = p[0] - oldp[0]; + diff[1] = p[1] - oldp[1]; - sum1 = hedges[j - 1] * oldnodesy[i - 1]; - sum1 += hedges[j] * oldnodesy[i + 1]; - sum1 += vedges[j - edgesx] * oldnodesy[i - gridx]; - sum1 += vedges[j] * oldnodesy[i + gridx]; + length = len_v2(diff); + d = max_ff(d, length); + moved += length; + } + } - nodesy[i] = sum1 / sum2; + if (d < dlimit) + break; + } - p[0] = nodesx[i]; - p[1] = nodesy[i]; + if (moved < climit) + break; + } - diff[0] = p[0] - oldp[0]; - diff[1] = p[1] - oldp[1]; + MEM_freeN(oldnodesx); + MEM_freeN(oldnodesy); + MEM_freeN(hedges); + MEM_freeN(vedges); - length = len_v2(diff); - d = max_ff(d, length); - moved += length; - } - } + /* create bsp */ + t = triangles = MEM_mallocN(sizeof(SmoothTriangle) * esize * 2, "PSmoothTris"); + trip = tri = MEM_mallocN(sizeof(SmoothTriangle *) * esize * 2, "PSmoothTriP"); - if (d < dlimit) - break; - } + if (!triangles || !tri) { + MEM_freeN(nodes); + MEM_freeN(nodesx); + MEM_freeN(nodesy); - if (moved < climit) - break; - } + if (triangles) + MEM_freeN(triangles); + if (tri) + MEM_freeN(tri); - MEM_freeN(oldnodesx); - MEM_freeN(oldnodesy); - MEM_freeN(hedges); - MEM_freeN(vedges); + // printf("Not enough memory for area smoothing grid"); + return; + } - /* create bsp */ - t = triangles = MEM_mallocN(sizeof(SmoothTriangle) * esize * 2, "PSmoothTris"); - trip = tri = MEM_mallocN(sizeof(SmoothTriangle *) * esize * 2, "PSmoothTriP"); + for (x = 0; x < edgesx; x++) { + for (y = 0; y < edgesy; y++) { + i = x + y * gridx; - if (!triangles || !tri) { - MEM_freeN(nodes); - MEM_freeN(nodesx); - MEM_freeN(nodesy); + t->co1[0] = nodesx[i]; + t->co1[1] = nodesy[i]; - if (triangles) MEM_freeN(triangles); - if (tri) MEM_freeN(tri); + t->co2[0] = nodesx[i + 1]; + t->co2[1] = nodesy[i + 1]; - // printf("Not enough memory for area smoothing grid"); - return; - } + t->co3[0] = nodesx[i + gridx]; + t->co3[1] = nodesy[i + gridx]; - for (x = 0; x < edgesx; x++) { - for (y = 0; y < edgesy; y++) { - i = x + y * gridx; + t->oco1[0] = minv[0] + x * median; + t->oco1[1] = minv[1] + y * median; - t->co1[0] = nodesx[i]; - t->co1[1] = nodesy[i]; + t->oco2[0] = minv[0] + (x + 1) * median; + t->oco2[1] = minv[1] + y * median; - t->co2[0] = nodesx[i + 1]; - t->co2[1] = nodesy[i + 1]; + t->oco3[0] = minv[0] + x * median; + t->oco3[1] = minv[1] + (y + 1) * median; - t->co3[0] = nodesx[i + gridx]; - t->co3[1] = nodesy[i + gridx]; + t2 = t + 1; - t->oco1[0] = minv[0] + x * median; - t->oco1[1] = minv[1] + y * median; + t2->co1[0] = nodesx[i + gridx + 1]; + t2->co1[1] = nodesy[i + gridx + 1]; - t->oco2[0] = minv[0] + (x + 1) * median; - t->oco2[1] = minv[1] + y * median; + t2->oco1[0] = minv[0] + (x + 1) * median; + t2->oco1[1] = minv[1] + (y + 1) * median; - t->oco3[0] = minv[0] + x * median; - t->oco3[1] = minv[1] + (y + 1) * median; + t2->co2[0] = t->co2[0]; + t2->co2[1] = t->co2[1]; + t2->oco2[0] = t->oco2[0]; + t2->oco2[1] = t->oco2[1]; - t2 = t + 1; + t2->co3[0] = t->co3[0]; + t2->co3[1] = t->co3[1]; + t2->oco3[0] = t->oco3[0]; + t2->oco3[1] = t->oco3[1]; - t2->co1[0] = nodesx[i + gridx + 1]; - t2->co1[1] = nodesy[i + gridx + 1]; + *trip = t; + trip++; + t++; + *trip = t; + trip++; + t++; + } + } - t2->oco1[0] = minv[0] + (x + 1) * median; - t2->oco1[1] = minv[1] + (y + 1) * median; + MEM_freeN(nodes); + MEM_freeN(nodesx); + MEM_freeN(nodesy); - t2->co2[0] = t->co2[0]; t2->co2[1] = t->co2[1]; - t2->oco2[0] = t->oco2[0]; t2->oco2[1] = t->oco2[1]; + arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 16), "param smooth arena"); + root = p_node_new(arena, tri, esize * 2, minv, maxv, 0); - t2->co3[0] = t->co3[0]; t2->co3[1] = t->co3[1]; - t2->oco3[0] = t->oco3[0]; t2->oco3[1] = t->oco3[1]; + for (v = chart->verts; v; v = v->nextlink) + if (!p_node_intersect(root, v->uv)) + param_warning("area smoothing error: couldn't find mapping triangle\n"); - *trip = t; trip++; t++; - *trip = t; trip++; t++; - } - } + p_node_delete(root); + BLI_memarena_free(arena); - MEM_freeN(nodes); - MEM_freeN(nodesx); - MEM_freeN(nodesy); - - arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 