From eddffdd3988af768e56243fdffd18813b31b1441 Mon Sep 17 00:00:00 2001 From: Aleksi Juvani Date: Tue, 29 Mar 2022 20:57:59 -0500 Subject: Cleanup: Move UV edit parameterize code to geometry module This will allow reusing it elsewhere, such as in a geometry node. Differential Revision: https://developer.blender.org/D14453 --- source/blender/editors/uvedit/CMakeLists.txt | 3 +- source/blender/editors/uvedit/uvedit_islands.c | 2 +- .../blender/editors/uvedit/uvedit_parametrizer.c | 4978 -------------------- .../blender/editors/uvedit/uvedit_parametrizer.h | 99 - source/blender/editors/uvedit/uvedit_unwrap_ops.c | 108 +- 5 files changed, 57 insertions(+), 5133 deletions(-) delete mode 100644 source/blender/editors/uvedit/uvedit_parametrizer.c delete mode 100644 source/blender/editors/uvedit/uvedit_parametrizer.h (limited to 'source/blender/editors/uvedit') diff --git a/source/blender/editors/uvedit/CMakeLists.txt b/source/blender/editors/uvedit/CMakeLists.txt index f8a192e3254..761e7cd091e 100644 --- a/source/blender/editors/uvedit/CMakeLists.txt +++ b/source/blender/editors/uvedit/CMakeLists.txt @@ -7,6 +7,7 @@ set(INC ../../blentranslation ../../bmesh ../../depsgraph + ../../geometry ../../gpu ../../makesdna ../../makesrna @@ -24,7 +25,6 @@ set(SRC uvedit_draw.c uvedit_islands.c uvedit_ops.c - uvedit_parametrizer.c uvedit_path.c uvedit_rip.c uvedit_select.c @@ -32,7 +32,6 @@ set(SRC uvedit_unwrap_ops.c uvedit_intern.h - uvedit_parametrizer.h ) set(LIB diff --git a/source/blender/editors/uvedit/uvedit_islands.c b/source/blender/editors/uvedit/uvedit_islands.c index 59992d23e2e..e1752ae5a29 100644 --- a/source/blender/editors/uvedit/uvedit_islands.c +++ b/source/blender/editors/uvedit/uvedit_islands.c @@ -5,7 +5,7 @@ * * Utilities for manipulating UV islands. * - * \note This is similar to `uvedit_parametrizer.c`, + * \note This is similar to `GEO_uv_parametrizer.h`, * however the data structures there don't support arbitrary topology * such as an edge with 3 or more faces using it. * This API uses #BMesh data structures and doesn't have limitations for manifold meshes. diff --git a/source/blender/editors/uvedit/uvedit_parametrizer.c b/source/blender/editors/uvedit/uvedit_parametrizer.c deleted file mode 100644 index 5ad326c19e5..00000000000 --- a/source/blender/editors/uvedit/uvedit_parametrizer.c +++ /dev/null @@ -1,4978 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0-or-later */ - -/** \file - * \ingroup eduv - */ - -#include "MEM_guardedalloc.h" - -#include "BLI_boxpack_2d.h" -#include "BLI_convexhull_2d.h" -#include "BLI_heap.h" -#include "BLI_math.h" -#include "BLI_memarena.h" -#include "BLI_polyfill_2d.h" -#include "BLI_polyfill_2d_beautify.h" -#include "BLI_rand.h" -#include "BLI_utildefines.h" - -#include "uvedit_parametrizer.h" - -#include -#include -#include -#include - -#include "BLI_sys_types.h" /* for intptr_t support */ - -#include "eigen_capi.h" - -/* Utils */ - -#define param_assert(condition) \ - if (!(condition)) { /*printf("Assertion %s:%d\n", __FILE__, __LINE__); abort();*/ \ - } \ - (void)0 -#define param_warning(message) \ - {/*printf("Warning %s:%d: %s\n", __FILE__, __LINE__, message);*/}(void)0 - -typedef enum PBool { - P_TRUE = 1, - P_FALSE = 0, -} PBool; - -/* Special Purpose Hash */ - -typedef intptr_t PHashKey; - -typedef struct PHashLink { - struct PHashLink *next; - PHashKey key; -} PHashLink; - -typedef struct PHash { - PHashLink **list; - PHashLink **buckets; - int size, cursize, cursize_id; -} PHash; - -struct PChart; -struct PEdge; -struct PFace; -struct PHandle; -struct PVert; - -/* Simplices */ - -typedef struct PVert { - struct PVert *nextlink; - - union PVertUnion { - PHashKey key; /* Construct. */ - int id; /* ABF/LSCM matrix index. */ - float distortion; /* Area smoothing. */ - HeapNode *heaplink; /* Edge collapsing. */ - } u; - - struct PEdge *edge; - float co[3]; - float uv[2]; - uchar flag; - -} PVert; - -typedef struct PEdge { - struct PEdge *nextlink; - - union PEdgeUnion { - PHashKey key; /* Construct. */ - int id; /* ABF matrix index. */ - HeapNode *heaplink; /* Fill holes. */ - struct PEdge *nextcollapse; /* Simplification. */ - } u; - - struct PVert *vert; - struct PEdge *pair; - struct PEdge *next; - struct PFace *face; - float *orig_uv, old_uv[2]; - ushort flag; - -} PEdge; - -typedef struct PFace { - struct PFace *nextlink; - - union PFaceUnion { - PHashKey key; /* Construct. */ - int chart; /* Construct splitting. */ - float area3d; /* Stretch. */ - int id; /* ABF matrix index. */ - } u; - - struct PEdge *edge; - uchar flag; -} PFace; - -enum PVertFlag { - PVERT_PIN = 1, - PVERT_SELECT = 2, - PVERT_INTERIOR = 4, - PVERT_COLLAPSE = 8, - PVERT_SPLIT = 16, -}; - -enum PEdgeFlag { - PEDGE_SEAM = 1, - PEDGE_VERTEX_SPLIT = 2, - PEDGE_PIN = 4, - PEDGE_SELECT = 8, - PEDGE_DONE = 16, - PEDGE_FILLED = 32, - PEDGE_COLLAPSE = 64, - PEDGE_COLLAPSE_EDGE = 128, - PEDGE_COLLAPSE_PAIR = 256, -}; - -/* for flipping faces */ -#define PEDGE_VERTEX_FLAGS (PEDGE_PIN) - -enum PFaceFlag { - PFACE_CONNECTED = 1, - PFACE_FILLED = 2, - PFACE_COLLAPSE = 4, -}; - -/* Chart */ - -typedef struct PChart { - PVert *verts; - PEdge *edges; - PFace *faces; - int nverts, nedges, nfaces; - - PVert *collapsed_verts; - PEdge *collapsed_edges; - PFace *collapsed_faces; - - union PChartUnion { - struct PChartLscm { - LinearSolver *context; - float *abf_alpha; - PVert *pin1, *pin2; - PVert *single_pin; - float single_pin_area; - float single_pin_uv[2]; - } lscm; - struct PChartPack { - float rescale, area; - float size[2] /* , trans[2] */; - } pack; - } u; - - uchar flag; - struct PHandle *handle; -} PChart; - -enum PChartFlag { - PCHART_HAS_PINS = 1, -}; - -enum PHandleState { - PHANDLE_STATE_ALLOCATED, - PHANDLE_STATE_CONSTRUCTED, - PHANDLE_STATE_LSCM, - PHANDLE_STATE_STRETCH, -}; - -typedef struct PHandle { - enum PHandleState state; - MemArena *arena; - MemArena *polyfill_arena; - Heap *polyfill_heap; - - PChart *construction_chart; - PHash *hash_verts; - PHash *hash_edges; - PHash *hash_faces; - - PChart **charts; - int ncharts; - - float aspx, aspy; - - RNG *rng; - float blend; - char do_aspect; -} PHandle; - -/* PHash - * - special purpose hash that keeps all its elements in a single linked list. - * - after construction, this hash is thrown away, and the list remains. - * - removing elements is not possible efficiently. - */ - -static int PHashSizes[] = { - 1, 3, 5, 11, 17, 37, 67, 131, 257, 521, - 1031, 2053, 4099, 8209, 16411, 32771, 65537, 131101, 262147, 524309, - 1048583, 2097169, 4194319, 8388617, 16777259, 33554467, 67108879, 134217757, 268435459, -}; - -#define PHASH_hash(ph, item) (((uintptr_t)(item)) % ((uint)(ph)->cursize)) -#define PHASH_edge(v1, v2) (((v1) < (v2)) ? ((v1)*39) ^ ((v2)*31) : ((v1)*31) ^ ((v2)*39)) - -static PHash *phash_new(PHashLink **list, int sizehint) -{ - PHash *ph = (PHash *)MEM_callocN(sizeof(PHash), "PHash"); - ph->size = 0; - ph->cursize_id = 0; - ph->list = list; - - while (PHashSizes[ph->cursize_id] < sizehint) { - ph->cursize_id++; - } - - ph->cursize = PHashSizes[ph->cursize_id]; - ph->buckets = (PHashLink **)MEM_callocN(ph->cursize * sizeof(*ph->buckets), "PHashBuckets"); - - return ph; -} - -static void phash_delete(PHash *ph) -{ - MEM_freeN(ph->buckets); - MEM_freeN(ph); -} - -static int phash_size(PHash *ph) -{ - return ph->size; -} - -static void phash_insert(PHash *ph, PHashLink *link) -{ - int size = ph->cursize; - uintptr_t hash = PHASH_hash(ph, link->key); - PHashLink *lookup = ph->buckets[hash]; - - if (lookup == NULL) { - /* insert in front of the list */ - ph->buckets[hash] = link; - link->next = *(ph->list); - *(ph->list) = link; - } - else { - /* insert after existing element */ - link->next = lookup->next; - lookup->next = link; - } - - ph->size++; - - if (ph->size > (size * 3)) { - PHashLink *next = NULL, *first = *(ph->list); - - ph->cursize = PHashSizes[++ph->cursize_id]; - MEM_freeN(ph->buckets); - ph->buckets = (PHashLink **)MEM_callocN(ph->cursize * sizeof(*ph->buckets), "PHashBuckets"); - ph->size = 0; - *(ph->list) = NULL; - - for (link = first; link; link = next) { - next = link->next; - phash_insert(ph, link); - } - } -} - -static PHashLink *phash_lookup(PHash *ph, PHashKey key) -{ - PHashLink *link; - uintptr_t hash = PHASH_hash(ph, key); - - for (link = ph->buckets[hash]; link; link = link->next) { - if (link->key == key) { - return link; - } - if (PHASH_hash(ph, link->key) != hash) { - return NULL; - } - } - - return link; -} - -static PHashLink *phash_next(PHash *ph, PHashKey key, PHashLink *link) -{ - uintptr_t hash = PHASH_hash(ph, key); - - for (link = link->next; link; link = link->next) { - if (link->key == key) { - return link; - } - if (PHASH_hash(ph, link->key) != hash) { - return NULL; - } - } - - return link; -} - -/* Geometry */ - -static float p_vec_angle_cos(const float v1[3], const float v2[3], const float v3[3]) -{ - float d1[3], d2[3]; - - d1[0] = v1[0] - v2[0]; - d1[1] = v1[1] - v2[1]; - d1[2] = v1[2] - v2[2]; - - d2[0] = v3[0] - v2[0]; - d2[1] = v3[1] - v2[1]; - d2[2] = v3[2] - v2[2]; - - normalize_v3(d1); - normalize_v3(d2); - - return d1[0] * d2[0] + d1[1] * d2[1] + d1[2] * d2[2]; -} - -static float p_vec_angle(const float v1[3], const float v2[3], const float v3[3]) -{ - float dot = p_vec_angle_cos(v1, v2, v3); - - if (dot <= -1.0f) { - return (float)M_PI; - } - if (dot >= 1.0f) { - return 0.0f; - } - return acosf(dot); -} - -static float p_vec2_angle(const float v1[2], const float v2[2], const float v3[2]) -{ - float u1[3], u2[3], u3[3]; - - u1[0] = v1[0]; - u1[1] = v1[1]; - u1[2] = 0.0f; - u2[0] = v2[0]; - u2[1] = v2[1]; - u2[2] = 0.0f; - u3[0] = v3[0]; - u3[1] = v3[1]; - u3[2] = 0.0f; - - return p_vec_angle(u1, u2, u3); -} - -static void p_triangle_angles( - const float v1[3], const float v2[3], const float v3[3], float *r_a1, float *r_a2, float *r_a3) -{ - *r_a1 = p_vec_angle(v3, v1, v2); - *r_a2 = p_vec_angle(v1, v2, v3); - *r_a3 = (float)M_PI - *r_a2 - *r_a1; -} - -static void p_face_angles(PFace *f, float *r_a1, float *r_a2, float *r_a3) -{ - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - p_triangle_angles(v1->co, v2->co, v3->co, r_a1, r_a2, r_a3); -} - -static float p_face_area(PFace *f) -{ - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - return area_tri_v3(v1->co, v2->co, v3->co); -} - -static float p_area_signed(const float v1[2], const float v2[2], const float v3[2]) -{ - return 0.5f * (((v2[0] - v1[0]) * (v3[1] - v1[1])) - ((v3[0] - v1[0]) * (v2[1] - v1[1]))); -} - -static float p_face_uv_area_signed(PFace *f) -{ - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - return 0.5f * (((v2->uv[0] - v1->uv[0]) * (v3->uv[1] - v1->uv[1])) - - ((v3->uv[0] - v1->uv[0]) * (v2->uv[1] - v1->uv[1]))); -} - -static float p_edge_length(PEdge *e) -{ - PVert *v1 = e->vert, *v2 = e->next->vert; - float d[3]; - - d[0] = v2->co[0] - v1->co[0]; - d[1] = v2->co[1] - v1->co[1]; - d[2] = v2->co[2] - v1->co[2]; - - return sqrtf(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]); -} - -static float p_edge_uv_length(PEdge *e) -{ - PVert *v1 = e->vert, *v2 = e->next->vert; - float d[3]; - - d[0] = v2->uv[0] - v1->uv[0]; - d[1] = v2->uv[1] - v1->uv[1]; - - return sqrtf(d[0] * d[0] + d[1] * d[1]); -} - -static void p_chart_uv_bbox(PChart *chart, float minv[2], float maxv[2]) -{ - PVert *v; - - INIT_MINMAX2(minv, maxv); - - for (v = chart->verts; v; v = v->nextlink) { - minmax_v2v2_v2(minv, maxv, v->uv); - } -} - -static float p_chart_uv_area(PChart *chart) -{ - float area = 0.0f; - - for (PFace *f = chart->faces; f; f = f->nextlink) { - area += fabsf(p_face_uv_area_signed(f)); - } - - return area; -} - -static void p_chart_uv_scale(PChart *chart, float scale) -{ - PVert *v; - - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] *= scale; - v->uv[1] *= scale; - } -} - -static void p_chart_uv_scale_xy(PChart *chart, float x, float y) -{ - PVert *v; - - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] *= x; - v->uv[1] *= y; - } -} - -static void p_chart_uv_translate(PChart *chart, const float trans[2]) -{ - PVert *v; - - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] += trans[0]; - v->uv[1] += trans[1]; - } -} - -static void p_chart_uv_transform(PChart *chart, const float mat[2][2]) -{ - PVert *v; - - for (v = chart->verts; v; v = v->nextlink) { - mul_m2_v2(mat, v->uv); - } -} - -static void p_chart_uv_to_array(PChart *chart, float (*points)[2]) -{ - PVert *v; - uint i = 0; - - for (v = chart->verts; v; v = v->nextlink) { - copy_v2_v2(points[i++], v->uv); - } -} - -static void UNUSED_FUNCTION(p_chart_uv_from_array)(PChart *chart, float (*points)[2]) -{ - PVert *v; - uint i = 0; - - for (v = chart->verts; v; v = v->nextlink) { - copy_v2_v2(v->uv, points[i++]); - } -} - -static PBool p_intersect_line_2d_dir(const float v1[2], - const float dir1[2], - const float v2[2], - const float dir2[2], - float r_isect[2]) -{ - float lmbda, div; - - div = dir2[0] * dir1[1] - dir2[1] * dir1[0]; - - if (div == 0.0f) { - return P_FALSE; - } - - lmbda = ((v1[1] - v2[1]) * dir1[0] - (v1[0] - v2[0]) * dir1[1]) / div; - r_isect[0] = v1[0] + lmbda * dir2[0]; - r_isect[1] = v1[1] + lmbda * dir2[1]; - - return P_TRUE; -} - -#if 0 -static PBool p_intersect_line_2d(const float v1[2], - const float v2[2], - const float v3[2], - const float v4[2], - const float r_isect[2]) -{ - float dir1[2], dir2[2]; - - dir1[0] = v4[0] - v3[0]; - dir1[1] = v4[1] - v3[1]; - - dir2[0] = v2[0] - v1[0]; - dir2[1] = v2[1] - v1[1]; - - if (!p_intersect_line_2d_dir(v1, dir1, v2, dir2, isect)) { - /* parallel - should never happen in theory for polygon kernel, but - * let's give a point nearby in case things go wrong */ - isect[0] = (v1[0] + v2[0]) * 0.5f; - isect[1] = (v1[1] + v2[1]) * 0.5f; - return P_FALSE; - } - - return P_TRUE; -} -#endif - -/* Topological Utilities */ - -static PEdge *p_wheel_edge_next(PEdge *e) -{ - return e->next->next->pair; -} - -static PEdge *p_wheel_edge_prev(PEdge *e) -{ - return (e->pair) ? e->pair->next : NULL; -} - -static PEdge *p_boundary_edge_next(PEdge *e) -{ - return e->next->vert->edge; -} - -static PEdge *p_boundary_edge_prev(PEdge *e) -{ - PEdge *we = e, *last; - - do { - last = we; - we = p_wheel_edge_next(we); - } while (we && (we != e)); - - return last->next->next; -} - -static PBool p_vert_interior(PVert *v) -{ - return (v->edge->pair != NULL); -} - -static void p_face_flip(PFace *f) -{ - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - int f1 = e1->flag, f2 = e2->flag, f3 = e3->flag; - float *orig_uv1 = e1->orig_uv, *orig_uv2 = e2->orig_uv, *orig_uv3 = e3->orig_uv; - - e1->vert = v2; - e1->next = e3; - e1->orig_uv = orig_uv2; - e1->flag = (f1 & ~PEDGE_VERTEX_FLAGS) | (f2 & PEDGE_VERTEX_FLAGS); - - e2->vert = v3; - e2->next = e1; - e2->orig_uv = orig_uv3; - e2->flag = (f2 & ~PEDGE_VERTEX_FLAGS) | (f3 & PEDGE_VERTEX_FLAGS); - - e3->vert = v1; - e3->next = e2; - e3->orig_uv = orig_uv1; - e3->flag = (f3 & ~PEDGE_VERTEX_FLAGS) | (f1 & PEDGE_VERTEX_FLAGS); -} - -#if 0 -static void p_chart_topological_sanity_check(PChart *chart) -{ - PVert *v; - PEdge *e; - - for (v = chart->verts; v; v = v->nextlink) { - param_test_equals_ptr("v->edge->vert", v, v->edge->vert); - } - - for (e = chart->edges; e; e = e->nextlink) { - if (e->pair) { - param_test_equals_ptr("e->pair->pair", e, e->pair->pair); - param_test_equals_ptr("pair->vert", e->vert, e->pair->next->vert); - param_test_equals_ptr("pair->next->vert", e->next->vert, e->pair->vert); - } - } -} -#endif - -/* Loading / Flushing */ - -static void p_vert_load_pin_select_uvs(PHandle *handle, PVert *v) -{ - PEdge *e; - int nedges = 0, npins = 0; - float pinuv[2]; - - v->uv[0] = v->uv[1] = 0.0f; - pinuv[0] = pinuv[1] = 0.0f; - e = v->edge; - do { - if (e->orig_uv) { - if (e->flag & PEDGE_SELECT) { - v->flag |= PVERT_SELECT; - } - - if (e->flag & PEDGE_PIN) { - pinuv[0] += e->orig_uv[0] * handle->aspx; - pinuv[1] += e->orig_uv[1] * handle->aspy; - npins++; - } - else { - v->uv[0] += e->orig_uv[0] * handle->aspx; - v->uv[1] += e->orig_uv[1] * handle->aspy; - } - - nedges++; - } - - e = p_wheel_edge_next(e); - } while (e && e != (v->edge)); - - if (npins > 0) { - v->uv[0] = pinuv[0] / npins; - v->uv[1] = pinuv[1] / npins; - v->flag |= PVERT_PIN; - } - else if (nedges > 0) { - v->uv[0] /= nedges; - v->uv[1] /= nedges; - } -} - -static void p_flush_uvs(PHandle *handle, PChart *chart) -{ - PEdge *e; - - for (e = chart->edges; e; e = e->nextlink) { - if (e->orig_uv) { - e->orig_uv[0] = e->vert->uv[0] / handle->aspx; - e->orig_uv[1] = e->vert->uv[1] / handle->aspy; - } - } -} - -static void p_flush_uvs_blend(PHandle *handle, PChart *chart, float blend) -{ - PEdge *e; - float invblend = 1.0f - blend; - - for (e = chart->edges; e; e = e->nextlink) { - if (e->orig_uv) { - e->orig_uv[0] = blend * e->old_uv[0] + invblend * e->vert->uv[0] / handle->aspx; - e->orig_uv[1] = blend * e->old_uv[1] + invblend * e->vert->uv[1] / handle->aspy; - } - } -} - -static void p_face_backup_uvs(PFace *f) -{ - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - - if (e1->orig_uv) { - e1->old_uv[0] = e1->orig_uv[0]; - e1->old_uv[1] = e1->orig_uv[1]; - } - if (e2->orig_uv) { - e2->old_uv[0] = e2->orig_uv[0]; - e2->old_uv[1] = e2->orig_uv[1]; - } - if (e3->orig_uv) { - e3->old_uv[0] = e3->orig_uv[0]; - e3->old_uv[1] = e3->orig_uv[1]; - } -} - -static void p_face_restore_uvs(PFace *f) -{ - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - - if (e1->orig_uv) { - e1->orig_uv[0] = e1->old_uv[0]; - e1->orig_uv[1] = e1->old_uv[1]; - } - if (e2->orig_uv) { - e2->orig_uv[0] = e2->old_uv[0]; - e2->orig_uv[1] = e2->old_uv[1]; - } - if (e3->orig_uv) { - e3->orig_uv[0] = e3->old_uv[0]; - e3->orig_uv[1] = e3->old_uv[1]; - } -} - -/* Construction (use only during construction, relies on u.key being set */ - -static PVert *p_vert_add(PHandle *handle, PHashKey key, const float co[3], PEdge *e) -{ - PVert *v = (PVert *)BLI_memarena_alloc(handle->arena, sizeof(*v)); - copy_v3_v3(v->co, co); - - /* Sanity check, a single nan/inf point causes the entire result to be invalid. - * Note that values within the calculation may _become_ non-finite, - * so the rest of the code still needs to take this possibility into account. */ - for (int i = 0; i < 3; i++) { - if (UNLIKELY(!isfinite(v->co[i]))) { - v->co[i] = 0.0f; - } - } - - v->u.key = key; - v->edge = e; - v->flag = 0; - - phash_insert(handle->hash_verts, (PHashLink *)v); - - return v; -} - -static PVert *p_vert_lookup(PHandle *handle, PHashKey key, const float co[3], PEdge *e) -{ - PVert *v = (PVert *)phash_lookup(handle->hash_verts, key); - - if (v) { - return v; - } - return p_vert_add(handle, key, co, e); -} - -static PVert *p_vert_copy(PChart *chart, PVert *v) -{ - PVert *nv = (PVert *)BLI_memarena_alloc(chart->handle->arena, sizeof(*nv)); - - copy_v3_v3(nv->co, v->co); - nv->uv[0] = v->uv[0]; - nv->uv[1] = v->uv[1]; - nv->u.key = v->u.key; - nv->edge = v->edge; - nv->flag = v->flag; - - return nv; -} - -static PEdge *p_edge_lookup(PHandle *handle, const PHashKey *vkeys) -{ - PHashKey key = PHASH_edge(vkeys[0], vkeys[1]); - PEdge *e = (PEdge *)phash_lookup(handle->hash_edges, key); - - while (e) { - if ((e->vert->u.key == vkeys[0]) && (e->next->vert->u.key == vkeys[1])) { - return e; - } - if ((e->vert->u.key == vkeys[1]) && (e->next->vert->u.key == vkeys[0])) { - return e; - } - - e = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)e); - } - - return NULL; -} - -static int p_face_exists(ParamHandle *phandle, ParamKey *pvkeys, int i1, int i2, int i3) -{ - PHandle *handle = (PHandle *)phandle; - PHashKey *vkeys = (PHashKey *)pvkeys; - PHashKey key = PHASH_edge(vkeys[i1], vkeys[i2]); - PEdge *e = (PEdge *)phash_lookup(handle->hash_edges, key); - - while (e) { - if ((e->vert->u.key == vkeys[i1]) && (e->next->vert->u.key == vkeys[i2])) { - if (e->next->next->vert->u.key == vkeys[i3]) { - return P_TRUE; - } - } - else if ((e->vert->u.key == vkeys[i2]) && (e->next->vert->u.key == vkeys[i1])) { - if (e->next->next->vert->u.key == vkeys[i3]) { - return P_TRUE; - } - } - - e = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)e); - } - - return P_FALSE; -} - -static PChart *p_chart_new(PHandle *handle) -{ - PChart *chart = (PChart *)MEM_callocN(sizeof(*chart), "PChart"); - chart->handle = handle; - - return chart; -} - -static void p_chart_delete(PChart *chart) -{ - /* the actual links are free by memarena */ - MEM_freeN(chart); -} - -static PBool p_edge_implicit_seam(PEdge *e, PEdge *ep) -{ - float *uv1, *uv2, *uvp1, *uvp2; - float limit[2]; - - limit[0] = 0.00001; - limit[1] = 0.00001; - - uv1 = e->orig_uv; - uv2 = e->next->orig_uv; - - if (e->vert->u.key == ep->vert->u.key) { - uvp1 = ep->orig_uv; - uvp2 = ep->next->orig_uv; - } - else { - uvp1 = ep->next->orig_uv; - uvp2 = ep->orig_uv; - } - - if ((fabsf(uv1[0] - uvp1[0]) > limit[0]) || (fabsf(uv1[1] - uvp1[1]) > limit[1])) { - e->flag |= PEDGE_SEAM; - ep->flag |= PEDGE_SEAM; - return P_TRUE; - } - if ((fabsf(uv2[0] - uvp2[0]) > limit[0]) || (fabsf(uv2[1] - uvp2[1]) > limit[1])) { - e->flag |= PEDGE_SEAM; - ep->flag |= PEDGE_SEAM; - return P_TRUE; - } - - return P_FALSE; -} - -static PBool p_edge_has_pair(PHandle *handle, PEdge *e, PBool topology_from_uvs, PEdge **r_pair) -{ - PHashKey key; - PEdge *pe; - PVert *v1, *v2; - PHashKey key1 = e->vert->u.key; - PHashKey key2 = e->next->vert->u.key; - - if (e->flag & PEDGE_SEAM) { - return P_FALSE; - } - - key = PHASH_edge(key1, key2); - pe = (PEdge *)phash_lookup(handle->hash_edges, key); - *r_pair = NULL; - - while (pe) { - if (pe != e) { - v1 = pe->vert; - v2 = pe->next->vert; - - if (((v1->u.key == key1) && (v2->u.key == key2)) || - ((v1->u.key == key2) && (v2->u.key == key1))) { - - /* don't connect seams and t-junctions */ - if ((pe->flag & PEDGE_SEAM) || *r_pair || - (topology_from_uvs && p_edge_implicit_seam(e, pe))) { - *r_pair = NULL; - return P_FALSE; - } - - *r_pair = pe; - } - } - - pe = (PEdge *)phash_next(handle->hash_edges, key, (PHashLink *)pe); - } - - if (*r_pair && (e->vert == (*r_pair)->vert)) { - if ((*r_pair)->next->pair || (*r_pair)->next->next->pair) { - /* non unfoldable, maybe mobius ring or klein bottle */ - *r_pair = NULL; - return P_FALSE; - } - } - - return (*r_pair != NULL); -} - -static PBool p_edge_connect_pair(PHandle *handle, - PEdge *e, - PBool topology_from_uvs, - PEdge ***stack) -{ - PEdge *pair = NULL; - - if (!e->pair && p_edge_has_pair(handle, e, topology_from_uvs, &pair)) { - if (e->vert == pair->vert) { - p_face_flip(pair->face); - } - - e->pair = pair; - pair->pair = e; - - if (!(pair->face->flag & PFACE_CONNECTED)) { - **stack = pair; - (*stack)++; - } - } - - return (e->pair != NULL); -} - -static int p_connect_pairs(PHandle *handle, PBool topology_from_uvs) -{ - PEdge **stackbase = MEM_mallocN(sizeof(*stackbase) * phash_size(handle->hash_faces), - "Pstackbase"); - PEdge **stack = stackbase; - PFace *f, *first; - PEdge *e, *e1, *e2; - PChart *chart = handle->construction_chart; - int ncharts = 0; - - /* Connect pairs, count edges, set vertex-edge pointer to a pair-less edge. */ - for (first = chart->faces; first; first = first->nextlink) { - if (first->flag & PFACE_CONNECTED) { - continue; - } - - *stack = first->edge; - stack++; - - while (stack != stackbase) { - stack--; - e = *stack; - e1 = e->next; - e2 = e1->next; - - f = e->face; - f->flag |= PFACE_CONNECTED; - - /* assign verts to charts so we can sort them later */ - f->u.chart = ncharts; - - if (!p_edge_connect_pair(handle, e, topology_from_uvs, &stack)) { - e->vert->edge = e; - } - if (!p_edge_connect_pair(handle, e1, topology_from_uvs, &stack)) { - e1->vert->edge = e1; - } - if (!p_edge_connect_pair(handle, e2, topology_from_uvs, &stack)) { - e2->vert->edge = e2; - } - } - - ncharts++; - } - - MEM_freeN(stackbase); - - return ncharts; -} - -static void p_split_vert(PChart *chart, PEdge *e) -{ - PEdge *we, *lastwe = NULL; - PVert *v = e->vert; - PBool copy = P_TRUE; - - if (e->flag & PEDGE_PIN) { - chart->flag |= PCHART_HAS_PINS; - } - - if (e->flag & PEDGE_VERTEX_SPLIT) { - return; - } - - /* rewind to start */ - lastwe = e; - for (we = p_wheel_edge_prev(e); we && (we != e); we = p_wheel_edge_prev(we)) { - lastwe = we; - } - - /* go over all edges in wheel */ - for (we = lastwe; we; we = p_wheel_edge_next(we)) { - if (we->flag & PEDGE_VERTEX_SPLIT) { - break; - } - - we->flag |= PEDGE_VERTEX_SPLIT; - - if (we == v->edge) { - /* found it, no need to copy */ - copy = P_FALSE; - v->nextlink = chart->verts; - chart->verts = v; - chart->nverts++; - } - } - - if (copy) { - /* not found, copying */ - v->flag |= PVERT_SPLIT; - v = p_vert_copy(chart, v); - v->flag |= PVERT_SPLIT; - - v->nextlink = chart->verts; - chart->verts = v; - chart->nverts++; - - v->edge = lastwe; - - we = lastwe; - do { - we->vert = v; - we = p_wheel_edge_next(we); - } while (we && (we != lastwe)); - } -} - -static PChart **p_split_charts(PHandle *handle, PChart *chart, int ncharts) -{ - PChart **charts = MEM_mallocN(sizeof(*charts) * ncharts, "PCharts"), *nchart; - PFace *f, *nextf; - int i; - - for (i = 0; i < ncharts; i++) { - charts[i] = p_chart_new(handle); - } - - f = chart->faces; - while (f) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - nextf = f->nextlink; - - nchart = charts[f->u.chart]; - - f->nextlink = nchart->faces; - nchart->faces = f; - e1->nextlink = nchart->edges; - nchart->edges = e1; - e2->nextlink = nchart->edges; - nchart->edges = e2; - e3->nextlink = nchart->edges; - nchart->edges = e3; - - nchart->nfaces++; - nchart->nedges += 3; - - p_split_vert(nchart, e1); - p_split_vert(nchart, e2); - p_split_vert(nchart, e3); - - f = nextf; - } - - return charts; -} - -static PFace *p_face_add(PHandle *handle) -{ - PFace *f; - PEdge *e1, *e2, *e3; - - /* allocate */ - f = (PFace *)BLI_memarena_alloc(handle->arena, sizeof(*f)); - f->flag = 0; /* init ! */ - - e1 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e1)); - e2 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e2)); - e3 = (PEdge *)BLI_memarena_alloc(handle->arena, sizeof(*e3)); - - /* set up edges */ - f->edge = e1; - e1->face = e2->face = e3->face = f; - - e1->next = e2; - e2->next = e3; - e3->next = e1; - - e1->pair = NULL; - e2->pair = NULL; - e3->pair = NULL; - - e1->flag = 0; - e2->flag = 0; - e3->flag = 0; - - return f; -} - -static PFace *p_face_add_construct(PHandle *handle, - ParamKey key, - const ParamKey *vkeys, - float *co[4], - float *uv[4], - int i1, - int i2, - int i3, - const ParamBool *pin, - const ParamBool *select) -{ - PFace *f = p_face_add(handle); - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - - e1->vert = p_vert_lookup(handle, vkeys[i1], co[i1], e1); - e2->vert = p_vert_lookup(handle, vkeys[i2], co[i2], e2); - e3->vert = p_vert_lookup(handle, vkeys[i3], co[i3], e3); - - e1->orig_uv = uv[i1]; - e2->orig_uv = uv[i2]; - e3->orig_uv = uv[i3]; - - if (pin) { - if (pin[i1]) { - e1->flag |= PEDGE_PIN; - } - if (pin[i2]) { - e2->flag |= PEDGE_PIN; - } - if (pin[i3]) { - e3->flag |= PEDGE_PIN; - } - } - - if (select) { - if (select[i1]) { - e1->flag |= PEDGE_SELECT; - } - if (select[i2]) { - e2->flag |= PEDGE_SELECT; - } - if (select[i3]) { - e3->flag |= PEDGE_SELECT; - } - } - - /* insert into hash */ - f->u.key = key; - phash_insert(handle->hash_faces, (PHashLink *)f); - - e1->u.key = PHASH_edge(vkeys[i1], vkeys[i2]); - e2->u.key = PHASH_edge(vkeys[i2], vkeys[i3]); - e3->u.key = PHASH_edge(vkeys[i3], vkeys[i1]); - - phash_insert(handle->hash_edges, (PHashLink *)e1); - phash_insert(handle->hash_edges, (PHashLink *)e2); - phash_insert(handle->hash_edges, (PHashLink *)e3); - - return f; -} - -static PFace *p_face_add_fill(PChart *chart, PVert *v1, PVert *v2, PVert *v3) -{ - PFace *f = p_face_add(chart->handle); - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - - e1->vert = v1; - e2->vert = v2; - e3->vert = v3; - - e1->orig_uv = e2->orig_uv = e3->orig_uv = NULL; - - f->nextlink = chart->faces; - chart->faces = f; - e1->nextlink = chart->edges; - chart->edges = e1; - e2->nextlink = chart->edges; - chart->edges = e2; - e3->nextlink = chart->edges; - chart->edges = e3; - - chart->nfaces++; - chart->nedges += 3; - - return f; -} - -static PBool p_quad_split_direction(PHandle *handle, float **co, PHashKey *vkeys) -{ - /* Slight bias to prefer one edge over the other in case they are equal, so - * that in symmetric models we choose the same split direction instead of - * depending on floating point errors to decide. */ - float bias = 1.0f + 1e-6f; - float fac = len_v3v3(co[0], co[2]) * bias - len_v3v3(co[1], co[3]); - PBool dir = (fac <= 0.0f); - - /* The face exists check is there because of a special case: - * when two quads share three vertices, they can each be split into two triangles, - * resulting in two identical triangles. For example in Suzanne's nose. */ - if (dir) { - if (p_face_exists(handle, vkeys, 0, 1, 2) || p_face_exists(handle, vkeys, 0, 2, 3)) { - return !dir; - } - } - else { - if (p_face_exists(handle, vkeys, 0, 1, 3) || p_face_exists(handle, vkeys, 1, 2, 3)) { - return !dir; - } - } - - return dir; -} - -/* Construction: boundary filling */ - -static void p_chart_boundaries(PChart *chart, int *r_nboundaries, PEdge **r_outer) -{ - PEdge *e, *be; - float len, maxlen = -1.0; - - if (r_nboundaries) { - *r_nboundaries = 0; - } - if (r_outer) { - *r_outer = NULL; - } - - for (e = chart->edges; e; e = e->nextlink) { - if (e->pair || (e->flag & PEDGE_DONE)) { - continue; - } - - if (r_nboundaries) { - (*r_nboundaries)++; - } - - len = 0.0f; - - be = e; - do { - be->flag |= PEDGE_DONE; - len += p_edge_length(be); - be = be->next->vert->edge; - } while (be != e); - - if (r_outer && (len > maxlen)) { - *r_outer = e; - maxlen = len; - } - } - - for (e = chart->edges; e; e = e->nextlink) { - e->flag &= ~PEDGE_DONE; - } -} - -static float p_edge_boundary_angle(PEdge *e) -{ - PEdge *we; - PVert *v, *v1, *v2; - float angle; - int n = 0; - - v = e->vert; - - /* concave angle check -- could be better */ - angle = M_PI; - - we = v->edge; - do { - v1 = we->next->vert; - v2 = we->next->next->vert; - angle -= p_vec_angle(v1->co, v->co, v2->co); - - we = we->next->next->pair; - n++; - } while (we && (we != v->edge)); - - return angle; -} - -static void p_chart_fill_boundary(PChart *chart, PEdge *be, int nedges) -{ - PEdge *e, *e1, *e2; - - PFace *f; - struct Heap *heap = BLI_heap_new(); - float angle; - - e = be; - do { - angle = p_edge_boundary_angle(e); - e->u.heaplink = BLI_heap_insert(heap, angle, e); - - e = p_boundary_edge_next(e); - } while (e != be); - - if (nedges == 2) { - /* no real boundary, but an isolated seam */ - e = be->next->vert->edge; - e->pair = be; - be->pair = e; - - BLI_heap_remove(heap, e->u.heaplink); - BLI_heap_remove(heap, be->u.heaplink); - } - else { - while (nedges > 2) { - PEdge *ne, *ne1, *ne2; - - e = (PEdge *)BLI_heap_pop_min(heap); - - e1 = p_boundary_edge_prev(e); - e2 = p_boundary_edge_next(e); - - BLI_heap_remove(heap, e1->u.heaplink); - BLI_heap_remove(heap, e2->u.heaplink); - e->u.heaplink = e1->u.heaplink = e2->u.heaplink = NULL; - - e->flag |= PEDGE_FILLED; - e1->flag |= PEDGE_FILLED; - - f = p_face_add_fill(chart, e->vert, e1->vert, e2->vert); - f->flag |= PFACE_FILLED; - - ne = f->edge->next->next; - ne1 = f->edge; - ne2 = f->edge->next; - - ne->flag = ne1->flag = ne2->flag = PEDGE_FILLED; - - e->pair = ne; - ne->pair = e; - e1->pair = ne1; - ne1->pair = e1; - - ne->vert = e2->vert; - ne1->vert = e->vert; - ne2->vert = e1->vert; - - if (nedges == 3) { - e2->pair = ne2; - ne2->pair = e2; - } - else { - ne2->vert->edge = ne2; - - ne2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(ne2), ne2); - e2->u.heaplink = BLI_heap_insert(heap, p_edge_boundary_angle(e2), e2); - } - - nedges--; - } - } - - BLI_heap_free(heap, NULL); -} - -static void p_chart_fill_boundaries(PChart *chart, PEdge *outer) -{ - PEdge *e, *be; /* *enext - as yet unused */ - int nedges; - - for (e = chart->edges; e; e = e->nextlink) { - /* enext = e->nextlink; - as yet unused */ - - if (e->pair || (e->flag & PEDGE_FILLED)) { - continue; - } - - nedges = 0; - be = e; - do { - be->flag |= PEDGE_FILLED; - be = be->next->vert->edge; - nedges++; - } while (be != e); - - if (e != outer) { - p_chart_fill_boundary(chart, e, nedges); - } - } -} - -#if 0 -/* Polygon kernel for inserting uv's non overlapping */ - -static int p_polygon_point_in(const float cp1[2], const float cp2[2], const float p[2]) -{ - if ((cp1[0] == p[0]) && (cp1[1] == p[1])) { - return 2; - } - else if ((cp2[0] == p[0]) && (cp2[1] == p[1])) { - return 3; - } - else { - return (p_area_signed(cp1, cp2, p) >= 0.0f); - } -} - -static void p_polygon_kernel_clip(float (*oldpoints)[2], - int noldpoints, - float (*newpoints)[2], - int *r_nnewpoints, - const float cp1[2], - const float cp2[2]) -{ - float *p2, *p1, isect[2]; - int i, p2in, p1in; - - p1 = oldpoints[noldpoints - 1]; - p1in = p_polygon_point_in(cp1, cp2, p1); - *r_nnewpoints = 0; - - for (i = 0; i < noldpoints; i++) { - p2 = oldpoints[i]; - p2in = p_polygon_point_in(cp1, cp2, p2); - - if ((p2in >= 2) || (p1in && p2in)) { - newpoints[*r_nnewpoints][0] = p2[0]; - newpoints[*r_nnewpoints][1] = p2[1]; - (*r_nnewpoints)++; - } - else if (p1in && !p2in) { - if (p1in != 3) { - p_intersect_line_2d(p1, p2, cp1, cp2, isect); - newpoints[*r_nnewpoints][0] = isect[0]; - newpoints[*r_nnewpoints][1] = isect[1]; - (*r_nnewpoints)++; - } - } - else if (!p1in && p2in) { - p_intersect_line_2d(p1, p2, cp1, cp2, isect); - newpoints[*r_nnewpoints][0] = isect[0]; - newpoints[*r_nnewpoints][1] = isect[1]; - (*r_nnewpoints)++; - - newpoints[*r_nnewpoints][0] = p2[0]; - newpoints[*r_nnewpoints][1] = p2[1]; - (*r_nnewpoints)++; - } - - p1in = p2in; - p1 = p2; - } -} - -static void p_polygon_kernel_center(float (*points)[2], int npoints, float *center) -{ - int i, size, nnewpoints = npoints; - float(*oldpoints)[2], (*newpoints)[2], *p1, *p2; - - size = npoints * 3; - oldpoints = MEM_mallocN(sizeof(float[2]) * size, "PPolygonOldPoints"); - newpoints = MEM_mallocN(sizeof(float[2]) * size, "PPolygonNewPoints"); - - memcpy(oldpoints, points, sizeof(float[2]) * npoints); - - for (i = 0; i < npoints; i++) { - p1 = points[i]; - p2 = points[(i + 1) % npoints]; - p_polygon_kernel_clip(oldpoints, nnewpoints, newpoints, &nnewpoints, p1, p2); - - if (nnewpoints == 0) { - /* degenerate case, use center of original polygon */ - memcpy(oldpoints, points, sizeof(float[2]) * npoints); - nnewpoints = npoints; - break; - } - else if (nnewpoints == 1) { - /* degenerate case, use remaining point */ - center[0] = newpoints[0][0]; - center[1] = newpoints[0][1]; - - MEM_freeN(oldpoints); - MEM_freeN(newpoints); - - return; - } - - if (nnewpoints * 2 > size) { - size *= 2; - MEM_freeN(oldpoints); - oldpoints = MEM_mallocN(sizeof(float[2]) * size, "oldpoints"); - memcpy(oldpoints, newpoints, sizeof(float[2]) * nnewpoints); - MEM_freeN(newpoints); - newpoints = MEM_mallocN(sizeof(float[2]) * size, "newpoints"); - } - else { - float(*sw_points)[2] = oldpoints; - oldpoints = newpoints; - newpoints = sw_points; - } - } - - center[0] = center[1] = 0.0f; - - for (i = 0; i < nnewpoints; i++) { - center[0] += oldpoints[i][0]; - center[1] += oldpoints[i][1]; - } - - center[0] /= nnewpoints; - center[1] /= nnewpoints; - - MEM_freeN(oldpoints); - MEM_freeN(newpoints); -} -#endif - -#if 0 -/* Edge Collapser */ - -int NCOLLAPSE = 1; -int NCOLLAPSEX = 0; - -static float p_vert_cotan(const float v1[3], const float v2[3], const float v3[3]) -{ - float a[3], b[3], c[3], clen; - - sub_v3_v3v3(a, v2, v1); - sub_v3_v3v3(b, v3, v1); - cross_v3_v3v3(c, a, b); - - clen = len_v3(c); - - if (clen == 0.0f) { - return 0.0f; - } - - return dot_v3v3(a, b) / clen; -} - -static PBool p_vert_flipped_wheel_triangle(PVert *v) -{ - PEdge *e = v->edge; - - do { - if (p_face_uv_area_signed(e->face) < 0.0f) { - return P_TRUE; - } - - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); - - return P_FALSE; -} - -static PBool p_vert_map_harmonic_weights(PVert *v) -{ - float weightsum, positionsum[2], olduv[2]; - - weightsum = 0.0f; - positionsum[0] = positionsum[1] = 0.0f; - - if (p_vert_interior(v)) { - PEdge *e = v->edge; - - do { - float t1, t2, weight; - PVert *v1, *v2; - - v1 = e->next->vert; - v2 = e->next->next->vert; - t1 = p_vert_cotan(v2->co, e->vert->co, v1->co); - - v1 = e->pair->next->vert; - v2 = e->pair->next->next->vert; - t2 = p_vert_cotan(v2->co, e->pair->vert->co, v1->co); - - weight = 0.5f * (t1 + t2); - weightsum += weight; - positionsum[0] += weight * e->pair->vert->uv[0]; - positionsum[1] += weight * e->pair->vert->uv[1]; - - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); - } - else { - PEdge *e = v->edge; - - do { - float t1, t2; - PVert *v1, *v2; - - v2 = e->next->vert; - v1 = e->next->next->vert; - - t1 = p_vert_cotan(v1->co, v->co, v2->co); - t2 = p_vert_cotan(v2->co, v->co, v1->co); - - weightsum += t1 + t2; - positionsum[0] += (v2->uv[1] - v1->uv[1]) + (t1 * v2->uv[0] + t2 * v1->uv[0]); - positionsum[1] += (v1->uv[0] - v2->uv[0]) + (t1 * v2->uv[1] + t2 * v1->uv[1]); - - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); - } - - if (weightsum != 0.0f) { - weightsum = 1.0f / weightsum; - positionsum[0] *= weightsum; - positionsum[1] *= weightsum; - } - - olduv[0] = v->uv[0]; - olduv[1] = v->uv[1]; - v->uv[0] = positionsum[0]; - v->uv[1] = positionsum[1]; - - if (p_vert_flipped_wheel_triangle(v)) { - v->uv[0] = olduv[0]; - v->uv[1] = olduv[1]; - - return P_FALSE; - } - - return P_TRUE; -} - -static void p_vert_harmonic_insert(PVert *v) -{ - PEdge *e; - - if (!p_vert_map_harmonic_weights(v)) { - /* do polygon kernel center insertion: this is quite slow, but should - * only be needed for 0.01 % of verts or so, when insert with harmonic - * weights fails */ - - int npoints = 0, i; - float(*points)[2]; - - e = v->edge; - do { - npoints++; - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); - - if (e == NULL) { - npoints++; - } - - points = MEM_mallocN(sizeof(float[2]) * npoints, "PHarmonicPoints"); - - e = v->edge; - i = 0; - do { - PEdge *nexte = p_wheel_edge_next(e); - - points[i][0] = e->next->vert->uv[0]; - points[i][1] = e->next->vert->uv[1]; - - if (nexte == NULL) { - i++; - points[i][0] = e->next->next->vert->uv[0]; - points[i][1] = e->next->next->vert->uv[1]; - break; - } - - e = nexte; - i++; - } while (e != v->edge); - - p_polygon_kernel_center(points, npoints, v->uv); - - MEM_freeN(points); - } - - e = v->edge; - do { - if (!(e->next->vert->flag & PVERT_PIN)) { - p_vert_map_harmonic_weights(e->next->vert); - } - e = p_wheel_edge_next(e); - } while (e && (e != v->edge)); - - p_vert_map_harmonic_weights(v); -} - -static void p_vert_fix_edge_pointer(PVert *v) -{ - PEdge *start = v->edge; - - /* set v->edge pointer to the edge with no pair, if there is one */ - while (v->edge->pair) { - v->edge = p_wheel_edge_prev(v->edge); - - if (v->edge == start) { - break; - } - } -} - -static void p_collapsing_verts(PEdge *edge, PEdge *pair, PVert **r_newv, PVert **r_keepv) -{ - /* the two vertices that are involved in the collapse */ - if (edge) { - *r_newv = edge->vert; - *r_keepv = edge->next->vert; - } - else { - *r_newv = pair->next->vert; - *r_keepv = pair->vert; - } -} - -static void p_collapse_edge(PEdge *edge, PEdge *pair) -{ - PVert *oldv, *keepv; - PEdge *e; - - p_collapsing_verts(edge, pair, &oldv, &keepv); - - /* change e->vert pointers from old vertex to the target vertex */ - e = oldv->edge; - do { - if ((e != edge) && !(pair && pair->next == e)) { - e->vert = keepv; - } - - e = p_wheel_edge_next(e); - } while (e && (e != oldv->edge)); - - /* set keepv->edge pointer */ - if ((edge && (keepv->edge == edge->next)) || (keepv->edge == pair)) { - if (edge && edge->next->pair) { - keepv->edge = edge->next->pair->next; - } - else if (pair && pair->next->next->pair) { - keepv->edge = pair->next->next->pair; - } - else if (edge && edge->next->next->pair) { - keepv->edge = edge->next->next->pair; - } - else { - keepv->edge = pair->next->pair->next; - } - } - - /* update pairs and v->edge pointers */ - if (edge) { - PEdge *e1 = edge->next, *e2 = e1->next; - - if (e1->pair) { - e1->pair->pair = e2->pair; - } - - if (e2->pair) { - e2->pair->pair = e1->pair; - e2->vert->edge = p_wheel_edge_prev(e2); - } - else { - e2->vert->edge = p_wheel_edge_next(e2); - } - - p_vert_fix_edge_pointer(e2->vert); - } - - if (pair) { - PEdge *e1 = pair->next, *e2 = e1->next; - - if (e1->pair) { - e1->pair->pair = e2->pair; - } - - if (e2->pair) { - e2->pair->pair = e1->pair; - e2->vert->edge = p_wheel_edge_prev(e2); - } - else { - e2->vert->edge = p_wheel_edge_next(e2); - } - - p_vert_fix_edge_pointer(e2->vert); - } - - p_vert_fix_edge_pointer(keepv); - - /* mark for move to collapsed list later */ - oldv->flag |= PVERT_COLLAPSE; - - if (edge) { - PFace *f = edge->face; - PEdge *e1 = edge->next, *e2 = e1->next; - - f->flag |= PFACE_COLLAPSE; - edge->flag |= PEDGE_COLLAPSE; - e1->flag |= PEDGE_COLLAPSE; - e2->flag |= PEDGE_COLLAPSE; - } - - if (pair) { - PFace *f = pair->face; - PEdge *e1 = pair->next, *e2 = e1->next; - - f->flag |= PFACE_COLLAPSE; - pair->flag |= PEDGE_COLLAPSE; - e1->flag |= PEDGE_COLLAPSE; - e2->flag |= PEDGE_COLLAPSE; - } -} - -static void p_split_vertex(PEdge *edge, PEdge *pair) -{ - PVert *newv, *keepv; - PEdge *e; - - p_collapsing_verts(edge, pair, &newv, &keepv); - - /* update edge pairs */ - if (edge) { - PEdge *e1 = edge->next, *e2 = e1->next; - - if (e1->pair) { - e1->pair->pair = e1; - } - if (e2->pair) { - e2->pair->pair = e2; - } - - e2->vert->edge = e2; - p_vert_fix_edge_pointer(e2->vert); - keepv->edge = e1; - } - - if (pair) { - PEdge *e1 = pair->next, *e2 = e1->next; - - if (e1->pair) { - e1->pair->pair = e1; - } - if (e2->pair) { - e2->pair->pair = e2; - } - - e2->vert->edge = e2; - p_vert_fix_edge_pointer(e2->vert); - keepv->edge = pair; - } - - p_vert_fix_edge_pointer(keepv); - - /* set e->vert pointers to restored vertex */ - e = newv->edge; - do { - e->vert = newv; - e = p_wheel_edge_next(e); - } while (e && (e != newv->edge)); -} - -static PBool p_collapse_allowed_topologic(PEdge *edge, PEdge *pair) -{ - PVert *oldv, *keepv; - - p_collapsing_verts(edge, pair, &oldv, &keepv); - - /* boundary edges */ - if (!edge || !pair) { - /* avoid collapsing chart into an edge */ - if (edge && !edge->next->pair && !edge->next->next->pair) { - return P_FALSE; - } - else if (pair && !pair->next->pair && !pair->next->next->pair) { - return P_FALSE; - } - } - /* avoid merging two boundaries (oldv and keepv are on the 'other side' of - * the chart) */ - else if (!p_vert_interior(oldv) && !p_vert_interior(keepv)) { - return P_FALSE; - } - - return P_TRUE; -} - -static PBool p_collapse_normal_flipped(float *v1, float *v2, float *vold, float *vnew) -{ - float nold[3], nnew[3], sub1[3], sub2[3]; - - sub_v3_v3v3(sub1, vold, v1); - sub_v3_v3v3(sub2, vold, v2); - cross_v3_v3v3(nold, sub1, sub2); - - sub_v3_v3v3(sub1, vnew, v1); - sub_v3_v3v3(sub2, vnew, v2); - cross_v3_v3v3(nnew, sub1, sub2); - - return (dot_v3v3(nold, nnew) <= 0.0f); -} - -static PBool p_collapse_allowed_geometric(PEdge *edge, PEdge *pair) -{ - PVert *oldv, *keepv; - PEdge *e; - float angulardefect, angle; - - p_collapsing_verts(edge, pair, &oldv, &keepv); - - angulardefect = 2 * M_PI; - - e = oldv->edge; - do { - float a[3], b[3], minangle, maxangle; - PEdge *e1 = e->next, *e2 = e1->next; - PVert *v1 = e1->vert, *v2 = e2->vert; - int i; - - angle = p_vec_angle(v1->co, oldv->co, v2->co); - angulardefect -= angle; - - /* skip collapsing faces */ - if (v1 == keepv || v2 == keepv) { - e = p_wheel_edge_next(e); - continue; - } - - if (p_collapse_normal_flipped(v1->co, v2->co, oldv->co, keepv->co)) { - return P_FALSE; - } - - a[0] = angle; - a[1] = p_vec_angle(v2->co, v1->co, oldv->co); - a[2] = M_PI - a[0] - a[1]; - - b[0] = p_vec_angle(v1->co, keepv->co, v2->co); - b[1] = p_vec_angle(v2->co, v1->co, keepv->co); - b[2] = M_PI - b[0] - b[1]; - - /* ABF criterion 1: avoid sharp and obtuse angles. */ - minangle = 15.0f * M_PI / 180.0f; - maxangle = M_PI - minangle; - - for (i = 0; i < 3; i++) { - if ((b[i] < a[i]) && (b[i] < minangle)) { - return P_FALSE; - } - else if ((b[i] > a[i]) && (b[i] > maxangle)) { - return P_FALSE; - } - } - - e = p_wheel_edge_next(e); - } while (e && (e != oldv->edge)); - - if (p_vert_interior(oldv)) { - /* HLSCM criterion: angular defect smaller than threshold. */ - if (fabsf(angulardefect) > (float)(M_PI * 30.0 / 180.0)) { - return P_FALSE; - } - } - else { - PVert *v1 = p_boundary_edge_next(oldv->edge)->vert; - PVert *v2 = p_boundary_edge_prev(oldv->edge)->vert; - - /* ABF++ criterion 2: avoid collapsing verts inwards. */ - if (p_vert_interior(keepv)) { - return P_FALSE; - } - - /* Don't collapse significant boundary changes. */ - angle = p_vec_angle(v1->co, oldv->co, v2->co); - if (angle < (M_PI * 160.0 / 180.0)) { - return P_FALSE; - } - } - - return P_TRUE; -} - -static PBool p_collapse_allowed(PEdge *edge, PEdge *pair) -{ - PVert *oldv, *keepv; - - p_collapsing_verts(edge, pair, &oldv, &keepv); - - if (oldv->flag & PVERT_PIN) { - return P_FALSE; - } - - return (p_collapse_allowed_topologic(edge, pair) && p_collapse_allowed_geometric(edge, pair)); -} - -static float p_collapse_cost(PEdge *edge, PEdge *pair) -{ - /* based on volume and boundary optimization from: - * "Fast and Memory Efficient Polygonal Simplification" P. Lindstrom, G. Turk */ - - PVert *oldv, *keepv; - PEdge *e; - PFace *oldf1, *oldf2; - float volumecost = 0.0f, areacost = 0.0f, edgevec[3], cost, weight, elen; - float shapecost = 0.0f; - float shapeold = 0.0f, shapenew = 0.0f; - int nshapeold = 0, nshapenew = 0; - - p_collapsing_verts(edge, pair, &oldv, &keepv); - oldf1 = (edge) ? edge->face : NULL; - oldf2 = (pair) ? pair->face : NULL; - - sub_v3_v3v3(edgevec, keepv->co, oldv->co); - - e = oldv->edge; - do { - float a1, a2, a3; - float *co1 = e->next->vert->co; - float *co2 = e->next->next->vert->co; - - if (!ELEM(e->face, oldf1, oldf2)) { - float tetrav2[3], tetrav3[3]; - - /* tetrahedron volume = (1/3!)*|a.(b x c)| */ - sub_v3_v3v3(tetrav2, co1, oldv->co); - sub_v3_v3v3(tetrav3, co2, oldv->co); - volumecost += fabsf(volume_tri_tetrahedron_signed_v3(tetrav2, tetrav3, edgevec)); - -# if 0 - shapecost += dot_v3v3(co1, keepv->co); - - if (p_wheel_edge_next(e) == NULL) { - shapecost += dot_v3v3(co2, keepv->co); - } -# endif - - p_triangle_angles(oldv->co, co1, co2, &a1, &a2, &a3); - a1 = a1 - M_PI / 3.0; - a2 = a2 - M_PI / 3.0; - a3 = a3 - M_PI / 3.0; - shapeold = (a1 * a1 + a2 * a2 + a3 * a3) / (M_PI_2 * M_PI_2); - - nshapeold++; - } - else { - p_triangle_angles(keepv->co, co1, co2, &a1, &a2, &a3); - a1 = a1 - M_PI / 3.0; - a2 = a2 - M_PI / 3.0; - a3 = a3 - M_PI / 3.0; - shapenew = (a1 * a1 + a2 * a2 + a3 * a3) / (M_PI_2 * M_PI_2); - - nshapenew++; - } - - e = p_wheel_edge_next(e); - } while (e && (e != oldv->edge)); - - if (!p_vert_interior(oldv)) { - PVert *v1 = p_boundary_edge_prev(oldv->edge)->vert; - PVert *v2 = p_boundary_edge_next(oldv->edge)->vert; - - areacost = area_tri_v3(oldv->co, v1->co, v2->co); - } - - elen = len_v3(edgevec); - weight = 1.0f; /* 0.2f */ - cost = weight * volumecost * volumecost + elen * elen * areacost * areacost; -# if 0 - cost += shapecost; -# else - shapeold /= nshapeold; - shapenew /= nshapenew; - shapecost = (shapeold + 0.00001) / (shapenew + 0.00001); - - cost *= shapecost; -# endif - - return cost; -} - -static void p_collapse_cost_vertex(PVert *vert, float *r_mincost, PEdge **r_mine) -{ - PEdge *e, *enext, *pair; - - *r_mine = NULL; - *r_mincost = 0.0f; - e = vert->edge; - do { - if (p_collapse_allowed(e, e->pair)) { - float cost = p_collapse_cost(e, e->pair); - - if ((*r_mine == NULL) || (cost < *r_mincost)) { - *r_mincost = cost; - *r_mine = e; - } - } - - enext = p_wheel_edge_next(e); - - if (enext == NULL) { - /* the other boundary edge, where we only have the pair halfedge */ - pair = e->next->next; - - if (p_collapse_allowed(NULL, pair)) { - float cost = p_collapse_cost(NULL, pair); - - if ((*r_mine == NULL) || (cost < *r_mincost)) { - *r_mincost = cost; - *r_mine = pair; - } - } - - break; - } - - e = enext; - } while (e != vert->edge); -} - -static void p_chart_post_collapse_flush(PChart *chart, PEdge *collapsed) -{ - /* Move to `collapsed_*`. */ - - PVert *v, *nextv = NULL, *verts = chart->verts; - PEdge *e, *nexte = NULL, *edges = chart->edges, *laste = NULL; - PFace *f, *nextf = NULL, *faces = chart->faces; - - chart->verts = chart->collapsed_verts = NULL; - chart->edges = chart->collapsed_edges = NULL; - chart->faces = chart->collapsed_faces = NULL; - - chart->nverts = chart->nedges = chart->nfaces = 0; - - for (v = verts; v; v = nextv) { - nextv = v->nextlink; - - if (v->flag & PVERT_COLLAPSE) { - v->nextlink = chart->collapsed_verts; - chart->collapsed_verts = v; - } - else { - v->nextlink = chart->verts; - chart->verts = v; - chart->nverts++; - } - } - - for (e = edges; e; e = nexte) { - nexte = e->nextlink; - - if (!collapsed || !