16), "param smooth arena"); - root = p_node_new(arena, tri, esize * 2, minv, maxv, 0); - - for (v = chart->verts; v; v = v->nextlink) - if (!p_node_intersect(root, v->uv)) - param_warning("area smoothing error: couldn't find mapping triangle\n"); - - p_node_delete(root); - BLI_memarena_free(arena); - - MEM_freeN(triangles); + MEM_freeN(triangles); } /* Exported */ ParamHandle *param_construct_begin(void) { - PHandle *handle = MEM_callocN(sizeof(*handle), "PHandle"); - handle->construction_chart = p_chart_new(handle); - handle->state = PHANDLE_STATE_ALLOCATED; - handle->arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 16), "param construct arena"); - handle->polyfill_arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "param polyfill arena"); - handle->polyfill_heap = BLI_heap_new_ex(BLI_POLYFILL_ALLOC_NGON_RESERVE); - handle->aspx = 1.0f; - handle->aspy = 1.0f; - handle->do_aspect = false; + PHandle *handle = MEM_callocN(sizeof(*handle), "PHandle"); + handle->construction_chart = p_chart_new(handle); + handle->state = PHANDLE_STATE_ALLOCATED; + handle->arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 16), "param construct arena"); + handle->polyfill_arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "param polyfill arena"); + handle->polyfill_heap = BLI_heap_new_ex(BLI_POLYFILL_ALLOC_NGON_RESERVE); + handle->aspx = 1.0f; + handle->aspy = 1.0f; + handle->do_aspect = false; - handle->hash_verts = phash_new((PHashLink **)&handle->construction_chart->verts, 1); - handle->hash_edges = phash_new((PHashLink **)&handle->construction_chart->edges, 1); - handle->hash_faces = phash_new((PHashLink **)&handle->construction_chart->faces, 1); + handle->hash_verts = phash_new((PHashLink **)&handle->construction_chart->verts, 1); + handle->hash_edges = phash_new((PHashLink **)&handle->construction_chart->edges, 1); + handle->hash_faces = phash_new((PHashLink **)&handle->construction_chart->faces, 1); - return (ParamHandle *)handle; + return (ParamHandle *)handle; } void param_aspect_ratio(ParamHandle *handle, float aspx, float aspy) { - PHandle *phandle = (PHandle *)handle; + PHandle *phandle = (PHandle *)handle; - phandle->aspx = aspx; - phandle->aspy = aspy; - phandle->do_aspect = true; + phandle->aspx = aspx; + phandle->aspy = aspy; + phandle->do_aspect = true; } void param_delete(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; - int i; - - param_assert((phandle->state == PHANDLE_STATE_ALLOCATED) || - (phandle->state == PHANDLE_STATE_CONSTRUCTED)); - - for (i = 0; i < phandle->ncharts; i++) - p_chart_delete(phandle->charts[i]); - - if (phandle->charts) - MEM_freeN(phandle->charts); - - if (phandle->construction_chart) { - p_chart_delete(phandle->construction_chart); - - phash_delete(phandle->hash_verts); - phash_delete(phandle->hash_edges); - phash_delete(phandle->hash_faces); - } - - BLI_memarena_free(phandle->arena); - BLI_memarena_free(phandle->polyfill_arena); - BLI_heap_free(phandle->polyfill_heap, NULL); - MEM_freeN(phandle); -} - -static void p_add_ngon(ParamHandle *handle, ParamKey key, int nverts, - ParamKey *vkeys, float **co, float **uv, - ParamBool *pin, ParamBool *select) -{ - /* Allocate memory for polyfill. */ - PHandle *phandle = (PHandle *)handle; - MemArena *arena = phandle->polyfill_arena; - Heap *heap = phandle->polyfill_heap; - unsigned int nfilltri = nverts - 2; - unsigned int (*tris)[3] = BLI_memarena_alloc(arena, sizeof(*tris) * (size_t)nfilltri); - float (*projverts)[2] = BLI_memarena_alloc(arena, sizeof(*projverts) * (size_t)nverts); - - /* Calc normal, flipped: to get a positive 2d cross product. */ - float normal[3]; - zero_v3(normal); - - const float *co_curr, *co_prev = co[nverts - 1]; - for (int j = 0; j < nverts; j++) { - co_curr = co[j]; - add_newell_cross_v3_v3v3(normal, co_prev, co_curr); - co_prev = co_curr; - } - if (UNLIKELY(normalize_v3(normal) == 0.0f)) { - normal[2] = 1.0f; - } - - /* Project verts to 2d. */ - float axis_mat[3][3]; - axis_dominant_v3_to_m3_negate(axis_mat, normal); - for (int j = 0; j < nverts; j++) { - mul_v2_m3v3(projverts[j], axis_mat, co[j]); - } - - BLI_polyfill_calc_arena(projverts, nverts, 1, tris, arena); - - /* Beautify helps avoid thin triangles that give numerical problems. */ - BLI_polyfill_beautify(projverts, nverts, tris, arena, heap); - - /* Add triangles. */ - for (int j = 0; j < nfilltri; j++) { - unsigned int *tri = tris[j]; - unsigned int v0 = tri[0]; - unsigned int v1 = tri[1]; - unsigned int v2 = tri[2]; - - ParamKey tri_vkeys[3] = {vkeys[v0], vkeys[v1], vkeys[v2]}; - float *tri_co[3] = {co[v0], co[v1], co[v2]}; - float *tri_uv[3] = {uv[v0], uv[v1], uv[v2]}; - ParamBool tri_pin[3] = {pin[v0], pin[v1], pin[v2]}; - ParamBool tri_select[3] = {select[v0], select[v1], select[v2]}; - - param_face_add(handle, key, 3, tri_vkeys, tri_co, tri_uv, tri_pin, tri_select); - } - - BLI_memarena_clear(arena); -} - -void param_face_add(ParamHandle *handle, ParamKey key, int nverts, - ParamKey *vkeys, float *co[4], float *uv[4], - ParamBool *pin, ParamBool *select) -{ - PHandle *phandle = (PHandle *)handle; - - param_assert(phash_lookup(phandle->hash_faces, key) == NULL); - param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); - param_assert((nverts == 3) || (nverts == 4)); - - if (nverts > 4) { - /* ngon */ - p_add_ngon(handle, key, nverts, vkeys, co, uv, pin, select); - } - else if (nverts == 4) { - /* quad */ - if (p_quad_split_direction(phandle, co, vkeys)) { - p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select); - p_face_add_construct(phandle, key, vkeys, co, uv, 0, 2, 3, pin, select); - } - else { - p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 3, pin, select); - p_face_add_construct(phandle, key, vkeys, co, uv, 1, 2, 3, pin, select); - } - } - else if (!p_face_exists(phandle, vkeys, 0, 1, 2)) { - /* triangle */ - p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select); - } + PHandle *phandle = (PHandle *)handle; + int i; + + param_assert((phandle->state == PHANDLE_STATE_ALLOCATED) || + (phandle->state == PHANDLE_STATE_CONSTRUCTED)); + + for (i = 0; i < phandle->ncharts; i++) + p_chart_delete(phandle->charts[i]); + + if (phandle->charts) + MEM_freeN(phandle->charts); + + if (phandle->construction_chart) { + p_chart_delete(phandle->construction_chart); + + phash_delete(phandle->hash_verts); + phash_delete(phandle->hash_edges); + phash_delete(phandle->hash_faces); + } + + BLI_memarena_free(phandle->arena); + BLI_memarena_free(phandle->polyfill_arena); + BLI_heap_free(phandle->polyfill_heap, NULL); + MEM_freeN(phandle); +} + +static void p_add_ngon(ParamHandle *handle, + ParamKey key, + int nverts, + ParamKey *vkeys, + float **co, + float **uv, + ParamBool *pin, + ParamBool *select) +{ + /* Allocate memory for polyfill. */ + PHandle *phandle = (PHandle *)handle; + MemArena *arena = phandle->polyfill_arena; + Heap *heap = phandle->polyfill_heap; + unsigned int nfilltri = nverts - 2; + unsigned int(*tris)[3] = BLI_memarena_alloc(arena, sizeof(*tris) * (size_t)nfilltri); + float(*projverts)[2] = BLI_memarena_alloc(arena, sizeof(*projverts) * (size_t)nverts); + + /* Calc normal, flipped: to get a positive 2d cross product. */ + float normal[3]; + zero_v3(normal); + + const float *co_curr, *co_prev = co[nverts - 1]; + for (int j = 0; j < nverts; j++) { + co_curr = co[j]; + add_newell_cross_v3_v3v3(normal, co_prev, co_curr); + co_prev = co_curr; + } + if (UNLIKELY(normalize_v3(normal) == 0.0f)) { + normal[2] = 1.0f; + } + + /* Project verts to 2d. */ + float axis_mat[3][3]; + axis_dominant_v3_to_m3_negate(axis_mat, normal); + for (int j = 0; j < nverts; j++) { + mul_v2_m3v3(projverts[j], axis_mat, co[j]); + } + + BLI_polyfill_calc_arena(projverts, nverts, 1, tris, arena); + + /* Beautify helps avoid thin triangles that give numerical problems. */ + BLI_polyfill_beautify(projverts, nverts, tris, arena, heap); + + /* Add