(e->flag & PEDGE_COLLAPSE_EDGE)) { - if (e->flag & PEDGE_COLLAPSE) { - e->nextlink = chart->collapsed_edges; - chart->collapsed_edges = e; - } - else { - e->nextlink = chart->edges; - chart->edges = e; - chart->nedges++; - } - } - } - - /* these are added last so they can be popped of in the right order - * for splitting */ - for (e = collapsed; e; e = e->nextlink) { - e->nextlink = e->u.nextcollapse; - laste = e; - } - if (laste) { - laste->nextlink = chart->collapsed_edges; - chart->collapsed_edges = collapsed; - } - - for (f = faces; f; f = nextf) { - nextf = f->nextlink; - - if (f->flag & PFACE_COLLAPSE) { - f->nextlink = chart->collapsed_faces; - chart->collapsed_faces = f; - } - else { - f->nextlink = chart->faces; - chart->faces = f; - chart->nfaces++; - } - } -} - -static void p_chart_post_split_flush(PChart *chart) -{ - /* Move from `collapsed_*`. */ - - PVert *v, *nextv = NULL; - PEdge *e, *nexte = NULL; - PFace *f, *nextf = NULL; - - for (v = chart->collapsed_verts; v; v = nextv) { - nextv = v->nextlink; - v->nextlink = chart->verts; - chart->verts = v; - chart->nverts++; - } - - for (e = chart->collapsed_edges; e; e = nexte) { - nexte = e->nextlink; - e->nextlink = chart->edges; - chart->edges = e; - chart->nedges++; - } - - for (f = chart->collapsed_faces; f; f = nextf) { - nextf = f->nextlink; - f->nextlink = chart->faces; - chart->faces = f; - chart->nfaces++; - } - - chart->collapsed_verts = NULL; - chart->collapsed_edges = NULL; - chart->collapsed_faces = NULL; -} - -static void p_chart_simplify_compute(PChart *chart) -{ - /* Computes a list of edge collapses / vertex splits. The collapsed - * simplices go in the `chart->collapsed_*` lists, The original and - * collapsed may then be view as stacks, where the next collapse/split - * is at the top of the respective lists. */ - - Heap *heap = BLI_heap_new(); - PVert *v, **wheelverts; - PEdge *collapsededges = NULL, *e; - int nwheelverts, i, ncollapsed = 0; - - wheelverts = MEM_mallocN(sizeof(PVert *) * chart->nverts, "PChartWheelVerts"); - - /* insert all potential collapses into heap */ - for (v = chart->verts; v; v = v->nextlink) { - float cost; - PEdge *e = NULL; - - p_collapse_cost_vertex(v, &cost, &e); - - if (e) { - v->u.heaplink = BLI_heap_insert(heap, cost, e); - } - else { - v->u.heaplink = NULL; - } - } - - for (e = chart->edges; e; e = e->nextlink) { - e->u.nextcollapse = NULL; - } - - /* pop edge collapse out of heap one by one */ - while (!BLI_heap_is_empty(heap)) { - if (ncollapsed == NCOLLAPSE) { - break; - } - - HeapNode *link = BLI_heap_top(heap); - PEdge *edge = (PEdge *)BLI_heap_pop_min(heap), *pair = edge->pair; - PVert *oldv, *keepv; - PEdge *wheele, *nexte; - - /* remember the edges we collapsed */ - edge->u.nextcollapse = collapsededges; - collapsededges = edge; - - if (edge->vert->u.heaplink != link) { - edge->flag |= (PEDGE_COLLAPSE_EDGE | PEDGE_COLLAPSE_PAIR); - edge->next->vert->u.heaplink = NULL; - SWAP(PEdge *, edge, pair); - } - else { - edge->flag |= PEDGE_COLLAPSE_EDGE; - edge->vert->u.heaplink = NULL; - } - - p_collapsing_verts(edge, pair, &oldv, &keepv); - - /* gather all wheel verts and remember them before collapse */ - nwheelverts = 0; - wheele = oldv->edge; - - do { - wheelverts[nwheelverts++] = wheele->next->vert; - nexte = p_wheel_edge_next(wheele); - - if (nexte == NULL) { - wheelverts[nwheelverts++] = wheele->next->next->vert; - } - - wheele = nexte; - } while (wheele && (wheele != oldv->edge)); - - /* collapse */ - p_collapse_edge(edge, pair); - - for (i = 0; i < nwheelverts; i++) { - float cost; - PEdge *collapse = NULL; - - v = wheelverts[i]; - - if (v->u.heaplink) { - BLI_heap_remove(heap, v->u.heaplink); - v->u.heaplink = NULL; - } - - p_collapse_cost_vertex(v, &cost, &collapse); - - if (collapse) { - v->u.heaplink = BLI_heap_insert(heap, cost, collapse); - } - } - - ncollapsed++; - } - - MEM_freeN(wheelverts); - BLI_heap_free(heap, NULL); - - p_chart_post_collapse_flush(chart, collapsededges); -} - -static void p_chart_complexify(PChart *chart) -{ - PEdge *e, *pair, *edge; - PVert *newv, *keepv; - int x = 0; - - for (e = chart->collapsed_edges; e; e = e->nextlink) { - if (!(e->flag & PEDGE_COLLAPSE_EDGE)) { - break; - } - - edge = e; - pair = e->pair; - - if (edge->flag & PEDGE_COLLAPSE_PAIR) { - SWAP(PEdge *, edge, pair); - } - - p_split_vertex(edge, pair); - p_collapsing_verts(edge, pair, &newv, &keepv); - - if (x >= NCOLLAPSEX) { - newv->uv[0] = keepv->uv[0]; - newv->uv[1] = keepv->uv[1]; - } - else { - p_vert_harmonic_insert(newv); - x++; - } - } - - p_chart_post_split_flush(chart); -} - -# if 0 -static void p_chart_simplify(PChart *chart) -{ - /* Not implemented, needs proper reordering in split_flush. */ -} -# endif -#endif - -/* ABF */ - -#define ABF_MAX_ITER 20 - -typedef struct PAbfSystem { - int ninterior, nfaces, nangles; - float *alpha, *beta, *sine, *cosine, *weight; - float *bAlpha, *bTriangle, *bInterior; - float *lambdaTriangle, *lambdaPlanar, *lambdaLength; - float (*J2dt)[3], *bstar, *dstar; - float minangle, maxangle; -} PAbfSystem; - -static void p_abf_setup_system(PAbfSystem *sys) -{ - int i; - - sys->alpha = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFalpha"); - sys->beta = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFbeta"); - sys->sine = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFsine"); - sys->cosine = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFcosine"); - sys->weight = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFweight"); - - sys->bAlpha = (float *)MEM_mallocN(sizeof(float) * sys->nangles, "ABFbalpha"); - sys->bTriangle = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFbtriangle"); - sys->bInterior = (float *)MEM_mallocN(sizeof(float[2]) * sys->ninterior, "ABFbinterior"); - - sys->lambdaTriangle = (float *)MEM_callocN(sizeof(float) * sys->nfaces, "ABFlambdatri"); - sys->lambdaPlanar = (float *)MEM_callocN(sizeof(float) * sys->ninterior, "ABFlamdaplane"); - sys->lambdaLength = (float *)MEM_mallocN(sizeof(float) * sys->ninterior, "ABFlambdalen"); - - sys->J2dt = MEM_mallocN(sizeof(float) * sys->nangles * 3, "ABFj2dt"); - sys->bstar = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFbstar"); - sys->dstar = (float *)MEM_mallocN(sizeof(float) * sys->nfaces, "ABFdstar"); - - for (i = 0; i < sys->ninterior; i++) { - sys->lambdaLength[i] = 1.0; - } - - sys->minangle = 1.0 * M_PI / 180.0; - sys->maxangle = (float)M_PI - sys->minangle; -} - -static void p_abf_free_system(PAbfSystem *sys) -{ - MEM_freeN(sys->alpha); - MEM_freeN(sys->beta); - MEM_freeN(sys->sine); - MEM_freeN(sys->cosine); - MEM_freeN(sys->weight); - MEM_freeN(sys->bAlpha); - MEM_freeN(sys->bTriangle); - MEM_freeN(sys->bInterior); - MEM_freeN(sys->lambdaTriangle); - MEM_freeN(sys->lambdaPlanar); - MEM_freeN(sys->lambdaLength); - MEM_freeN(sys->J2dt); - MEM_freeN(sys->bstar); - MEM_freeN(sys->dstar); -} - -static void p_abf_compute_sines(PAbfSystem *sys) -{ - int i; - float *sine = sys->sine, *cosine = sys->cosine, *alpha = sys->alpha; - - for (i = 0; i < sys->nangles; i++, sine++, cosine++, alpha++) { - *sine = sinf(*alpha); - *cosine = cosf(*alpha); - } -} - -static float p_abf_compute_sin_product(PAbfSystem *sys, PVert *v, int aid) -{ - PEdge *e, *e1, *e2; - float sin1, sin2; - - sin1 = sin2 = 1.0; - - e = v->edge; - do { - e1 = e->next; - e2 = e->next->next; - - if (aid == e1->u.id) { - /* we are computing a derivative for this angle, - * so we use cos and drop the other part */ - sin1 *= sys->cosine[e1->u.id]; - sin2 = 0.0; - } - else { - sin1 *= sys->sine[e1->u.id]; - } - - if (aid == e2->u.id) { - /* see above */ - sin1 = 0.0; - sin2 *= sys->cosine[e2->u.id]; - } - else { - sin2 *= sys->sine[e2->u.id]; - } - - e = e->next->next->pair; - } while (e && (e != v->edge)); - - return (sin1 - sin2); -} - -static float p_abf_compute_grad_alpha(PAbfSystem *sys, PFace *f, PEdge *e) -{ - PVert *v = e->vert, *v1 = e->next->vert, *v2 = e->next->next->vert; - float deriv; - - deriv = (sys->alpha[e->u.id] - sys->beta[e->u.id]) * sys->weight[e->u.id]; - deriv += sys->lambdaTriangle[f->u.id]; - - if (v->flag & PVERT_INTERIOR) { - deriv += sys->lambdaPlanar[v->u.id]; - } - - if (v1->flag & PVERT_INTERIOR) { - float product = p_abf_compute_sin_product(sys, v1, e->u.id); - deriv += sys->lambdaLength[v1->u.id] * product; - } - - if (v2->flag & PVERT_INTERIOR) { - float product = p_abf_compute_sin_product(sys, v2, e->u.id); - deriv += sys->lambdaLength[v2->u.id] * product; - } - - return deriv; -} - -static float p_abf_compute_gradient(PAbfSystem *sys, PChart *chart) -{ - PFace *f; - PEdge *e; - PVert *v; - float norm = 0.0; - - for (f = chart->faces; f; f = f->nextlink) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - float gtriangle, galpha1, galpha2, galpha3; - - galpha1 = p_abf_compute_grad_alpha(sys, f, e1); - galpha2 = p_abf_compute_grad_alpha(sys, f, e2); - galpha3 = p_abf_compute_grad_alpha(sys, f, e3); - - sys->bAlpha[e1->u.id] = -galpha1; - sys->bAlpha[e2->u.id] = -galpha2; - sys->bAlpha[e3->u.id] = -galpha3; - - norm += galpha1 * galpha1 + galpha2 * galpha2 + galpha3 * galpha3; - - gtriangle = sys->alpha[e1->u.id] + sys->alpha[e2->u.id] + sys->alpha[e3->u.id] - (float)M_PI; - sys->bTriangle[f->u.id] = -gtriangle; - norm += gtriangle * gtriangle; - } - - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_INTERIOR) { - float gplanar = -2 * M_PI, glength; - - e = v->edge; - do { - gplanar += sys->alpha[e->u.id]; - e = e->next->next->pair; - } while (e && (e != v->edge)); - - sys->bInterior[v->u.id] = -gplanar; - norm += gplanar * gplanar; - - glength = p_abf_compute_sin_product(sys, v, -1); - sys->bInterior[sys->ninterior + v->u.id] = -glength; - norm += glength * glength; - } - } - - return norm; -} - -static PBool p_abf_matrix_invert(PAbfSystem *sys, PChart *chart) -{ - PFace *f; - PEdge *e; - int i, j, ninterior = sys->ninterior, nvar = 2 * sys->ninterior; - PBool success; - LinearSolver *context; - - context = EIG_linear_solver_new(0, nvar, 1); - - for (i = 0; i < nvar; i++) { - EIG_linear_solver_right_hand_side_add(context, 0, i, sys->bInterior[i]); - } - - for (f = chart->faces; f; f = f->nextlink) { - float wi1, wi2, wi3, b, si, beta[3], j2[3][3], W[3][3]; - float row1[6], row2[6], row3[6]; - int vid[6]; - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - wi1 = 1.0f / sys->weight[e1->u.id]; - wi2 = 1.0f / sys->weight[e2->u.id]; - wi3 = 1.0f / sys->weight[e3->u.id]; - - /* bstar1 = (J1*dInv*bAlpha - bTriangle) */ - b = sys->bAlpha[e1->u.id] * wi1; - b += sys->bAlpha[e2->u.id] * wi2; - b += sys->bAlpha[e3->u.id] * wi3; - b -= sys->bTriangle[f->u.id]; - - /* si = J1*d*J1t */ - si = 1.0f / (wi1 + wi2 + wi3); - - /* J1t*si*bstar1 - bAlpha */ - beta[0] = b * si - sys->bAlpha[e1->u.id]; - beta[1] = b * si - sys->bAlpha[e2->u.id]; - beta[2] = b * si - sys->bAlpha[e3->u.id]; - - /* use this later for computing other lambda's */ - sys->bstar[f->u.id] = b; - sys->dstar[f->u.id] = si; - - /* set matrix */ - W[0][0] = si - sys->weight[e1->u.id]; - W[0][1] = si; - W[0][2] = si; - W[1][0] = si; - W[1][1] = si - sys->weight[e2->u.id]; - W[1][2] = si; - W[2][0] = si; - W[2][1] = si; - W[2][2] = si - sys->weight[e3->u.id]; - - vid[0] = vid[1] = vid[2] = vid[3] = vid[4] = vid[5] = -1; - - if (v1->flag & PVERT_INTERIOR) { - vid[0] = v1->u.id; - vid[3] = ninterior + v1->u.id; - - sys->J2dt[e1->u.id][0] = j2[0][0] = 1.0f * wi1; - sys->J2dt[e2->u.id][0] = j2[1][0] = p_abf_compute_sin_product(sys, v1, e2->u.id) * wi2; - sys->J2dt[e3->u.id][0] = j2[2][0] = p_abf_compute_sin_product(sys, v1, e3->u.id) * wi3; - - EIG_linear_solver_right_hand_side_add(context, 0, v1->u.id, j2[0][0] * beta[0]); - EIG_linear_solver_right_hand_side_add( - context, 0, ninterior + v1->u.id, j2[1][0] * beta[1] + j2[2][0] * beta[2]); - - row1[0] = j2[0][0] * W[0][0]; - row2[0] = j2[0][0] * W[1][0]; - row3[0] = j2[0][0] * W[2][0]; - - row1[3] = j2[1][0] * W[0][1] + j2[2][0] * W[0][2]; - row2[3] = j2[1][0] * W[1][1] + j2[2][0] * W[1][2]; - row3[3] = j2[1][0] * W[2][1] + j2[2][0] * W[2][2]; - } - - if (v2->flag & PVERT_INTERIOR) { - vid[1] = v2->u.id; - vid[4] = ninterior + v2->u.id; - - sys->J2dt[e1->u.id][1] = j2[0][1] = p_abf_compute_sin_product(sys, v2, e1->u.id) * wi1; - sys->J2dt[e2->u.id][1] = j2[1][1] = 1.0f * wi2; - sys->J2dt[e3->u.id][1] = j2[2][1] = p_abf_compute_sin_product(sys, v2, e3->u.id) * wi3; - - EIG_linear_solver_right_hand_side_add(context, 0, v2->u.id, j2[1][1] * beta[1]); - EIG_linear_solver_right_hand_side_add( - context, 0, ninterior + v2->u.id, j2[0][1] * beta[0] + j2[2][1] * beta[2]); - - row1[1] = j2[1][1] * W[0][1]; - row2[1] = j2[1][1] * W[1][1]; - row3[1] = j2[1][1] * W[2][1]; - - row1[4] = j2[0][1] * W[0][0] + j2[2][1] * W[0][2]; - row2[4] = j2[0][1] * W[1][0] + j2[2][1] * W[1][2]; - row3[4] = j2[0][1] * W[2][0] + j2[2][1] * W[2][2]; - } - - if (v3->flag & PVERT_INTERIOR) { - vid[2] = v3->u.id; - vid[5] = ninterior + v3->u.id; - - sys->J2dt[e1->u.id][2] = j2[0][2] = p_abf_compute_sin_product(sys, v3, e1->u.id) * wi1; - sys->J2dt[e2->u.id][2] = j2[1][2] = p_abf_compute_sin_product(sys, v3, e2->u.id) * wi2; - sys->J2dt[e3->u.id][2] = j2[2][2] = 1.0f * wi3; - - EIG_linear_solver_right_hand_side_add(context, 0, v3->u.id, j2[2][2] * beta[2]); - EIG_linear_solver_right_hand_side_add( - context, 0, ninterior + v3->u.id, j2[0][2] * beta[0] + j2[1][2] * beta[1]); - - row1[2] = j2[2][2] * W[0][2]; - row2[2] = j2[2][2] * W[1][2]; - row3[2] = j2[2][2] * W[2][2]; - - row1[5] = j2[0][2] * W[0][0] + j2[1][2] * W[0][1]; - row2[5] = j2[0][2] * W[1][0] + j2[1][2] * W[1][1]; - row3[5] = j2[0][2] * W[2][0] + j2[1][2] * W[2][1]; - } - - for (i = 0; i < 3; i++) { - int r = vid[i]; - - if (r == -1) { - continue; - } - - for (j = 0; j < 6; j++) { - int c = vid[j]; - - if (c == -1) { - continue; - } - - if (i == 0) { - EIG_linear_solver_matrix_add(context, r, c, j2[0][i] * row1[j]); - } - else { - EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[0][i] * row1[j]); - } - - if (i == 1) { - EIG_linear_solver_matrix_add(context, r, c, j2[1][i] * row2[j]); - } - else { - EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[1][i] * row2[j]); - } - - if (i == 2) { - EIG_linear_solver_matrix_add(context, r, c, j2[2][i] * row3[j]); - } - else { - EIG_linear_solver_matrix_add(context, r + ninterior, c, j2[2][i] * row3[j]); - } - } - } - } - - success = EIG_linear_solver_solve(context); - - if (success) { - for (f = chart->faces; f; f = f->nextlink) { - float dlambda1, pre[3], dalpha; - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - pre[0] = pre[1] = pre[2] = 0.0; - - if (v1->flag & PVERT_INTERIOR) { - float x = EIG_linear_solver_variable_get(context, 0, v1->u.id); - float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v1->u.id); - pre[0] += sys->J2dt[e1->u.id][0] * x; - pre[1] += sys->J2dt[e2->u.id][0] * x2; - pre[2] += sys->J2dt[e3->u.id][0] * x2; - } - - if (v2->flag & PVERT_INTERIOR) { - float x = EIG_linear_solver_variable_get(context, 0, v2->u.id); - float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v2->u.id); - pre[0] += sys->J2dt[e1->u.id][1] * x2; - pre[1] += sys->J2dt[e2->u.id][1] * x; - pre[2] += sys->J2dt[e3->u.id][1] * x2; - } - - if (v3->flag & PVERT_INTERIOR) { - float x = EIG_linear_solver_variable_get(context, 0, v3->u.id); - float x2 = EIG_linear_solver_variable_get(context, 0, ninterior + v3->u.id); - pre[0] += sys->J2dt[e1->u.id][2] * x2; - pre[1] += sys->J2dt[e2->u.id][2] * x2; - pre[2] += sys->J2dt[e3->u.id][2] * x; - } - - dlambda1 = pre[0] + pre[1] + pre[2]; - dlambda1 = sys->dstar[f->u.id] * (sys->bstar[f->u.id] - dlambda1); - - sys->lambdaTriangle[f->u.id] += dlambda1; - - dalpha = (sys->bAlpha[e1->u.id] - dlambda1); - sys->alpha[e1->u.id] += dalpha / sys->weight[e1->u.id] - pre[0]; - - dalpha = (sys->bAlpha[e2->u.id] - dlambda1); - sys->alpha[e2->u.id] += dalpha / sys->weight[e2->u.id] - pre[1]; - - dalpha = (sys->bAlpha[e3->u.id] - dlambda1); - sys->alpha[e3->u.id] += dalpha / sys->weight[e3->u.id] - pre[2]; - - /* clamp */ - e = f->edge; - do { - if (sys->alpha[e->u.id] > (float)M_PI) { - sys->alpha[e->u.id] = (float)M_PI; - } - else if (sys->alpha[e->u.id] < 0.0f) { - sys->alpha[e->u.id] = 0.0f; - } - } while (e != f->edge); - } - - for (i = 0; i < ninterior; i++) { - sys->lambdaPlanar[i] += (float)EIG_linear_solver_variable_get(context, 0, i); - sys->lambdaLength[i] += (float)EIG_linear_solver_variable_get(context, 0, ninterior + i); - } - } - - EIG_linear_solver_delete(context); - - return success; -} - -static PBool p_chart_abf_solve(PChart *chart) -{ - PVert *v; - PFace *f; - PEdge *e, *e1, *e2, *e3; - PAbfSystem sys; - int i; - float /* lastnorm, */ /* UNUSED */ limit = (chart->nfaces > 100) ? 