triangles. */ + for (int j = 0; j < nfilltri; j++) { + unsigned int *tri = tris[j]; + unsigned int v0 = tri[0]; + unsigned int v1 = tri[1]; + unsigned int v2 = tri[2]; + + ParamKey tri_vkeys[3] = {vkeys[v0], vkeys[v1], vkeys[v2]}; + float *tri_co[3] = {co[v0], co[v1], co[v2]}; + float *tri_uv[3] = {uv[v0], uv[v1], uv[v2]}; + ParamBool tri_pin[3] = {pin[v0], pin[v1], pin[v2]}; + ParamBool tri_select[3] = {select[v0], select[v1], select[v2]}; + + param_face_add(handle, key, 3, tri_vkeys, tri_co, tri_uv, tri_pin, tri_select); + } + + BLI_memarena_clear(arena); +} + +void param_face_add(ParamHandle *handle, + ParamKey key, + int nverts, + ParamKey *vkeys, + float *co[4], + float *uv[4], + ParamBool *pin, + ParamBool *select) +{ + PHandle *phandle = (PHandle *)handle; + + param_assert(phash_lookup(phandle->hash_faces, key) == NULL); + param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); + param_assert((nverts == 3) || (nverts == 4)); + + if (nverts > 4) { + /* ngon */ + p_add_ngon(handle, key, nverts, vkeys, co, uv, pin, select); + } + else if (nverts == 4) { + /* quad */ + if (p_quad_split_direction(phandle, co, vkeys)) { + p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select); + p_face_add_construct(phandle, key, vkeys, co, uv, 0, 2, 3, pin, select); + } + else { + p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 3, pin, select); + p_face_add_construct(phandle, key, vkeys, co, uv, 1, 2, 3, pin, select); + } + } + else if (!p_face_exists(phandle, vkeys, 0, 1, 2)) { + /* triangle */ + p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select); + } } void param_edge_set_seam(ParamHandle *handle, ParamKey *vkeys) { - PHandle *phandle = (PHandle *)handle; - PEdge *e; + PHandle *phandle = (PHandle *)handle; + PEdge *e; - param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); + param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); - e = p_edge_lookup(phandle, vkeys); - if (e) - e->flag |= PEDGE_SEAM; + e = p_edge_lookup(phandle, vkeys); + if (e) + e->flag |= PEDGE_SEAM; } void param_construct_end(ParamHandle *handle, ParamBool fill, ParamBool impl) { - PHandle *phandle = (PHandle *)handle; - PChart *chart = phandle->construction_chart; - int i, j, nboundaries = 0; - PEdge *outer; + PHandle *phandle = (PHandle *)handle; + PChart *chart = phandle->construction_chart; + int i, j, nboundaries = 0; + PEdge *outer; - param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); + param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); - phandle->ncharts = p_connect_pairs(phandle, (PBool)impl); - phandle->charts = p_split_charts(phandle, chart, phandle->ncharts); + phandle->ncharts = p_connect_pairs(phandle, (PBool)impl); + phandle->charts = p_split_charts(phandle, chart, phandle->ncharts); - p_chart_delete(phandle->construction_chart); - phandle->construction_chart = NULL; + p_chart_delete(phandle->construction_chart); + phandle->construction_chart = NULL; - phash_delete(phandle->hash_verts); - phash_delete(phandle->hash_edges); - phash_delete(phandle->hash_faces); - phandle->hash_verts = phandle->hash_edges = phandle->hash_faces = NULL; + phash_delete(phandle->hash_verts); + phash_delete(phandle->hash_edges); + phash_delete(phandle->hash_faces); + phandle->hash_verts = phandle->hash_edges = phandle->hash_faces = NULL; - for (i = j = 0; i < phandle->ncharts; i++) { - PVert *v; - chart = phandle->charts[i]; + for (i = j = 0; i < phandle->ncharts; i++) { + PVert *v; + chart = phandle->charts[i]; - p_chart_boundaries(chart, &nboundaries, &outer); + p_chart_boundaries(chart, &nboundaries, &outer); - if (!impl && nboundaries == 0) { - p_chart_delete(chart); - continue; - } + if (!impl && nboundaries == 0) { + p_chart_delete(chart); + continue; + } - phandle->charts[j] = chart; - j++; + phandle->charts[j] = chart; + j++; - if (fill && (nboundaries > 1)) - p_chart_fill_boundaries(chart, outer); + if (fill && (nboundaries > 1)) + p_chart_fill_boundaries(chart, outer); - for (v = chart->verts; v; v = v->nextlink) - p_vert_load_pin_select_uvs(handle, v); - } + for (v = chart->verts; v; v = v->nextlink) + p_vert_load_pin_select_uvs(handle, v); + } - phandle->ncharts = j; + phandle->ncharts = j; - phandle->state = PHANDLE_STATE_CONSTRUCTED; + phandle->state = PHANDLE_STATE_CONSTRUCTED; } void param_lscm_begin(ParamHandle *handle, ParamBool live, ParamBool abf) { - PHandle *phandle = (PHandle *)handle; - PFace *f; - int i; + PHandle *phandle = (PHandle *)handle; + PFace *f; + int i; - param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); - phandle->state = PHANDLE_STATE_LSCM; + param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); + phandle->state = PHANDLE_STATE_LSCM; - for (i = 0; i < phandle->ncharts; i++) { - for (f = phandle->charts[i]->faces; f; f = f->nextlink) - p_face_backup_uvs(f); - p_chart_lscm_begin(phandle->charts[i], (PBool)live, (PBool)abf); - } + for (i = 0; i < phandle->ncharts; i++) { + for (f = phandle->charts[i]->faces; f; f = f->nextlink) + p_face_backup_uvs(f); + p_chart_lscm_begin(phandle->charts[i], (PBool)live, (PBool)abf); + } } void param_lscm_solve(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; - PChart *chart; - int i; - PBool result; + PHandle *phandle = (PHandle *)handle; + PChart *chart; + int i; + PBool result; - param_assert(phandle->state == PHANDLE_STATE_LSCM); + param_assert(phandle->state == PHANDLE_STATE_LSCM); - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; - if (chart->u.lscm.context) { - result = p_chart_lscm_solve(phandle, chart); + if (chart->u.lscm.context) { + result = p_chart_lscm_solve(phandle, chart); - if (result && !(chart->flag & PCHART_HAS_PINS)) - p_chart_rotate_minimum_area(chart); + if (result && !(chart->flag & PCHART_HAS_PINS)) + p_chart_rotate_minimum_area(chart); - if (!result || (chart->u.lscm.pin1)) - p_chart_lscm_end(chart); - } - } + if (!result || (chart->u.lscm.pin1)) + p_chart_lscm_end(chart); + } + } } void param_lscm_end(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; - int i; + PHandle *phandle = (PHandle *)handle; + int i; - param_assert(phandle->state == PHANDLE_STATE_LSCM); + param_assert(phandle->state == PHANDLE_STATE_LSCM); - for (i = 0; i < phandle->ncharts; i++) { - p_chart_lscm_end(phandle->charts[i]); + for (i = 0; i < phandle->ncharts; i++) { + p_chart_lscm_end(phandle->charts[i]); #if 0 - p_chart_complexify(phandle->charts[i]); + p_chart_complexify(phandle->charts[i]); #endif - } + } - phandle->state = PHANDLE_STATE_CONSTRUCTED; + phandle->state = PHANDLE_STATE_CONSTRUCTED; } void param_stretch_begin(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; - PChart *chart; - PVert *v; - PFace *f; - int i; + PHandle *phandle = (PHandle *)handle; + PChart *chart; + PVert *v; + PFace *f; + int i; - param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); - phandle->state = PHANDLE_STATE_STRETCH; + param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); + phandle->state = PHANDLE_STATE_STRETCH; - phandle->rng = BLI_rng_new(31415926); - phandle->blend = 0.0f; + phandle->rng = BLI_rng_new(31415926); + phandle->blend = 0.0f; - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; - for (v = chart->verts; v; v = v->nextlink) - v->flag &= ~PVERT_PIN; /* don't use user-defined pins */ + for (v = chart->verts; v; v = v->nextlink) + v->flag &= ~PVERT_PIN; /* don't use user-defined pins */ - p_stretch_pin_boundary(chart); + p_stretch_pin_boundary(chart); - for (f = chart->faces; f; f = f->nextlink) { - p_face_backup_uvs(f); - f->u.area3d = p_face_area(f); - } - } + for (f = chart->faces; f; f = f->nextlink) { + p_face_backup_uvs(f); + f->u.area3d = p_face_area(f); + } + } } void param_stretch_blend(ParamHandle *handle, float blend) { - PHandle *phandle = (PHandle *)handle; + PHandle *phandle = (PHandle *)handle; - param_assert(phandle->state == PHANDLE_STATE_STRETCH); - phandle->blend = blend; + param_assert(phandle->state == PHANDLE_STATE_STRETCH); + phandle->blend = blend; } void