1.0f : 0.001f; - - /* setup id's */ - sys.ninterior = sys.nfaces = sys.nangles = 0; - - for (v = chart->verts; v; v = v->nextlink) { - if (p_vert_interior(v)) { - v->flag |= PVERT_INTERIOR; - v->u.id = sys.ninterior++; - } - else { - v->flag &= ~PVERT_INTERIOR; - } - } - - for (f = chart->faces; f; f = f->nextlink) { - e1 = f->edge; - e2 = e1->next; - e3 = e2->next; - f->u.id = sys.nfaces++; - - /* angle id's are conveniently stored in half edges */ - e1->u.id = sys.nangles++; - e2->u.id = sys.nangles++; - e3->u.id = sys.nangles++; - } - - p_abf_setup_system(&sys); - - /* compute initial angles */ - for (f = chart->faces; f; f = f->nextlink) { - float a1, a2, a3; - - e1 = f->edge; - e2 = e1->next; - e3 = e2->next; - p_face_angles(f, &a1, &a2, &a3); - - if (a1 < sys.minangle) { - a1 = sys.minangle; - } - else if (a1 > sys.maxangle) { - a1 = sys.maxangle; - } - if (a2 < sys.minangle) { - a2 = sys.minangle; - } - else if (a2 > sys.maxangle) { - a2 = sys.maxangle; - } - if (a3 < sys.minangle) { - a3 = sys.minangle; - } - else if (a3 > sys.maxangle) { - a3 = sys.maxangle; - } - - sys.alpha[e1->u.id] = sys.beta[e1->u.id] = a1; - sys.alpha[e2->u.id] = sys.beta[e2->u.id] = a2; - sys.alpha[e3->u.id] = sys.beta[e3->u.id] = a3; - - sys.weight[e1->u.id] = 2.0f / (a1 * a1); - sys.weight[e2->u.id] = 2.0f / (a2 * a2); - sys.weight[e3->u.id] = 2.0f / (a3 * a3); - } - - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_INTERIOR) { - float anglesum = 0.0, scale; - - e = v->edge; - do { - anglesum += sys.beta[e->u.id]; - e = e->next->next->pair; - } while (e && (e != v->edge)); - - scale = (anglesum == 0.0f) ? 0.0f : 2.0f * (float)M_PI / anglesum; - - e = v->edge; - do { - sys.beta[e->u.id] = sys.alpha[e->u.id] = sys.beta[e->u.id] * scale; - e = e->next->next->pair; - } while (e && (e != v->edge)); - } - } - - if (sys.ninterior > 0) { - p_abf_compute_sines(&sys); - - /* iteration */ - /* lastnorm = 1e10; */ /* UNUSED */ - - for (i = 0; i < ABF_MAX_ITER; i++) { - float norm = p_abf_compute_gradient(&sys, chart); - - /* lastnorm = norm; */ /* UNUSED */ - - if (norm < limit) { - break; - } - - if (!p_abf_matrix_invert(&sys, chart)) { - param_warning("ABF failed to invert matrix"); - p_abf_free_system(&sys); - return P_FALSE; - } - - p_abf_compute_sines(&sys); - } - - if (i == ABF_MAX_ITER) { - param_warning("ABF maximum iterations reached"); - p_abf_free_system(&sys); - return P_FALSE; - } - } - - chart->u.lscm.abf_alpha = MEM_dupallocN(sys.alpha); - p_abf_free_system(&sys); - - return P_TRUE; -} - -/* Least Squares Conformal Maps */ - -static void p_chart_pin_positions(PChart *chart, PVert **pin1, PVert **pin2) -{ - if (!*pin1 || !*pin2 || *pin1 == *pin2) { - /* degenerate case */ - PFace *f = chart->faces; - *pin1 = f->edge->vert; - *pin2 = f->edge->next->vert; - - (*pin1)->uv[0] = 0.0f; - (*pin1)->uv[1] = 0.5f; - (*pin2)->uv[0] = 1.0f; - (*pin2)->uv[1] = 0.5f; - } - else { - int diru, dirv, dirx, diry; - float sub[3]; - - sub_v3_v3v3(sub, (*pin1)->co, (*pin2)->co); - sub[0] = fabsf(sub[0]); - sub[1] = fabsf(sub[1]); - sub[2] = fabsf(sub[2]); - - if ((sub[0] > sub[1]) && (sub[0] > sub[2])) { - dirx = 0; - diry = (sub[1] > sub[2]) ? 1 : 2; - } - else if ((sub[1] > sub[0]) && (sub[1] > sub[2])) { - dirx = 1; - diry = (sub[0] > sub[2]) ? 0 : 2; - } - else { - dirx = 2; - diry = (sub[0] > sub[1]) ? 0 : 1; - } - - if (dirx == 2) { - diru = 1; - dirv = 0; - } - else { - diru = 0; - dirv = 1; - } - - (*pin1)->uv[diru] = (*pin1)->co[dirx]; - (*pin1)->uv[dirv] = (*pin1)->co[diry]; - (*pin2)->uv[diru] = (*pin2)->co[dirx]; - (*pin2)->uv[dirv] = (*pin2)->co[diry]; - } -} - -static PBool p_chart_symmetry_pins(PChart *chart, PEdge *outer, PVert **pin1, PVert **pin2) -{ - PEdge *be, *lastbe = NULL, *maxe1 = NULL, *maxe2 = NULL, *be1, *be2; - PEdge *cure = NULL, *firste1 = NULL, *firste2 = NULL, *nextbe; - float maxlen = 0.0f, curlen = 0.0f, totlen = 0.0f, firstlen = 0.0f; - float len1, len2; - - /* find longest series of verts split in the chart itself, these are - * marked during construction */ - be = outer; - lastbe = p_boundary_edge_prev(be); - do { - float len = p_edge_length(be); - totlen += len; - - nextbe = p_boundary_edge_next(be); - - if ((be->vert->flag & PVERT_SPLIT) || - (lastbe->vert->flag & nextbe->vert->flag & PVERT_SPLIT)) { - if (!cure) { - if (be == outer) { - firste1 = be; - } - cure = be; - } - else { - curlen += p_edge_length(lastbe); - } - } - else if (cure) { - if (curlen > maxlen) { - maxlen = curlen; - maxe1 = cure; - maxe2 = lastbe; - } - - if (firste1 == cure) { - firstlen = curlen; - firste2 = lastbe; - } - - curlen = 0.0f; - cure = NULL; - } - - lastbe = be; - be = nextbe; - } while (be != outer); - - /* make sure we also count a series of splits over the starting point */ - if (cure && (cure != outer)) { - firstlen += curlen + p_edge_length(be); - - if (firstlen > maxlen) { - maxlen = firstlen; - maxe1 = cure; - maxe2 = firste2; - } - } - - if (!maxe1 || !maxe2 || (maxlen < 0.5f * totlen)) { - return P_FALSE; - } - - /* find pin1 in the split vertices */ - be1 = maxe1; - be2 = maxe2; - len1 = 0.0f; - len2 = 0.0f; - - do { - if (len1 < len2) { - len1 += p_edge_length(be1); - be1 = p_boundary_edge_next(be1); - } - else { - be2 = p_boundary_edge_prev(be2); - len2 += p_edge_length(be2); - } - } while (be1 != be2); - - *pin1 = be1->vert; - - /* find pin2 outside the split vertices */ - be1 = maxe1; - be2 = maxe2; - len1 = 0.0f; - len2 = 0.0f; - - do { - if (len1 < len2) { - be1 = p_boundary_edge_prev(be1); - len1 += p_edge_length(be1); - } - else { - len2 += p_edge_length(be2); - be2 = p_boundary_edge_next(be2); - } - } while (be1 != be2); - - *pin2 = be1->vert; - - p_chart_pin_positions(chart, pin1, pin2); - - return !equals_v3v3((*pin1)->co, (*pin2)->co); -} - -static void p_chart_extrema_verts(PChart *chart, PVert **pin1, PVert **pin2) -{ - float minv[3], maxv[3], dirlen; - PVert *v, *minvert[3], *maxvert[3]; - int i, dir; - - /* find minimum and maximum verts over x/y/z axes */ - minv[0] = minv[1] = minv[2] = 1e20; - maxv[0] = maxv[1] = maxv[2] = -1e20; - - minvert[0] = minvert[1] = minvert[2] = NULL; - maxvert[0] = maxvert[1] = maxvert[2] = NULL; - - for (v = chart->verts; v; v = v->nextlink) { - for (i = 0; i < 3; i++) { - if (v->co[i] < minv[i]) { - minv[i] = v->co[i]; - minvert[i] = v; - } - if (v->co[i] > maxv[i]) { - maxv[i] = v->co[i]; - maxvert[i] = v; - } - } - } - - /* find axes with longest distance */ - dir = 0; - dirlen = -1.0; - - for (i = 0; i < 3; i++) { - if (maxv[i] - minv[i] > dirlen) { - dir = i; - dirlen = maxv[i] - minv[i]; - } - } - - *pin1 = minvert[dir]; - *pin2 = maxvert[dir]; - - p_chart_pin_positions(chart, pin1, pin2); -} - -static void p_chart_lscm_load_solution(PChart *chart) -{ - LinearSolver *context = chart->u.lscm.context; - PVert *v; - - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id); - v->uv[1] = EIG_linear_solver_variable_get(context, 0, 2 * v->u.id + 1); - } -} - -static void p_chart_lscm_begin(PChart *chart, PBool live, PBool abf) -{ - PVert *v, *pin1, *pin2; - PBool select = P_FALSE, deselect = P_FALSE; - int npins = 0, id = 0; - - /* give vertices matrix indices and count pins */ - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_PIN) { - npins++; - if (v->flag & PVERT_SELECT) { - select = P_TRUE; - } - } - - if (!(v->flag & PVERT_SELECT)) { - deselect = P_TRUE; - } - } - - if ((live && (!select || !deselect))) { - chart->u.lscm.context = NULL; - } - else { -#if 0 - p_chart_simplify_compute(chart); - p_chart_topological_sanity_check(chart); -#endif - - if (npins == 1) { - chart->u.lscm.single_pin_area = p_chart_uv_area(chart); - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_PIN) { - chart->u.lscm.single_pin = v; - break; - } - } - } - - if (abf) { - if (!p_chart_abf_solve(chart)) { - param_warning("ABF solving failed: falling back to LSCM.\n"); - } - } - - if (npins <= 1) { - /* No pins, let's find some ourself. */ - PEdge *outer; - - p_chart_boundaries(chart, NULL, &outer); - - /* Outer can be NULL with non-finite coords. */ - if (!(outer && p_chart_symmetry_pins(chart, outer, &pin1, &pin2))) { - p_chart_extrema_verts(chart, &pin1, &pin2); - } - - chart->u.lscm.pin1 = pin1; - chart->u.lscm.pin2 = pin2; - } - - for (v = chart->verts; v; v = v->nextlink) { - v->u.id = id++; - } - - chart->u.lscm.context = EIG_linear_least_squares_solver_new( - 2 * chart->nfaces, 2 * chart->nverts, 1); - } -} - -static PBool p_chart_lscm_solve(PHandle *handle, PChart *chart) -{ - LinearSolver *context = chart->u.lscm.context; - PVert *v, *pin1 = chart->u.lscm.pin1, *pin2 = chart->u.lscm.pin2; - PFace *f; - const float *alpha = chart->u.lscm.abf_alpha; - float area_pinned_up, area_pinned_down; - bool flip_faces; - int row; - -#if 0 - /* TODO: make loading pins work for simplify/complexify. */ -#endif - - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_PIN) { - p_vert_load_pin_select_uvs(handle, v); /* reload for live */ - } - } - - if (chart->u.lscm.single_pin) { - /* If only one pin, save area and pin for transform later. */ - copy_v2_v2(chart->u.lscm.single_pin_uv, chart->u.lscm.single_pin->uv); - } - - if (chart->u.lscm.pin1) { - EIG_linear_solver_variable_lock(context, 2 * pin1->u.id); - EIG_linear_solver_variable_lock(context, 2 * pin1->u.id + 1); - EIG_linear_solver_variable_lock(context, 2 * pin2->u.id); - EIG_linear_solver_variable_lock(context, 2 * pin2->u.id + 1); - - EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id, pin1->uv[0]); - EIG_linear_solver_variable_set(context, 0, 2 * pin1->u.id + 1, pin1->uv[1]); - EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id, pin2->uv[0]); - EIG_linear_solver_variable_set(context, 0, 2 * pin2->u.id + 1, pin2->uv[1]); - } - else { - /* set and lock the pins */ - for (v = chart->verts; v; v = v->nextlink) { - if (v->flag & PVERT_PIN) { - EIG_linear_solver_variable_lock(context, 2 * v->u.id); - EIG_linear_solver_variable_lock(context, 2 * v->u.id + 1); - - EIG_linear_solver_variable_set(context, 0, 2 * v->u.id, v->uv[0]); - EIG_linear_solver_variable_set(context, 0, 2 * v->u.id + 1, v->uv[1]); - } - } - } - - /* detect up direction based on pinned vertices */ - area_pinned_up = 0.0f; - area_pinned_down = 0.0f; - - for (f = chart->faces; f; f = f->nextlink) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - if ((v1->flag & PVERT_PIN) && (v2->flag & PVERT_PIN) && (v3->flag & PVERT_PIN)) { - float area = p_face_uv_area_signed(f); - - if (area > 0.0f) { - area_pinned_up += area; - } - else { - area_pinned_down -= area; - } - } - } - - flip_faces = (area_pinned_down > area_pinned_up); - - /* construct matrix */ - - row = 0; - for (f = chart->faces; f; f = f->nextlink) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - float a1, a2, a3, ratio, cosine, sine; - float sina1, sina2, sina3, sinmax; - - if (alpha) { - /* use abf angles if passed on */ - a1 = *(alpha++); - a2 = *(alpha++); - a3 = *(alpha++); - } - else { - p_face_angles(f, &a1, &a2, &a3); - } - - if (flip_faces) { - SWAP(float, a2, a3); - SWAP(PEdge *, e2, e3); - SWAP(PVert *, v2, v3); - } - - sina1 = sinf(a1); - sina2 = sinf(a2); - sina3 = sinf(a3); - - sinmax = max_fff(sina1, sina2, sina3); - - /* shift vertices to find most stable order */ - if (sina3 != sinmax) { - SHIFT3(PVert *, v1, v2, v3); - SHIFT3(float, a1, a2, a3); - SHIFT3(float, sina1, sina2, sina3); - - if (sina2 == sinmax) { - SHIFT3(PVert *, v1, v2, v3); - SHIFT3(float, a1, a2, a3); - SHIFT3(float, sina1, sina2, sina3); - } - } - - /* angle based lscm formulation */ - ratio = (sina3 == 0.0f) ? 1.0f : sina2 / sina3; - cosine = cosf(a1) * ratio; - sine = sina1 * ratio; - - EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, cosine - 1.0f); - EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, -sine); - EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -cosine); - EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, sine); - EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id, 1.0); - row++; - - EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id, sine); - EIG_linear_solver_matrix_add(context, row, 2 * v1->u.id + 1, cosine - 1.0f); - EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id, -sine); - EIG_linear_solver_matrix_add(context, row, 2 * v2->u.id + 1, -cosine); - EIG_linear_solver_matrix_add(context, row, 2 * v3->u.id + 1, 1.0); - row++; - } - - if (EIG_linear_solver_solve(context)) { - p_chart_lscm_load_solution(chart); - return P_TRUE; - } - - for (v = chart->verts; v; v = v->nextlink) { - v->uv[0] = 0.0f; - v->uv[1] = 0.0f; - } - - return P_FALSE; -} - -static void p_chart_lscm_transform_single_pin(PChart *chart) -{ - PVert *pin = chart->u.lscm.single_pin; - - /* If only one pin, keep UV area the same. */ - const float new_area = p_chart_uv_area(chart); - if (new_area > 0.0f) { - const float scale = chart->u.lscm.single_pin_area / new_area; - if (scale > 0.0f) { - p_chart_uv_scale(chart, sqrtf(scale)); - } - } - - /* Translate to keep the pinned vertex in place. */ - float offset[2]; - sub_v2_v2v2(offset, chart->u.lscm.single_pin_uv, pin->uv); - p_chart_uv_translate(chart, offset); -} - -static void p_chart_lscm_end(PChart *chart) -{ - if (chart->u.lscm.context) { - EIG_linear_solver_delete(chart->u.lscm.context); - } - - MEM_SAFE_FREE(chart->u.lscm.abf_alpha); - - chart->u.lscm.context = NULL; - chart->u.lscm.pin1 = NULL; - chart->u.lscm.pin2 = NULL; - chart->u.lscm.single_pin = NULL; - chart->u.lscm.single_pin_area = 0.0f; -} - -/* Stretch */ - -#define P_STRETCH_ITER 20 - -static void p_stretch_pin_boundary(PChart *chart) -{ - PVert *v; - - for (v = chart->verts; v; v = v->nextlink) { - if (v->edge->pair == NULL) { - v->flag |= PVERT_PIN; - } - else { - v->flag &= ~PVERT_PIN; - } - } -} - -static float p_face_stretch(PFace *f) -{ - float T, w, tmp[3]; - float Ps[3], Pt[3]; - float a, c, area; - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - PVert *v1 = e1->vert, *v2 = e2->vert, *v3 = e3->vert; - - area = p_face_uv_area_signed(f); - - if (area <= 0.0f) { /* flipped face -> infinite stretch */ - return 1e10f; - } - - w = 1.0f / (2.0f * area); - - /* compute derivatives */ - copy_v3_v3(Ps, v1->co); - mul_v3_fl(Ps, (v2->uv[1] - v3->uv[1])); - - copy_v3_v3(tmp, v2->co); - mul_v3_fl(tmp, (v3->uv[1] - v1->uv[1])); - add_v3_v3(Ps, tmp); - - copy_v3_v3(tmp, v3->co); - mul_v3_fl(tmp, (v1->uv[1] - v2->uv[1])); - add_v3_v3(Ps, tmp); - - mul_v3_fl(Ps, w); - - copy_v3_v3(Pt, v1->co); - mul_v3_fl(Pt, (v3->uv[0] - v2->uv[0])); - - copy_v3_v3(tmp, v2->co); - mul_v3_fl(tmp, (v1->uv[0] - v3->uv[0])); - add_v3_v3(Pt, tmp); - - copy_v3_v3(tmp, v3->co); - mul_v3_fl(tmp, (v2->uv[0] - v1->uv[0])); - add_v3_v3(Pt, tmp); - - mul_v3_fl(Pt, w); - - /* Sander Tensor */ - a = dot_v3v3(Ps, Ps); - c = dot_v3v3(Pt, Pt); - - T = sqrtf(0.5f * (a + c)); - if (f->flag & PFACE_FILLED) { - T *= 0.2f; - } - - return T; -} - -static float p_stretch_compute_vertex(PVert *v) -{ - PEdge *e = v->edge; - float sum = 0.0f; - - do { - sum += p_face_stretch(e->face); - e = p_wheel_edge_next(e); - } while (e && e != (v->edge)); - - return sum; -} - -static void p_chart_stretch_minimize(PChart *chart, RNG *rng) -{ - PVert *v; - PEdge *e; - int j, nedges; - float orig_stretch, low, stretch_low, high, stretch_high, mid, stretch; - float orig_uv[2], dir[2], random_angle, trusted_radius; - - for (v = chart->verts; v; v = v->nextlink) { - if ((v->flag & PVERT_PIN) || !