param_stretch_iter(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; - PChart *chart; - int i; + PHandle *phandle = (PHandle *)handle; + PChart *chart; + int i; - param_assert(phandle->state == PHANDLE_STATE_STRETCH); + param_assert(phandle->state == PHANDLE_STATE_STRETCH); - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - p_chart_stretch_minimize(chart, phandle->rng); - } + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; + p_chart_stretch_minimize(chart, phandle->rng); + } } void param_stretch_end(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; + PHandle *phandle = (PHandle *)handle; - param_assert(phandle->state == PHANDLE_STATE_STRETCH); - phandle->state = PHANDLE_STATE_CONSTRUCTED; + param_assert(phandle->state == PHANDLE_STATE_STRETCH); + phandle->state = PHANDLE_STATE_CONSTRUCTED; - BLI_rng_free(phandle->rng); - phandle->rng = NULL; + BLI_rng_free(phandle->rng); + phandle->rng = NULL; } void param_smooth_area(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; - int i; + PHandle *phandle = (PHandle *)handle; + int i; - param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); + param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); - for (i = 0; i < phandle->ncharts; i++) { - PChart *chart = phandle->charts[i]; - PVert *v; + for (i = 0; i < phandle->ncharts; i++) { + PChart *chart = phandle->charts[i]; + PVert *v; - for (v = chart->verts; v; v = v->nextlink) - v->flag &= ~PVERT_PIN; + for (v = chart->verts; v; v = v->nextlink) + v->flag &= ~PVERT_PIN; - p_smooth(chart); - } + p_smooth(chart); + } } /* don't pack, just rotate (used for better packing) */ static void param_pack_rotate(ParamHandle *handle, bool ignore_pinned) { - PChart *chart; - int i; + PChart *chart; + int i; - PHandle *phandle = (PHandle *)handle; + PHandle *phandle = (PHandle *)handle; - for (i = 0; i < phandle->ncharts; i++) { - float (*points)[2]; - float angle; + for (i = 0; i < phandle->ncharts; i++) { + float(*points)[2]; + float angle; - chart = phandle->charts[i]; + chart = phandle->charts[i]; - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - continue; - } + if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { + continue; + } - points = MEM_mallocN(sizeof(*points) * chart->nverts, __func__); + points = MEM_mallocN(sizeof(*points) * chart->nverts, __func__); - p_chart_uv_to_array(chart, points); + p_chart_uv_to_array(chart, points); - angle = BLI_convexhull_aabb_fit_points_2d(points, chart->nverts); + angle = BLI_convexhull_aabb_fit_points_2d(points, chart->nverts); - MEM_freeN(points); + MEM_freeN(points); - if (angle != 0.0f) { - float mat[2][2]; - angle_to_mat2(mat, angle); - p_chart_uv_transform(chart, mat); - } - } + if (angle != 0.0f) { + float mat[2][2]; + angle_to_mat2(mat, angle); + p_chart_uv_transform(chart, mat); + } + } } void param_pack(ParamHandle *handle, float margin, bool do_rotate, bool ignore_pinned) { - /* box packing variables */ - BoxPack *boxarray, *box; - float tot_width, tot_height, scale; - - PChart *chart; - int i, unpacked = 0; - float trans[2]; - double area = 0.0; + /* box packing variables */ + BoxPack *boxarray, *box; + float tot_width, tot_height, scale; - PHandle *phandle = (PHandle *)handle; + PChart *chart; + int i, unpacked = 0; + float trans[2]; + double area = 0.0; - if (phandle->ncharts == 0) - return; + PHandle *phandle = (PHandle *)handle; - /* this could be its own function */ - if (do_rotate) { - param_pack_rotate(handle, ignore_pinned); - } + if (phandle->ncharts == 0) + return; - if (phandle->aspx != phandle->aspy) - param_scale(handle, 1.0f / phandle->aspx, 1.0f / phandle->aspy); + /* this could be its own function */ + if (do_rotate) { + param_pack_rotate(handle, ignore_pinned); + } - /* we may not use all these boxes */ - boxarray = MEM_mallocN(phandle->ncharts * sizeof(BoxPack), "BoxPack box"); + if (phandle->aspx != phandle->aspy) + param_scale(handle, 1.0f / phandle->aspx, 1.0f / phandle->aspy); + /* we may not use all these boxes */ + boxarray = MEM_mallocN(phandle->ncharts * sizeof(BoxPack), "BoxPack box"); - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - unpacked++; - continue; - } + if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { + unpacked++; + continue; + } - box = boxarray + (i - unpacked); + box = boxarray + (i - unpacked); - p_chart_uv_bbox(chart, trans, chart->u.pack.size); + p_chart_uv_bbox(chart, trans, chart->u.pack.size); - trans[0] = -trans[0]; - trans[1] = -trans[1]; + trans[0] = -trans[0]; + trans[1] = -trans[1]; - p_chart_uv_translate(chart, trans); + p_chart_uv_translate(chart, trans); - box->w = chart->u.pack.size[0] + trans[0]; - box->h = chart->u.pack.size[1] + trans[1]; - box->index = i; /* warning this index skips PCHART_HAS_PINS boxes */ + box->w = chart->u.pack.size[0] + trans[0]; + box->h = chart->u.pack.size[1] + trans[1]; + box->index = i; /* warning this index skips PCHART_HAS_PINS boxes */ - if (margin > 0.0f) - area += (double)sqrtf(box->w * box->h); - } + if (margin > 0.0f) + area += (double)sqrtf(box->w * box->h); + } - if (margin > 0.0f) { - /* multiply the margin by the area to give predictable results not dependent on UV scale, - * ...Without using the area running pack multiple times also gives a bad feedback loop. - * multiply by 0.1 so the margin value from the UI can be from - * 0.0 to 1.0 but not give a massive margin */ - margin = (margin * (float)area) * 0.1f; - unpacked = 0; - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; + if (margin > 0.0f) { + /* multiply the margin by the area to give predictable results not dependent on UV scale, + * ...Without using the area running pack multiple times also gives a bad feedback loop. + * multiply by 0.1 so the margin value from the UI can be from + * 0.0 to 1.0 but not give a massive margin */ + margin = (margin * (float)area) * 0.1f; + unpacked = 0; + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - unpacked++; - continue; - } + if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { + unpacked++; + continue; + } - box = boxarray + (i - unpacked); - trans[0] = margin; - trans[1] = margin; - p_chart_uv_translate(chart, trans); - box->w += margin * 2; - box->h += margin * 2; - } - } + box = boxarray + (i - unpacked); + trans[0] = margin; + trans[1] = margin; + p_chart_uv_translate(chart, trans); + box->w += margin * 2; + box->h += margin * 2; + } + } - BLI_box_pack_2d(boxarray, phandle->ncharts - unpacked, &tot_width, &tot_height); + BLI_box_pack_2d(boxarray, phandle->ncharts - unpacked, &tot_width, &tot_height); - if (tot_height > tot_width) - scale = 1.0f / tot_height; - else - scale = 1.0f / tot_width; + if (tot_height > tot_width) + scale = 1.0f / tot_height; + else + scale = 1.0f / tot_width; - for (i = 0; i < phandle->ncharts - unpacked; i++) { - box = boxarray + i; - trans[0] = box->x; - trans[1] = box->y; + for (i = 0; i < phandle->ncharts - unpacked; i++) { + box = boxarray + i; + trans[0] = box->x; + trans[1] = box->y; - chart = phandle->charts[box->index]; - p_chart_uv_translate(chart, trans); - p_chart_uv_scale(chart, scale); - } - MEM_freeN(boxarray); + chart = phandle->charts[box->index]; + p_chart_uv_translate(chart, trans); + p_chart_uv_scale(chart, scale); + } + MEM_freeN(boxarray); - if (phandle->aspx != phandle->aspy) - param_scale(handle, phandle->aspx, phandle->aspy); + if (phandle->aspx != phandle->aspy) + param_scale(handle, phandle->aspx, phandle->aspy); } void param_average(ParamHandle *handle, bool ignore_pinned) { - PChart *chart; - int i; - float tot_uvarea = 0.0f, tot_facearea = 0.0f; - float tot_fac, fac; - float minv[2], maxv[2], trans[2]; - PHandle *phandle = (PHandle *)handle; + PChart *chart; + int i; + float tot_uvarea = 0.0f, tot_facearea = 0.0f; + float tot_fac, fac; + float minv[2], maxv[2], trans[2]; + PHandle *phandle = (PHandle *)handle; - if (phandle->ncharts == 0) - return; + if (phandle->ncharts == 0) + return; - for (i = 0; i < phandle->ncharts; i++) { - PFace *f; - chart = phandle->charts[i]; + for (i = 0; i < phandle->ncharts; i++) { + PFace *f; + chart = phandle->charts[i]; - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - continue; - } + if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { + continue; + } - chart->u.pack.area = 0.0f; /* 3d area */ - chart->u.pack.rescale = 0.0f; /* UV area, abusing rescale for tmp storage, oh well :/ */ + chart->u.pack.area = 0.0f; /* 3d area */ + chart->u.pack.rescale = 0.0f; /* UV area, abusing rescale for tmp storage, oh well :/ */ - for (f = chart->faces; f; f = f->nextlink) { - chart->u.pack.area += p_face_area(f); - chart->u.pack.rescale += fabsf(p_face_uv_area_signed(f)); - } + for (f = chart->faces; f; f = f->nextlink) { + chart->u.pack.area += p_face_area(f); + chart->u.pack.rescale += fabsf(p_face_uv_area_signed(f)); + } - tot_facearea += chart->u.pack.area; - tot_uvarea += chart->u.pack.rescale; - } + tot_facearea += chart->u.pack.area; + tot_uvarea += chart->u.pack.rescale; + } - if (tot_facearea == tot_uvarea || tot_facearea == 0.0f || tot_uvarea == 0.0f) { - /* nothing to do */ - return; - } + if (tot_facearea == tot_uvarea || tot_facearea == 0.0f || tot_uvarea == 0.0f) { + /* nothing to do */ + return; + } - tot_fac = tot_facearea / tot_uvarea; + tot_fac = tot_facearea / tot_uvarea; - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - continue; - } + if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { + continue; + } - if (chart->u.pack.area != 0.0f && chart->u.pack.rescale != 0.0f) { - fac = chart->u.pack.area / chart->u.pack.rescale; + if (chart->u.pack.area != 0.0f && chart->u.pack.rescale != 0.0f) { + fac = chart->u.pack.area / chart->u.pack.rescale; - /* Get the island center */ - p_chart_uv_bbox(chart, minv, maxv); - trans[0] = (minv[0] + maxv[0]) / -2.0f; - trans[1] = (minv[1] + maxv[1]) / -2.0f; + /* Get the island center */ + p_chart_uv_bbox(chart, minv, maxv); + trans[0] = (minv[0] + maxv[0]) / -2.0f; + trans[1] = (minv[1] + maxv[1]) / -2.0f; - /* Move center to 0,0 */ - p_chart_uv_translate(chart, trans); - p_chart_uv_scale(chart, sqrtf(fac / tot_fac)); + /* Move center to 0,0 */ + p_chart_uv_translate(chart, trans); + p_chart_uv_scale(chart, sqrtf(fac / tot_fac)); - /* Move to original center */ - trans[0] = -trans[0]; - trans[1] = -trans[1]; - p_chart_uv_translate(chart, trans); - } - } + /* Move to original center */ + trans[0] = -trans[0]; + trans[1] = -trans[1]; + p_chart_uv_translate(chart, trans); + } + } } void param_scale(ParamHandle *handle, float x, float y) { - PHandle *phandle = (PHandle *)handle; - PChart *chart; - int i; + PHandle *phandle = (PHandle *)handle; + PChart *chart; + int i; - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - p_chart_uv_scale_xy(chart, x, y); - } + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; + p_chart_uv_scale_xy(chart, x, y); + } } void param_flush(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; - PChart *chart; - int i; + PHandle *phandle = (PHandle *)handle; + PChart *chart; + int i; - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; - if ((phandle->state == PHANDLE_STATE_LSCM) && !chart->u.lscm.context) - continue; + if ((phandle->state == PHANDLE_STATE_LSCM) && !chart->u.lscm.context) + continue; - if (phandle->blend == 0.0f) - p_flush_uvs(phandle, chart); - else - p_flush_uvs_blend(phandle, chart, phandle->blend); - } + if (phandle->blend == 0.0f) + p_flush_uvs(phandle, chart); + else + p_flush_uvs_blend(phandle, chart, phandle->blend); + } } void param_flush_restore(ParamHandle *handle) { - PHandle *phandle = (PHandle *)handle; - PChart *chart; - PFace *f; - int i; + PHandle *phandle = (PHandle *)handle; + PChart *chart; + PFace *f; + int i; - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; + for (i = 0; i < phandle->ncharts; i++) { + chart = phandle->charts[i]; - for (f = chart->faces; f; f = f->nextlink) - p_face_restore_uvs(f); - } + for (f = chart->faces; f; f = f->nextlink) + p_face_restore_uvs(f); + } } -- cgit v1.2.3