(v->flag & PVERT_SELECT)) { - continue; - } - - orig_stretch = p_stretch_compute_vertex(v); - orig_uv[0] = v->uv[0]; - orig_uv[1] = v->uv[1]; - - /* move vertex in a random direction */ - trusted_radius = 0.0f; - nedges = 0; - e = v->edge; - - do { - trusted_radius += p_edge_uv_length(e); - nedges++; - - e = p_wheel_edge_next(e); - } while (e && e != (v->edge)); - - trusted_radius /= 2 * nedges; - - random_angle = BLI_rng_get_float(rng) * 2.0f * (float)M_PI; - dir[0] = trusted_radius * cosf(random_angle); - dir[1] = trusted_radius * sinf(random_angle); - - /* calculate old and new stretch */ - low = 0; - stretch_low = orig_stretch; - - add_v2_v2v2(v->uv, orig_uv, dir); - high = 1; - stretch = stretch_high = p_stretch_compute_vertex(v); - - /* binary search for lowest stretch position */ - for (j = 0; j < P_STRETCH_ITER; j++) { - mid = 0.5f * (low + high); - v->uv[0] = orig_uv[0] + mid * dir[0]; - v->uv[1] = orig_uv[1] + mid * dir[1]; - stretch = p_stretch_compute_vertex(v); - - if (stretch_low < stretch_high) { - high = mid; - stretch_high = stretch; - } - else { - low = mid; - stretch_low = stretch; - } - } - - /* no luck, stretch has increased, reset to old values */ - if (stretch >= orig_stretch) { - copy_v2_v2(v->uv, orig_uv); - } - } -} - -/* Minimum area enclosing rectangle for packing */ - -static int p_compare_geometric_uv(const void *a, const void *b) -{ - const PVert *v1 = *(const PVert *const *)a; - const PVert *v2 = *(const PVert *const *)b; - - if (v1->uv[0] < v2->uv[0]) { - return -1; - } - if (v1->uv[0] == v2->uv[0]) { - if (v1->uv[1] < v2->uv[1]) { - return -1; - } - if (v1->uv[1] == v2->uv[1]) { - return 0; - } - return 1; - } - return 1; -} - -static PBool p_chart_convex_hull(PChart *chart, PVert ***r_verts, int *r_nverts, int *r_right) -{ - /* Graham algorithm, taken from: - * http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/117225 */ - - PEdge *be, *e; - int npoints = 0, i, ulen, llen; - PVert **U, **L, **points, **p; - - p_chart_boundaries(chart, NULL, &be); - - if (!be) { - return P_FALSE; - } - - e = be; - do { - npoints++; - e = p_boundary_edge_next(e); - } while (e != be); - - p = points = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints * 2, "PCHullpoints"); - U = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints, "PCHullU"); - L = (PVert **)MEM_mallocN(sizeof(PVert *) * npoints, "PCHullL"); - - e = be; - do { - *p = e->vert; - p++; - e = p_boundary_edge_next(e); - } while (e != be); - - qsort(points, npoints, sizeof(PVert *), p_compare_geometric_uv); - - ulen = llen = 0; - for (p = points, i = 0; i < npoints; i++, p++) { - while ((ulen > 1) && (p_area_signed(U[ulen - 2]->uv, (*p)->uv, U[ulen - 1]->uv) <= 0)) { - ulen--; - } - while ((llen > 1) && (p_area_signed(L[llen - 2]->uv, (*p)->uv, L[llen - 1]->uv) >= 0)) { - llen--; - } - - U[ulen] = *p; - ulen++; - L[llen] = *p; - llen++; - } - - npoints = 0; - for (p = points, i = 0; i < ulen; i++, p++, npoints++) { - *p = U[i]; - } - - /* the first and last point in L are left out, since they are also in U */ - for (i = llen - 2; i > 0; i--, p++, npoints++) { - *p = L[i]; - } - - *r_verts = points; - *r_nverts = npoints; - *r_right = ulen - 1; - - MEM_freeN(U); - MEM_freeN(L); - - return P_TRUE; -} - -static float p_rectangle_area(float *p1, float *dir, float *p2, float *p3, float *p4) -{ - /* given 4 points on the rectangle edges and the direction of on edge, - * compute the area of the rectangle */ - - float orthodir[2], corner1[2], corner2[2], corner3[2]; - - orthodir[0] = dir[1]; - orthodir[1] = -dir[0]; - - if (!p_intersect_line_2d_dir(p1, dir, p2, orthodir, corner1)) { - return 1e10; - } - - if (!p_intersect_line_2d_dir(p1, dir, p4, orthodir, corner2)) { - return 1e10; - } - - if (!p_intersect_line_2d_dir(p3, dir, p4, orthodir, corner3)) { - return 1e10; - } - - return len_v2v2(corner1, corner2) * len_v2v2(corner2, corner3); -} - -static float p_chart_minimum_area_angle(PChart *chart) -{ - /* minimum area enclosing rectangle with rotating calipers, info: - * http://cgm.cs.mcgill.ca/~orm/maer.html */ - - float rotated, minarea, minangle, area, len; - float *angles, miny, maxy, v[2], a[4], mina; - int npoints, right, i_min, i_max, i, idx[4], nextidx; - PVert **points, *p1, *p2, *p3, *p4, *p1n; - - /* compute convex hull */ - if (!p_chart_convex_hull(chart, &points, &npoints, &right)) { - return 0.0; - } - - /* find left/top/right/bottom points, and compute angle for each point */ - angles = MEM_mallocN(sizeof(float) * npoints, "PMinAreaAngles"); - - i_min = i_max = 0; - miny = 1e10; - maxy = -1e10; - - for (i = 0; i < npoints; i++) { - p1 = (i == 0) ? points[npoints - 1] : points[i - 1]; - p2 = points[i]; - p3 = (i == npoints - 1) ? points[0] : points[i + 1]; - - angles[i] = (float)M_PI - p_vec2_angle(p1->uv, p2->uv, p3->uv); - - if (points[i]->uv[1] < miny) { - miny = points[i]->uv[1]; - i_min = i; - } - if (points[i]->uv[1] > maxy) { - maxy = points[i]->uv[1]; - i_max = i; - } - } - - /* left, top, right, bottom */ - idx[0] = 0; - idx[1] = i_max; - idx[2] = right; - idx[3] = i_min; - - v[0] = points[idx[0]]->uv[0]; - v[1] = points[idx[0]]->uv[1] + 1.0f; - a[0] = p_vec2_angle(points[(idx[0] + 1) % npoints]->uv, points[idx[0]]->uv, v); - - v[0] = points[idx[1]]->uv[0] + 1.0f; - v[1] = points[idx[1]]->uv[1]; - a[1] = p_vec2_angle(points[(idx[1] + 1) % npoints]->uv, points[idx[1]]->uv, v); - - v[0] = points[idx[2]]->uv[0]; - v[1] = points[idx[2]]->uv[1] - 1.0f; - a[2] = p_vec2_angle(points[(idx[2] + 1) % npoints]->uv, points[idx[2]]->uv, v); - - v[0] = points[idx[3]]->uv[0] - 1.0f; - v[1] = points[idx[3]]->uv[1]; - a[3] = p_vec2_angle(points[(idx[3] + 1) % npoints]->uv, points[idx[3]]->uv, v); - - /* 4 rotating calipers */ - - rotated = 0.0; - minarea = 1e10; - minangle = 0.0; - - while (rotated <= (float)M_PI_2) { /* INVESTIGATE: how far to rotate? */ - /* rotate with the smallest angle */ - i_min = 0; - mina = 1e10; - - for (i = 0; i < 4; i++) { - if (a[i] < mina) { - mina = a[i]; - i_min = i; - } - } - - rotated += mina; - nextidx = (idx[i_min] + 1) % npoints; - - a[i_min] = angles[nextidx]; - a[(i_min + 1) % 4] = a[(i_min + 1) % 4] - mina; - a[(i_min + 2) % 4] = a[(i_min + 2) % 4] - mina; - a[(i_min + 3) % 4] = a[(i_min + 3) % 4] - mina; - - /* compute area */ - p1 = points[idx[i_min]]; - p1n = points[nextidx]; - p2 = points[idx[(i_min + 1) % 4]]; - p3 = points[idx[(i_min + 2) % 4]]; - p4 = points[idx[(i_min + 3) % 4]]; - - len = len_v2v2(p1->uv, p1n->uv); - - if (len > 0.0f) { - len = 1.0f / len; - v[0] = (p1n->uv[0] - p1->uv[0]) * len; - v[1] = (p1n->uv[1] - p1->uv[1]) * len; - - area = p_rectangle_area(p1->uv, v, p2->uv, p3->uv, p4->uv); - - /* remember smallest area */ - if (area < minarea) { - minarea = area; - minangle = rotated; - } - } - - idx[i_min] = nextidx; - } - - /* try keeping rotation as small as possible */ - if (minangle > (float)M_PI_4) { - minangle -= (float)M_PI_2; - } - - MEM_freeN(angles); - MEM_freeN(points); - - return minangle; -} - -static void p_chart_rotate_minimum_area(PChart *chart) -{ - float angle = p_chart_minimum_area_angle(chart); - float sine = sinf(angle); - float cosine = cosf(angle); - PVert *v; - - for (v = chart->verts; v; v = v->nextlink) { - float oldu = v->uv[0], oldv = v->uv[1]; - v->uv[0] = cosine * oldu - sine * oldv; - v->uv[1] = sine * oldu + cosine * oldv; - } -} - -static void p_chart_rotate_fit_aabb(PChart *chart) -{ - float(*points)[2] = MEM_mallocN(sizeof(*points) * chart->nverts, __func__); - - p_chart_uv_to_array(chart, points); - - float angle = BLI_convexhull_aabb_fit_points_2d(points, chart->nverts); - - MEM_freeN(points); - - if (angle != 0.0f) { - float mat[2][2]; - angle_to_mat2(mat, angle); - p_chart_uv_transform(chart, mat); - } -} - -/* Area Smoothing */ - -/* 2d BSP tree for inverse mapping - that's a bit silly. */ - -typedef struct SmoothTriangle { - float co1[2], co2[2], co3[2]; - float oco1[2], oco2[2], oco3[2]; -} SmoothTriangle; - -typedef struct SmoothNode { - struct SmoothNode *c1, *c2; - SmoothTriangle **tri; - float split; - int axis, ntri; -} SmoothNode; - -static void p_barycentric_2d( - const float v1[2], const float v2[2], const float v3[2], const float p[2], float b[3]) -{ - float a[2], c[2], h[2], div; - - a[0] = v2[0] - v1[0]; - a[1] = v2[1] - v1[1]; - c[0] = v3[0] - v1[0]; - c[1] = v3[1] - v1[1]; - - div = a[0] * c[1] - a[1] * c[0]; - - if (div == 0.0f) { - b[0] = 1.0f / 3.0f; - b[1] = 1.0f / 3.0f; - b[2] = 1.0f / 3.0f; - } - else { - h[0] = p[0] - v1[0]; - h[1] = p[1] - v1[1]; - - div = 1.0f / div; - - b[1] = (h[0] * c[1] - h[1] * c[0]) * div; - b[2] = (a[0] * h[1] - a[1] * h[0]) * div; - b[0] = 1.0f - b[1] - b[2]; - } -} - -static PBool p_triangle_inside(SmoothTriangle *t, float co[2]) -{ - float b[3]; - - p_barycentric_2d(t->co1, t->co2, t->co3, co, b); - - if ((b[0] >= 0.0f) && (b[1] >= 0.0f) && (b[2] >= 0.0f)) { - co[0] = t->oco1[0] * b[0] + t->oco2[0] * b[1] + t->oco3[0] * b[2]; - co[1] = t->oco1[1] * b[0] + t->oco2[1] * b[1] + t->oco3[1] * b[2]; - return P_TRUE; - } - - return P_FALSE; -} - -static SmoothNode *p_node_new( - MemArena *arena, SmoothTriangle **tri, int ntri, float *bmin, float *bmax, int depth) -{ - SmoothNode *node = BLI_memarena_alloc(arena, sizeof(*node)); - int axis, i, t1size = 0, t2size = 0; - float split, /* mi, */ /* UNUSED */ mx; - SmoothTriangle **t1, **t2, *t; - - node->tri = tri; - node->ntri = ntri; - - if (ntri <= 10 || depth >= 15) { - return node; - } - - t1 = MEM_mallocN(sizeof(*t1) * ntri, "PNodeTri1"); - t2 = MEM_mallocN(sizeof(*t2) * ntri, "PNodeTri1"); - - axis = (bmax[0] - bmin[0] > bmax[1] - bmin[1]) ? 0 : 1; - split = 0.5f * (bmin[axis] + bmax[axis]); - - for (i = 0; i < ntri; i++) { - t = tri[i]; - - if ((t->co1[axis] <= split) || (t->co2[axis] <= split) || (t->co3[axis] <= split)) { - t1[t1size] = t; - t1size++; - } - if ((t->co1[axis] >= split) || (t->co2[axis] >= split) || (t->co3[axis] >= split)) { - t2[t2size] = t; - t2size++; - } - } - - if ((t1size == t2size) && (t1size == ntri)) { - MEM_freeN(t1); - MEM_freeN(t2); - return node; - } - - node->tri = NULL; - node->ntri = 0; - MEM_freeN(tri); - - node->axis = axis; - node->split = split; - - /* mi = bmin[axis]; */ /* UNUSED */ - mx = bmax[axis]; - bmax[axis] = split; - node->c1 = p_node_new(arena, t1, t1size, bmin, bmax, depth + 1); - - bmin[axis] = bmax[axis]; - bmax[axis] = mx; - node->c2 = p_node_new(arena, t2, t2size, bmin, bmax, depth + 1); - - return node; -} - -static void p_node_delete(SmoothNode *node) -{ - if (node->c1) { - p_node_delete(node->c1); - } - if (node->c2) { - p_node_delete(node->c2); - } - if (node->tri) { - MEM_freeN(node->tri); - } -} - -static PBool p_node_intersect(SmoothNode *node, float co[2]) -{ - int i; - - if (node->tri) { - for (i = 0; i < node->ntri; i++) { - if (p_triangle_inside(node->tri[i], co)) { - return P_TRUE; - } - } - - return P_FALSE; - } - - if (co[node->axis] < node->split) { - return p_node_intersect(node->c1, co); - } - return p_node_intersect(node->c2, co); -} - -/* smoothing */ - -static int p_compare_float(const void *a_, const void *b_) -{ - const float a = *(const float *)a_; - const float b = *(const float *)b_; - - if (a < b) { - return -1; - } - if (a == b) { - return 0; - } - return 1; -} - -static float p_smooth_median_edge_length(PChart *chart) -{ - PEdge *e; - float *lengths = MEM_mallocN(sizeof(chart->edges) * chart->nedges, "PMedianLength"); - float median; - int i; - - /* ok, so I'm lazy */ - for (i = 0, e = chart->edges; e; e = e->nextlink, i++) { - lengths[i] = p_edge_length(e); - } - - qsort(lengths, i, sizeof(float), p_compare_float); - - median = lengths[i / 2]; - MEM_freeN(lengths); - - return median; -} - -static float p_smooth_distortion(PEdge *e, float avg2d, float avg3d) -{ - float len2d = p_edge_uv_length(e) * avg3d; - float len3d = p_edge_length(e) * avg2d; - - return (len3d == 0.0f) ? 0.0f : len2d / len3d; -} - -static void p_smooth(PChart *chart) -{ - PEdge *e; - PVert *v; - PFace *f; - int j, it2, maxiter2, it; - int nedges = chart->nedges, nwheel, gridx, gridy; - int edgesx, edgesy, nsize, esize, i, x, y, maxiter; - float minv[2], maxv[2], median, invmedian, avglen2d, avglen3d; - float center[2], dx, dy, *nodes, dlimit, d, *oldnodesx, *oldnodesy; - float *nodesx, *nodesy, *hedges, *vedges, climit, moved, padding; - SmoothTriangle *triangles, *t, *t2, **tri, **trip; - SmoothNode *root; - MemArena *arena; - - if (nedges == 0) { - return; - } - - p_chart_uv_bbox(chart, minv, maxv); - median = p_smooth_median_edge_length(chart) * 0.10f; - - if (median == 0.0f) { - return; - } - - invmedian = 1.0f / median; - - /* compute edge distortion */ - avglen2d = avglen3d = 0.0; - - for (e = chart->edges; e; e = e->nextlink) { - avglen2d += p_edge_uv_length(e); - avglen3d += p_edge_length(e); - } - - avglen2d /= nedges; - avglen3d /= nedges; - - for (v = chart->verts; v; v = v->nextlink) { - v->u.distortion = 0.0; - nwheel = 0; - - e = v->edge; - do { - v->u.distortion += p_smooth_distortion(e, avglen2d, avglen3d); - nwheel++; - - e = e->next->next->pair; - } while (e && (e != v->edge)); - - v->u.distortion /= nwheel; - } - - /* need to do excessive grid size checking still */ - center[0] = 0.5f * (minv[0] + maxv[0]); - center[1] = 0.5f * (minv[1] + maxv[1]); - - dx = 0.5f * (maxv[0] - minv[0]); - dy = 0.5f * (maxv[1] - minv[1]); - - padding = 0.15f; - dx += padding * dx + 2.0f * median; - dy += padding * dy + 2.0f * median; - - gridx = (int)(dx * invmedian); - gridy = (int)(dy * invmedian); - - minv[0] = center[0] - median * gridx; - minv[1] = center[1] - median * gridy; - maxv[0] = center[0] + median * gridx; - maxv[1] = center[1] + median * gridy; - - /* create grid */ - gridx = gridx * 2 + 1; - gridy = gridy * 2 + 1; - - if ((gridx <= 2) || (gridy <= 2)) { - return; - } - - edgesx = gridx - 1; - edgesy = gridy - 1; - nsize = gridx * gridy; - esize = edgesx * edgesy; - - nodes = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodes"); - nodesx = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodesX"); - nodesy = MEM_mallocN(sizeof(float) * nsize, "PSmoothNodesY"); - oldnodesx = MEM_mallocN(sizeof(float) * nsize, "PSmoothOldNodesX"); - oldnodesy = MEM_mallocN(sizeof(float) * nsize, "PSmoothOldNodesY"); - hedges = MEM_mallocN(sizeof(float) * esize, "PSmoothHEdges"); - vedges = MEM_mallocN(sizeof(float) * esize, "PSmoothVEdges"); - - if (!nodes || !nodesx || !nodesy || !oldnodesx || !oldnodesy || !hedges || !vedges) { - if (nodes) { - MEM_freeN(nodes); - } - if (nodesx) { - MEM_freeN(nodesx); - } - if (nodesy) { - MEM_freeN(nodesy); - } - if (oldnodesx) { - MEM_freeN(oldnodesx); - } - if (oldnodesy) { - MEM_freeN(oldnodesy); - } - if (hedges) { - MEM_freeN(hedges); - } - if (vedges) { - MEM_freeN(vedges); - } - - // printf("Not enough memory for area smoothing grid"); - return; - } - - for (x = 0; x < gridx; x++) { - for (y = 0; y < gridy; y++) { - i = x + y * gridx; - - nodesx[i] = minv[0] + median * x; - nodesy[i] = minv[1] + median * y; - - nodes[i] = 1.0f; - } - } - - /* embed in grid */ - for (f = chart->faces; f; f = f->nextlink) { - PEdge *e1 = f->edge, *e2 = e1->next, *e3 = e2->next; - float fmin[2], fmax[2]; - int bx1, by1, bx2, by2; - - INIT_MINMAX2(fmin, fmax); - - minmax_v2v2_v2(fmin, fmax, e1->vert->uv); - minmax_v2v2_v2(fmin, fmax, e2->vert->uv); - minmax_v2v2_v2(fmin, fmax, e3->vert->uv); - - bx1 = (int)((fmin[0] - minv[0]) * invmedian); - by1 = (int)((fmin[1] - minv[1]) * invmedian); - bx2 = (int)((fmax[0] - minv[0]) * invmedian + 2); - by2 = (int)((fmax[1] - minv[1]) * invmedian + 2); - - for (x = bx1; x < bx2; x++) { - for (y = by1; y < by2; y++) { - float p[2], b[3]; - - i = x + y * gridx; - - p[0] = nodesx[i]; - p[1] = nodesy[i]; - - p_barycentric_2d(e1->vert->uv, e2->vert->uv, e3->vert->uv, p, b); - - if ((b[0] > 0.0f) && (b[1] > 0.0f) && (b[2] > 0.0f)) { - nodes[i] = e1->vert->u.distortion * b[0]; - nodes[i] += e2->vert->u.distortion * b[1]; - nodes[i] += e3->vert->u.distortion * b[2]; - } - } - } - } - - /* smooth the grid */ - maxiter = 10; - climit = 0.00001f * nsize; - - for (it = 0; it < maxiter; it++) { - moved = 0.0f; - - for (x = 0; x < edgesx; x++) { - for (y = 0; y < edgesy; y++) { - i = x + y * gridx; - j = x + y * edgesx; - - hedges[j] = (nodes[i] + nodes[i + 1]) * 0.5f; - vedges[j] = (nodes[i] + nodes[i + gridx]) * 0.5f; - - /* we do *inverse* mapping */ - hedges[j] = 1.0f / hedges[j]; - vedges[j] = 1.0f / vedges[j]; - } - } - - maxiter2 = 50; - dlimit = 0.0001f; - - for (it2 = 0; it2 < maxiter2; it2++) { - d = 0.0f; - - memcpy(oldnodesx, nodesx, sizeof(float) * nsize); - memcpy(oldnodesy, nodesy, sizeof(float) * nsize); - - for (x = 1; x < gridx - 1; x++) { - for (y = 1; y < gridy - 1; y++) { - float p[2], oldp[2], sum1, sum2, diff[2], length; - - i = x + gridx * y; - j = x + edgesx * y; - - oldp[0] = oldnodesx[i]; - oldp[1] = oldnodesy[i]; - - sum1 = hedges[j - 1] * oldnodesx[i - 1]; - sum1 += hedges[j] * oldnodesx[i + 1]; - sum1 += vedges[j - edgesx] * oldnodesx[i - gridx]; - sum1 += vedges[j] * oldnodesx[i + gridx]; - - sum2 = hedges[j - 1]; - sum2 += hedges[j]; - sum2 += vedges[j - edgesx]; - sum2 += vedges[j]; - - nodesx[i] = sum1 / sum2; - - sum1 = hedges[j - 1] * oldnodesy[i - 1]; - sum1 += hedges[j] * oldnodesy[i + 1]; - sum1 += vedges[j - edgesx] * oldnodesy[i - gridx]; - sum1 += vedges[j] * oldnodesy[i + gridx]; - - nodesy[i] = sum1 / sum2; - - p[0] = nodesx[i]; - p[1] = nodesy[i]; - - diff[0] = p[0] - oldp[0]; - diff[1] = p[1] - oldp[1]; - - length = len_v2(diff); - d = max_ff(d, length); - moved += length; - } - } - - if (d < dlimit) { - break; - } - } - - if (moved < climit) { - break; - } - } - - MEM_freeN(oldnodesx); - MEM_freeN(oldnodesy); - MEM_freeN(hedges); - MEM_freeN(vedges); - - /* Create BSP. */ - t = triangles = MEM_mallocN(sizeof(SmoothTriangle) * esize * 2, "PSmoothTris"); - trip = tri = MEM_mallocN(sizeof(SmoothTriangle *) * esize * 2, "PSmoothTriP"); - - if (!triangles || !tri) { - MEM_freeN(nodes); - MEM_freeN(nodesx); - MEM_freeN(nodesy); - - if (triangles) { - MEM_freeN(triangles); - } - if (tri) { - MEM_freeN(tri); - } - - // printf("Not enough memory for area smoothing grid"); - return; - } - - for (x = 0; x < edgesx; x++) { - for (y = 0; y < edgesy; y++) { - i = x + y * gridx; - - t->co1[0] = nodesx[i]; - t->co1[1] = nodesy[i]; - - t->co2[0] = nodesx[i + 1]; - t->co2[1] = nodesy[i + 1]; - - t->co3[0] = nodesx[i + gridx]; - t->co3[1] = nodesy[i + gridx]; - - t->oco1[0] = minv[0] + x * median; - t->oco1[1] = minv[1] + y * median; - - t->oco2[0] = minv[0] + (x + 1) * median; - t->oco2[1] = minv[1] + y * median; - - t->oco3[0] = minv[0] + x * median; - t->oco3[1] = minv[1] + (y + 1) * median; - - t2 = t + 1; - - t2->co1[0] = nodesx[i + gridx + 1]; - t2->co1[1] = nodesy[i + gridx + 1]; - - t2->oco1[0] = minv[0] + (x + 1) * median; - t2->oco1[1] = minv[1] + (y + 1) * median; - - t2->co2[0] = t->co2[0]; - t2->co2[1] = t->co2[1]; - t2->oco2[0] = t->oco2[0]; - t2->oco2[1] = t->oco2[1]; - - t2->co3[0] = t->co3[0]; - t2->co3[1] = t->co3[1]; - t2->oco3[0] = t->oco3[0]; - t2->oco3[1] = t->oco3[1]; - - *trip = t; - trip++; - t++; - *trip = t; - trip++; - t++; - } - } - - MEM_freeN(nodes); - MEM_freeN(nodesx); - MEM_freeN(nodesy); - - arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 16), "param smooth arena"); - root = p_node_new(arena, tri, esize * 2, minv, maxv, 0); - - for (v = chart->verts; v; v = v->nextlink) { - if (!p_node_intersect(root, v->uv)) { - param_warning("area smoothing error: couldn't find mapping triangle\n"); - } - } - - p_node_delete(root); - BLI_memarena_free(arena); - - MEM_freeN(triangles); -} - -/* Exported */ - -ParamHandle *param_construct_begin(void) -{ - PHandle *handle = MEM_callocN(sizeof(*handle), "PHandle"); - handle->construction_chart = p_chart_new(handle); - handle->state = PHANDLE_STATE_ALLOCATED; - handle->arena = BLI_memarena_new(MEM_SIZE_OPTIMAL(1 << 16), "param construct arena"); - handle->polyfill_arena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "param polyfill arena"); - handle->polyfill_heap = BLI_heap_new_ex(BLI_POLYFILL_ALLOC_NGON_RESERVE); - handle->aspx = 1.0f; - handle->aspy = 1.0f; - handle->do_aspect = false; - - handle->hash_verts = phash_new((PHashLink **)&handle->construction_chart->verts, 1); - handle->hash_edges = phash_new((PHashLink **)&handle->construction_chart->edges, 1); - handle->hash_faces = phash_new((PHashLink **)&handle->construction_chart->faces, 1); - - return (ParamHandle *)handle; -} - -void param_aspect_ratio(ParamHandle *handle, float aspx, float aspy) -{ - PHandle *phandle = (PHandle *)handle; - - phandle->aspx = aspx; - phandle->aspy = aspy; - phandle->do_aspect = true; -} - -void param_delete(ParamHandle *handle) -{ - PHandle *phandle = (PHandle *)handle; - int i; - - param_assert(ELEM(phandle->state, PHANDLE_STATE_ALLOCATED, PHANDLE_STATE_CONSTRUCTED)); - - for (i = 0; i < phandle->ncharts; i++) { - p_chart_delete(phandle->charts[i]); - } - - if (phandle->charts) { - MEM_freeN(phandle->charts); - } - - if (phandle->construction_chart) { - p_chart_delete(phandle->construction_chart); - - phash_delete(phandle->hash_verts); - phash_delete(phandle->hash_edges); - phash_delete(phandle->hash_faces); - } - - BLI_memarena_free(phandle->arena); - BLI_memarena_free(phandle->polyfill_arena); - BLI_heap_free(phandle->polyfill_heap, NULL); - MEM_freeN(phandle); -} - -static void p_add_ngon(ParamHandle *handle, - ParamKey key, - int nverts, - ParamKey *vkeys, - float **co, - float **uv, - ParamBool *pin, - ParamBool *select) -{ - /* Allocate memory for polyfill. */ - PHandle *phandle = (PHandle *)handle; - MemArena *arena = phandle->polyfill_arena; - Heap *heap = phandle->polyfill_heap; - uint nfilltri = nverts - 2; - uint(*tris)[3] = BLI_memarena_alloc(arena, sizeof(*tris) * (size_t)nfilltri); - float(*projverts)[2] = BLI_memarena_alloc(arena, sizeof(*projverts) * (size_t)nverts); - - /* Calc normal, flipped: to get a positive 2d cross product. */ - float normal[3]; - zero_v3(normal); - - const float *co_curr, *co_prev = co[nverts - 1]; - for (int j = 0; j < nverts; j++) { - co_curr = co[j]; - add_newell_cross_v3_v3v3(normal, co_prev, co_curr); - co_prev = co_curr; - } - if (UNLIKELY(normalize_v3(normal) == 0.0f)) { - normal[2] = 1.0f; - } - - /* Project verts to 2d. */ - float axis_mat[3][3]; - axis_dominant_v3_to_m3_negate(axis_mat, normal); - for (int j = 0; j < nverts; j++) { - mul_v2_m3v3(projverts[j], axis_mat, co[j]); - } - - BLI_polyfill_calc_arena(projverts, nverts, 1, tris, arena); - - /* Beautify helps avoid thin triangles that give numerical problems. */ - BLI_polyfill_beautify(projverts, nverts, tris, arena, heap); - - /* Add triangles. */ - for (int j = 0; j < nfilltri; j++) { - uint *tri = tris[j]; - uint v0 = tri[0]; - uint v1 = tri[1]; - uint v2 = tri[2]; - - ParamKey tri_vkeys[3] = {vkeys[v0], vkeys[v1], vkeys[v2]}; - float *tri_co[3] = {co[v0], co[v1], co[v2]}; - float *tri_uv[3] = {uv[v0], uv[v1], uv[v2]}; - ParamBool tri_pin[3] = {pin[v0], pin[v1], pin[v2]}; - ParamBool tri_select[3] = {select[v0], select[v1], select[v2]}; - - param_face_add(handle, key, 3, tri_vkeys, tri_co, tri_uv, tri_pin, tri_select); - } - - BLI_memarena_clear(arena); -} - -void param_face_add(ParamHandle *handle, - ParamKey key, - int nverts, - ParamKey *vkeys, - float *co[4], - float *uv[4], - ParamBool *pin, - ParamBool *select) -{ - PHandle *phandle = (PHandle *)handle; - - param_assert(phash_lookup(phandle->hash_faces, key) == NULL); - param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); - param_assert(ELEM(nverts, 3, 4)); - - if (nverts > 4) { - /* ngon */ - p_add_ngon(handle, key, nverts, vkeys, co, uv, pin, select); - } - else if (nverts == 4) { - /* quad */ - if (p_quad_split_direction(phandle, co, vkeys)) { - p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select); - p_face_add_construct(phandle, key, vkeys, co, uv, 0, 2, 3, pin, select); - } - else { - p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 3, pin, select); - p_face_add_construct(phandle, key, vkeys, co, uv, 1, 2, 3, pin, select); - } - } - else if (!p_face_exists(phandle, vkeys, 0, 1, 2)) { - /* triangle */ - p_face_add_construct(phandle, key, vkeys, co, uv, 0, 1, 2, pin, select); - } -} - -void param_edge_set_seam(ParamHandle *handle, ParamKey *vkeys) -{ - PHandle *phandle = (PHandle *)handle; - PEdge *e; - - param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); - - e = p_edge_lookup(phandle, vkeys); - if (e) { - e->flag |= PEDGE_SEAM; - } -} - -void param_construct_end(ParamHandle *handle, - ParamBool fill, - ParamBool topology_from_uvs, - int *count_fail) -{ - PHandle *phandle = (PHandle *)handle; - PChart *chart = phandle->construction_chart; - int i, j, nboundaries = 0; - PEdge *outer; - - param_assert(phandle->state == PHANDLE_STATE_ALLOCATED); - - phandle->ncharts = p_connect_pairs(phandle, (PBool)topology_from_uvs); - phandle->charts = p_split_charts(phandle, chart, phandle->ncharts); - - p_chart_delete(phandle->construction_chart); - phandle->construction_chart = NULL; - - phash_delete(phandle->hash_verts); - phash_delete(phandle->hash_edges); - phash_delete(phandle->hash_faces); - phandle->hash_verts = phandle->hash_edges = phandle->hash_faces = NULL; - - for (i = j = 0; i < phandle->ncharts; i++) { - PVert *v; - chart = phandle->charts[i]; - - p_chart_boundaries(chart, &nboundaries, &outer); - - if (!topology_from_uvs && nboundaries == 0) { - p_chart_delete(chart); - if (count_fail != NULL) { - *count_fail += 1; - } - continue; - } - - phandle->charts[j] = chart; - j++; - - if (fill && (nboundaries > 1)) { - p_chart_fill_boundaries(chart, outer); - } - - for (v = chart->verts; v; v = v->nextlink) { - p_vert_load_pin_select_uvs(handle, v); - } - } - - phandle->ncharts = j; - - phandle->state = PHANDLE_STATE_CONSTRUCTED; -} - -void param_lscm_begin(ParamHandle *handle, ParamBool live, ParamBool abf) -{ - PHandle *phandle = (PHandle *)handle; - PFace *f; - int i; - - param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); - phandle->state = PHANDLE_STATE_LSCM; - - for (i = 0; i < phandle->ncharts; i++) { - for (f = phandle->charts[i]->faces; f; f = f->nextlink) { - p_face_backup_uvs(f); - } - p_chart_lscm_begin(phandle->charts[i], (PBool)live, (PBool)abf); - } -} - -void param_lscm_solve(ParamHandle *handle, int *count_changed, int *count_failed) -{ - PHandle *phandle = (PHandle *)handle; - PChart *chart; - int i; - - param_assert(phandle->state == PHANDLE_STATE_LSCM); - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - - if (chart->u.lscm.context) { - const PBool result = p_chart_lscm_solve(phandle, chart); - - if (result && !(chart->flag & PCHART_HAS_PINS)) { - p_chart_rotate_minimum_area(chart); - } - else if (result && chart->u.lscm.single_pin) { - p_chart_rotate_fit_aabb(chart); - p_chart_lscm_transform_single_pin(chart); - } - - if (!result || !(chart->flag & PCHART_HAS_PINS)) { - p_chart_lscm_end(chart); - } - - if (result) { - if (count_changed != NULL) { - *count_changed += 1; - } - } - else { - if (count_failed != NULL) { - *count_failed += 1; - } - } - } - } -} - -void param_lscm_end(ParamHandle *handle) -{ - PHandle *phandle = (PHandle *)handle; - int i; - - param_assert(phandle->state == PHANDLE_STATE_LSCM); - - for (i = 0; i < phandle->ncharts; i++) { - p_chart_lscm_end(phandle->charts[i]); -#if 0 - p_chart_complexify(phandle->charts[i]); -#endif - } - - phandle->state = PHANDLE_STATE_CONSTRUCTED; -} - -void param_stretch_begin(ParamHandle *handle) -{ - PHandle *phandle = (PHandle *)handle; - PChart *chart; - PVert *v; - PFace *f; - int i; - - param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); - phandle->state = PHANDLE_STATE_STRETCH; - - phandle->rng = BLI_rng_new(31415926); - phandle->blend = 0.0f; - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - - for (v = chart->verts; v; v = v->nextlink) { - v->flag &= ~PVERT_PIN; /* don't use user-defined pins */ - } - - p_stretch_pin_boundary(chart); - - for (f = chart->faces; f; f = f->nextlink) { - p_face_backup_uvs(f); - f->u.area3d = p_face_area(f); - } - } -} - -void param_stretch_blend(ParamHandle *handle, float blend) -{ - PHandle *phandle = (PHandle *)handle; - - param_assert(phandle->state == PHANDLE_STATE_STRETCH); - phandle->blend = blend; -} - -void param_stretch_iter(ParamHandle *handle) -{ - PHandle *phandle = (PHandle *)handle; - PChart *chart; - int i; - - param_assert(phandle->state == PHANDLE_STATE_STRETCH); - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - p_chart_stretch_minimize(chart, phandle->rng); - } -} - -void param_stretch_end(ParamHandle *handle) -{ - PHandle *phandle = (PHandle *)handle; - - param_assert(phandle->state == PHANDLE_STATE_STRETCH); - phandle->state = PHANDLE_STATE_CONSTRUCTED; - - BLI_rng_free(phandle->rng); - phandle->rng = NULL; -} - -void param_smooth_area(ParamHandle *handle) -{ - PHandle *phandle = (PHandle *)handle; - int i; - - param_assert(phandle->state == PHANDLE_STATE_CONSTRUCTED); - - for (i = 0; i < phandle->ncharts; i++) { - PChart *chart = phandle->charts[i]; - PVert *v; - - for (v = chart->verts; v; v = v->nextlink) { - v->flag &= ~PVERT_PIN; - } - - p_smooth(chart); - } -} - -/* don't pack, just rotate (used for better packing) */ -static void param_pack_rotate(ParamHandle *handle, bool ignore_pinned) -{ - PChart *chart; - int i; - - PHandle *phandle = (PHandle *)handle; - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - continue; - } - - p_chart_rotate_fit_aabb(chart); - } -} - -void param_pack(ParamHandle *handle, float margin, bool do_rotate, bool ignore_pinned) -{ - /* box packing variables */ - BoxPack *boxarray, *box; - float tot_width, tot_height, scale; - - PChart *chart; - int i, unpacked = 0; - float trans[2]; - double area = 0.0; - - PHandle *phandle = (PHandle *)handle; - - if (phandle->ncharts == 0) { - return; - } - - /* this could be its own function */ - if (do_rotate) { - param_pack_rotate(handle, ignore_pinned); - } - - if (phandle->aspx != phandle->aspy) { - param_scale(handle, 1.0f / phandle->aspx, 1.0f / phandle->aspy); - } - - /* we may not use all these boxes */ - boxarray = MEM_mallocN(phandle->ncharts * sizeof(BoxPack), "BoxPack box"); - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - unpacked++; - continue; - } - - box = boxarray + (i - unpacked); - - p_chart_uv_bbox(chart, trans, chart->u.pack.size); - - trans[0] = -trans[0]; - trans[1] = -trans[1]; - - p_chart_uv_translate(chart, trans); - - box->w = chart->u.pack.size[0] + trans[0]; - box->h = chart->u.pack.size[1] + trans[1]; - box->index = i; /* warning this index skips PCHART_HAS_PINS boxes */ - - if (margin > 0.0f) { - area += (double)sqrtf(box->w * box->h); - } - } - - if (margin > 0.0f) { - /* multiply the margin by the area to give predictable results not dependent on UV scale, - * ...Without using the area running pack multiple times also gives a bad feedback loop. - * multiply by 0.1 so the margin value from the UI can be from - * 0.0 to 1.0 but not give a massive margin */ - margin = (margin * (float)area) * 0.1f; - unpacked = 0; - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - unpacked++; - continue; - } - - box = boxarray + (i - unpacked); - trans[0] = margin; - trans[1] = margin; - p_chart_uv_translate(chart, trans); - box->w += margin * 2; - box->h += margin * 2; - } - } - - BLI_box_pack_2d(boxarray, phandle->ncharts - unpacked, &tot_width, &tot_height); - - if (tot_height > tot_width) { - scale = 1.0f / tot_height; - } - else { - scale = 1.0f / tot_width; - } - - for (i = 0; i < phandle->ncharts - unpacked; i++) { - box = boxarray + i; - trans[0] = box->x; - trans[1] = box->y; - - chart = phandle->charts[box->index]; - p_chart_uv_translate(chart, trans); - p_chart_uv_scale(chart, scale); - } - MEM_freeN(boxarray); - - if (phandle->aspx != phandle->aspy) { - param_scale(handle, phandle->aspx, phandle->aspy); - } -} - -void param_average(ParamHandle *handle, bool ignore_pinned) -{ - PChart *chart; - int i; - float tot_uvarea = 0.0f, tot_facearea = 0.0f; - float tot_fac, fac; - float minv[2], maxv[2], trans[2]; - PHandle *phandle = (PHandle *)handle; - - if (phandle->ncharts == 0) { - return; - } - - for (i = 0; i < phandle->ncharts; i++) { - PFace *f; - chart = phandle->charts[i]; - - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - continue; - } - - chart->u.pack.area = 0.0f; /* 3d area */ - chart->u.pack.rescale = 0.0f; /* UV area, abusing rescale for tmp storage, oh well :/ */ - - for (f = chart->faces; f; f = f->nextlink) { - chart->u.pack.area += p_face_area(f); - chart->u.pack.rescale += fabsf(p_face_uv_area_signed(f)); - } - - tot_facearea += chart->u.pack.area; - tot_uvarea += chart->u.pack.rescale; - } - - if (tot_facearea == tot_uvarea || tot_facearea == 0.0f || tot_uvarea == 0.0f) { - /* nothing to do */ - return; - } - - tot_fac = tot_facearea / tot_uvarea; - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - - if (ignore_pinned && (chart->flag & PCHART_HAS_PINS)) { - continue; - } - - if (chart->u.pack.area != 0.0f && chart->u.pack.rescale != 0.0f) { - fac = chart->u.pack.area / chart->u.pack.rescale; - - /* Get the island center */ - p_chart_uv_bbox(chart, minv, maxv); - trans[0] = (minv[0] + maxv[0]) / -2.0f; - trans[1] = (minv[1] + maxv[1]) / -2.0f; - - /* Move center to 0,0 */ - p_chart_uv_translate(chart, trans); - p_chart_uv_scale(chart, sqrtf(fac / tot_fac)); - - /* Move to original center */ - trans[0] = -trans[0]; - trans[1] = -trans[1]; - p_chart_uv_translate(chart, trans); - } - } -} - -void param_scale(ParamHandle *handle, float x, float y) -{ - PHandle *phandle = (PHandle *)handle; - PChart *chart; - int i; - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - p_chart_uv_scale_xy(chart, x, y); - } -} - -void param_flush(ParamHandle *handle) -{ - PHandle *phandle = (PHandle *)handle; - PChart *chart; - int i; - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - - if ((phandle->state == PHANDLE_STATE_LSCM) && !chart->u.lscm.context) { - continue; - } - - if (phandle->blend == 0.0f) { - p_flush_uvs(phandle, chart); - } - else { - p_flush_uvs_blend(phandle, chart, phandle->blend); - } - } -} - -void param_flush_restore(ParamHandle *handle) -{ - PHandle *phandle = (PHandle *)handle; - PChart *chart; - PFace *f; - int i; - - for (i = 0; i < phandle->ncharts; i++) { - chart = phandle->charts[i]; - - for (f = chart->faces; f; f = f->nextlink) { - p_face_restore_uvs(f); - } - } -} diff --git a/source/blender/editors/uvedit/uvedit_parametrizer.h b/source/blender/editors/uvedit/uvedit_parametrizer.h deleted file mode 100644 index f234fbe2ace..00000000000 --- a/source/blender/editors/uvedit/uvedit_parametrizer.h +++ /dev/null @@ -1,99 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0-or-later */ - -#pragma once - -/** \file - * \ingroup eduv - */ - -#include "BLI_sys_types.h" /* for intptr_t support */ - -#ifdef __cplusplus -extern "C" { -#endif - -typedef void ParamHandle; /* handle to a set of charts */ -typedef intptr_t ParamKey; /* (hash) key for identifying verts and faces */ -typedef enum ParamBool { - PARAM_TRUE = 1, - PARAM_FALSE = 0, -} ParamBool; - -/* Chart construction: - * ------------------- - * - faces and seams may only be added between construct_{begin|end} - * - the pointers to co and uv are stored, rather than being copied - * - vertices are implicitly created - * - in construct_end the mesh will be split up according to the seams - * - the resulting charts must be: - * - manifold, connected, open (at least one boundary loop) - * - output will be written to the uv pointers - */ - -ParamHandle *param_construct_begin(void); - -void param_aspect_ratio(ParamHandle *handle, float aspx, float aspy); - -void param_face_add(ParamHandle *handle, - ParamKey key, - int nverts, - ParamKey *vkeys, - float *co[4], - float *uv[4], - ParamBool *pin, - ParamBool *select); - -void param_edge_set_seam(ParamHandle *handle, ParamKey *vkeys); - -void param_construct_end(ParamHandle *handle, - ParamBool fill, - ParamBool topology_from_uvs, - int *count_fail); -void param_delete(ParamHandle *handle); - -/* Least Squares Conformal Maps: - * ----------------------------- - * - charts with less than two pinned vertices are assigned 2 pins - * - lscm is divided in three steps: - * - begin: compute matrix and its factorization (expensive) - * - solve using pinned coordinates (cheap) - * - end: clean up - * - uv coordinates are allowed to change within begin/end, for - * quick re-solving - */ - -void param_lscm_begin(ParamHandle *handle, ParamBool live, ParamBool abf); -void param_lscm_solve(ParamHandle *handle, int *count_changed, int *count_failed); -void param_lscm_end(ParamHandle *handle); - -/* Stretch */ - -void param_stretch_begin(ParamHandle *handle); -void param_stretch_blend(ParamHandle *handle, float blend); -void param_stretch_iter(ParamHandle *handle); -void param_stretch_end(ParamHandle *handle); - -/* Area Smooth */ - -void param_smooth_area(ParamHandle *handle); - -/* Packing */ - -void param_pack(ParamHandle *handle, float margin, bool do_rotate, bool ignore_pinned); - -/* Average area for all charts */ - -void param_average(ParamHandle *handle, bool ignore_pinned); - -/* Simple x,y scale */ - -void param_scale(ParamHandle *handle, float x, float y); - -/* Flushing */ - -void param_flush(ParamHandle *handle); -void param_flush_restore(ParamHandle *handle); - -#ifdef __cplusplus -} -#endif diff --git a/source/blender/editors/uvedit/uvedit_unwrap_ops.c b/source/blender/editors/uvedit/uvedit_unwrap_ops.c index 63300656fda..609fa72d56b 100644 --- a/source/blender/editors/uvedit/uvedit_unwrap_ops.c +++ b/source/blender/editors/uvedit/uvedit_unwrap_ops.c @@ -46,6 +46,8 @@ #include "DEG_depsgraph.h" +#include "GEO_uv_parametrizer.h" + #include "PIL_time.h" #include "UI_interface.h" @@ -64,7 +66,6 @@ #include "WM_types.h" #include "uvedit_intern.h" -#include "uvedit_parametrizer.h" /* -------------------------------------------------------------------- */ /** \name Utility Functions @@ -319,7 +320,7 @@ static void construct_param_handle_face_add(ParamHandle *handle, select[i] = uvedit_uv_select_test(scene, l, cd_loop_uv_offset); } - param_face_add(handle, key, i, vkeys, co, uv, pin, select); + GEO_uv_parametrizer_face_add(handle, key, i, vkeys, co, uv, pin, select); } /* See: construct_param_handle_multi to handle multiple objects at once. */ @@ -338,7 +339,7 @@ static ParamHandle *construct_param_handle(const Scene *scene, const int cd_loop_uv_offset = CustomData_get_offset(&bm->ldata, CD_MLOOPUV); - handle = param_construct_begin(); + handle = GEO_uv_parametrizer_construct_begin(); if (options->correct_aspect) { float aspx, aspy; @@ -346,7 +347,7 @@ static ParamHandle *construct_param_handle(const Scene *scene, ED_uvedit_get_aspect(ob, &aspx, &aspy); if (aspx != aspy) { - param_aspect_ratio(handle, aspx, aspy); + GEO_uv_parametrizer_aspect_ratio(handle, aspx, aspy); } } @@ -385,15 +386,15 @@ static ParamHandle *construct_param_handle(const Scene *scene, ParamKey vkeys[2]; vkeys[0] = (ParamKey)BM_elem_index_get(eed->v1); vkeys[1] = (ParamKey)BM_elem_index_get(eed->v2); - param_edge_set_seam(handle, vkeys); + GEO_uv_parametrizer_edge_set_seam(handle, vkeys); } } } - param_construct_end(handle, - options->fill_holes, - options->topology_from_uvs, - result_info ? &result_info->count_failed : NULL); + GEO_uv_parametrizer_construct_end(handle, + options->fill_holes, + options->topology_from_uvs, + result_info ? &result_info->count_failed : NULL); return handle; } @@ -414,7 +415,7 @@ static ParamHandle *construct_param_handle_multi(const Scene *scene, BMIter iter, liter; int i; - handle = param_construct_begin(); + handle = GEO_uv_parametrizer_construct_begin(); if (options->correct_aspect) { Object *ob = objects[0]; @@ -422,7 +423,7 @@ static ParamHandle *construct_param_handle_multi(const Scene *scene, ED_uvedit_get_aspect(ob, &aspx, &aspy); if (aspx != aspy) { - param_aspect_ratio(handle, aspx, aspy); + GEO_uv_parametrizer_aspect_ratio(handle, aspx, aspy); } } @@ -474,14 +475,15 @@ static ParamHandle *construct_param_handle_multi(const Scene *scene, ParamKey vkeys[2]; vkeys[0] = (ParamKey)BM_elem_index_get(eed->v1); vkeys[1] = (ParamKey)BM_elem_index_get(eed->v2); - param_edge_set_seam(handle, vkeys); + GEO_uv_parametrizer_edge_set_seam(handle, vkeys); } } } offset += bm->totface; } - param_construct_end(handle, options->fill_holes, options->topology_from_uvs, count_fail); + GEO_uv_parametrizer_construct_end( + handle, options->fill_holes, options->topology_from_uvs, count_fail); return handle; } @@ -560,7 +562,7 @@ static ParamHandle *construct_param_handle_subsurfed(const Scene *scene, const int cd_loop_uv_offset = CustomData_get_offset(&em->bm->ldata, CD_MLOOPUV); - handle = param_construct_begin(); + handle = GEO_uv_parametrizer_construct_begin(); if (options->correct_aspect) { float aspx, aspy; @@ -568,7 +570,7 @@ static ParamHandle *construct_param_handle_subsurfed(const Scene *scene, ED_uvedit_get_aspect(ob, &aspx, &aspy); if (aspx != aspy) { - param_aspect_ratio(handle, aspx, aspy); + GEO_uv_parametrizer_aspect_ratio(handle, aspx, aspy); } } @@ -689,7 +691,7 @@ static ParamHandle *construct_param_handle_subsurfed(const Scene *scene, &pin[3], &select[3]); - param_face_add(handle, key, 4, vkeys, co, uv, pin, select); + GEO_uv_parametrizer_face_add(handle, key, 4, vkeys, co, uv, pin, select); } /* these are calculated from original mesh too */ @@ -698,14 +700,14 @@ static ParamHandle *construct_param_handle_subsurfed(const Scene *scene, ParamKey vkeys[2]; vkeys[0] = (ParamKey)edge->v1; vkeys[1] = (ParamKey)edge->v2; - param_edge_set_seam(handle, vkeys); + GEO_uv_parametrizer_edge_set_seam(handle, vkeys); } } - param_construct_end(handle, - options->fill_holes, - options->topology_from_uvs, - result_info ? &result_info->count_failed : NULL); + GEO_uv_parametrizer_construct_end(handle, + options->fill_holes, + options->topology_from_uvs, + result_info ? &result_info->count_failed : NULL); /* cleanup */ MEM_freeN(faceMap); @@ -764,9 +766,9 @@ static bool minimize_stretch_init(bContext *C, wmOperator *op) ms->handle = construct_param_handle_multi(scene, objects, objects_len, &options, NULL); ms->lasttime = PIL_check_seconds_timer(); - param_stretch_begin(ms->handle); + GEO_uv_parametrizer_stretch_begin(ms->handle); if (ms->blend != 0.0f) { - param_stretch_blend(ms->handle, ms->blend); + GEO_uv_parametrizer_stretch_blend(ms->handle, ms->blend); } op->customdata = ms; @@ -782,8 +784,8 @@ static void minimize_stretch_iteration(bContext *C, wmOperator *op, bool interac ToolSettings *ts = scene->toolsettings; const bool synced_selection = (ts->uv_flag & UV_SYNC_SELECTION) != 0; - param_stretch_blend(ms->handle, ms->blend); - param_stretch_iter(ms->handle); + GEO_uv_parametrizer_stretch_blend(ms->handle, ms->blend); + GEO_uv_parametrizer_stretch_iter(ms->handle); ms->i++; RNA_int_set(op->ptr, "iterations", ms->i); @@ -791,7 +793,7 @@ static void minimize_stretch_iteration(bContext *C, wmOperator *op, bool interac if (interactive && (PIL_check_seconds_timer() - ms->lasttime > 0.5)) { char str[UI_MAX_DRAW_STR]; - param_flush(ms->handle); + GEO_uv_parametrizer_flush(ms->handle); if (area) { BLI_snprintf(str, sizeof(str), TIP_("Minimize Stretch. Blend %.2f"), ms->blend); @@ -831,14 +833,14 @@ static void minimize_stretch_exit(bContext *C, wmOperator *op, bool cancel) } if (cancel) { - param_flush_restore(ms->handle); + GEO_uv_parametrizer_flush_restore(ms->handle); } else { - param_flush(ms->handle); + GEO_uv_parametrizer_flush(ms->handle); } - param_stretch_end(ms->handle); - param_delete(ms->handle); + GEO_uv_parametrizer_stretch_end(ms->handle); + GEO_uv_parametrizer_delete(ms->handle); for (uint ob_index = 0; ob_index < ms->objects_len; ob_index++) { Object *obedit = ms->objects_edit[ob_index]; @@ -1014,9 +1016,9 @@ static void uvedit_pack_islands(const Scene *scene, Object *ob, BMesh *bm) ParamHandle *handle; handle = construct_param_handle(scene, ob, bm, &options, NULL); - param_pack(handle, scene->toolsettings->uvcalc_margin, rotate, ignore_pinned); - param_flush(handle); - param_delete(handle); + GEO_uv_parametrizer_pack(handle, scene->toolsettings->uvcalc_margin, rotate, ignore_pinned); + GEO_uv_parametrizer_flush(handle); + GEO_uv_parametrizer_delete(handle); } /** @@ -1034,9 +1036,9 @@ static void uvedit_pack_islands_multi(const Scene *scene, { ParamHandle *handle; handle = construct_param_handle_multi(scene, objects, objects_len, options, NULL); - param_pack(handle, scene->toolsettings->uvcalc_margin, rotate, ignore_pinned); - param_flush(handle); - param_delete(handle); + GEO_uv_parametrizer_pack(handle, scene->toolsettings->uvcalc_margin, rotate, ignore_pinned); + GEO_uv_parametrizer_flush(handle); + GEO_uv_parametrizer_delete(handle); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; @@ -1167,9 +1169,9 @@ static int average_islands_scale_exec(bContext *C, wmOperator *UNUSED(op)) } ParamHandle *handle = construct_param_handle_multi(scene, objects, objects_len, &options, NULL); - param_average(handle, false); - param_flush(handle); - param_delete(handle); + GEO_uv_parametrizer_average(handle, false); + GEO_uv_parametrizer_flush(handle); + GEO_uv_parametrizer_delete(handle); for (uint ob_index = 0; ob_index < objects_len; ob_index++) { Object *obedit = objects[ob_index]; @@ -1239,7 +1241,7 @@ void ED_uvedit_live_unwrap_begin(Scene *scene, Object *obedit) handle = construct_param_handle(scene, obedit, em->bm, &options, NULL); } - param_lscm_begin(handle, PARAM_TRUE, abf); + GEO_uv_parametrizer_lscm_begin(handle, PARAM_TRUE, abf); /* Create or increase size of g_live_unwrap.handles array */ if (g_live_unwrap.handles == NULL) { @@ -1261,8 +1263,8 @@ void ED_uvedit_live_unwrap_re_solve(void) { if (g_live_unwrap.handles) { for (int i = 0; i < g_live_unwrap.len; i++) { - param_lscm_solve(g_live_unwrap.handles[i], NULL, NULL); - param_flush(g_live_unwrap.handles[i]); + GEO_uv_parametrizer_lscm_solve(g_live_unwrap.handles[i], NULL, NULL); + GEO_uv_parametrizer_flush(g_live_unwrap.handles[i]); } } } @@ -1271,11 +1273,11 @@ void ED_uvedit_live_unwrap_end(short cancel) { if (g_live_unwrap.handles) { for (int i = 0; i < g_live_unwrap.len; i++) { - param_lscm_end(g_live_unwrap.handles[i]); + GEO_uv_parametrizer_lscm_end(g_live_unwrap.handles[i]); if (cancel) { - param_flush_restore(g_live_unwrap.handles[i]); + GEO_uv_parametrizer_flush_restore(g_live_unwrap.handles[i]); } - param_delete(g_live_unwrap.handles[i]); + GEO_uv_parametrizer_delete(g_live_unwrap.handles[i]); } MEM_freeN(g_live_unwrap.handles); g_live_unwrap.handles = NULL; @@ -1731,17 +1733,17 @@ static void uvedit_unwrap(const Scene *scene, handle = construct_param_handle(scene, obedit, em->bm, options, result_info); } - param_lscm_begin(handle, PARAM_FALSE, scene->toolsettings->unwrapper == 0); - param_lscm_solve(handle, - result_info ? &result_info->count_changed : NULL, - result_info ? &result_info->count_failed : NULL); - param_lscm_end(handle); + GEO_uv_parametrizer_lscm_begin(handle, PARAM_FALSE, scene->toolsettings->unwrapper == 0); + GEO_uv_parametrizer_lscm_solve(handle, + result_info ? &result_info->count_changed : NULL, + result_info ? &result_info->count_failed : NULL); + GEO_uv_parametrizer_lscm_end(handle); - param_average(handle, true); + GEO_uv_parametrizer_average(handle, true); - param_flush(handle); + GEO_uv_parametrizer_flush(handle); - param_delete(handle); + GEO_uv_parametrizer_delete(handle); } static void uvedit_unwrap_multi(const Scene *scene, -- cgit v1.2.3