// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2006-2008 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_COEFFS_H #define EIGEN_COEFFS_H /** Short version: don't use this function, use * \link operator()(int,int) const \endlink instead. * * Long version: this function is similar to * \link operator()(int,int) const \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator()(int,int) const \endlink. * * \sa operator()(int,int) const, coeffRef(int,int), coeff(int) const */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::coeff(int row, int col) const { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().coeff(row, col); } /** \returns the coefficient at given the given row and column. * * \sa operator()(int,int), operator[](int) const */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::operator()(int row, int col) const { ei_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().coeff(row, col); } /** Short version: don't use this function, use * \link operator()(int,int) \endlink instead. * * Long version: this function is similar to * \link operator()(int,int) \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator()(int,int) \endlink. * * \sa operator()(int,int), coeff(int, int) const, coeffRef(int) */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::coeffRef(int row, int col) { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().coeffRef(row, col); } /** \returns a reference to the coefficient at given the given row and column. * * \sa operator()(int,int) const, operator[](int) */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::operator()(int row, int col) { ei_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().coeffRef(row, col); } /** Short version: don't use this function, use * \link operator[](int) const \endlink instead. * * Long version: this function is similar to * \link operator[](int) const \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameter \a index is in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator[](int) const \endlink. * * \sa operator[](int) const, coeffRef(int), coeff(int,int) const */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::coeff(int index) const { ei_internal_assert(index >= 0 && index < size()); return derived().coeff(index); } /** \returns the coefficient at given index. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](int), operator()(int,int) const, x() const, y() const, * z() const, w() const */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::operator[](int index) const { ei_assert(index >= 0 && index < size()); return derived().coeff(index); } /** \returns the coefficient at given index. * * This is synonymous to operator[](int) const. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](int), operator()(int,int) const, x() const, y() const, * z() const, w() const */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::operator()(int index) const { ei_assert(index >= 0 && index < size()); return derived().coeff(index); } /** Short version: don't use this function, use * \link operator[](int) \endlink instead. * * Long version: this function is similar to * \link operator[](int) \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator[](int) \endlink. * * \sa operator[](int), coeff(int) const, coeffRef(int,int) */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::coeffRef(int index) { ei_internal_assert(index >= 0 && index < size()); return derived().coeffRef(index); } /** \returns a reference to the coefficient at given index. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](int) const, operator()(int,int), x(), y(), z(), w() */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::operator[](int index) { ei_assert(index >= 0 && index < size()); return derived().coeffRef(index); } /** \returns a reference to the coefficient at given index. * * This is synonymous to operator[](int). * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](int) const, operator()(int,int), x(), y(), z(), w() */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::operator()(int index) { ei_assert(index >= 0 && index < size()); return derived().coeffRef(index); } /** equivalent to operator[](0). */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::x() const { return (*this)[0]; } /** equivalent to operator[](1). */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::y() const { return (*this)[1]; } /** equivalent to operator[](2). */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::z() const { return (*this)[2]; } /** equivalent to operator[](3). */ template EIGEN_STRONG_INLINE const typename ei_traits::Scalar MatrixBase ::w() const { return (*this)[3]; } /** equivalent to operator[](0). */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::x() { return (*this)[0]; } /** equivalent to operator[](1). */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::y() { return (*this)[1]; } /** equivalent to operator[](2). */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::z() { return (*this)[2]; } /** equivalent to operator[](3). */ template EIGEN_STRONG_INLINE typename ei_traits::Scalar& MatrixBase ::w() { return (*this)[3]; } /** \returns the packet of coefficients starting at the given row and column. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit. * * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template template EIGEN_STRONG_INLINE typename ei_packet_traits::Scalar>::type MatrixBase::packet(int row, int col) const { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return derived().template packet(row,col); } /** Stores the given packet of coefficients, at the given row and column of this expression. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit. * * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template template EIGEN_STRONG_INLINE void MatrixBase::writePacket (int row, int col, const typename ei_packet_traits::Scalar>::type& x) { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); derived().template writePacket(row,col,x); } /** \returns the packet of coefficients starting at the given index. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit and the LinearAccessBit. * * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template template EIGEN_STRONG_INLINE typename ei_packet_traits::Scalar>::type MatrixBase::packet(int index) const { ei_internal_assert(index >= 0 && index < size()); return derived().template packet(index); } /** Stores the given packet of coefficients, at the given index in this expression. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit and the LinearAccessBit. * * The \a LoadMode parameter may have the value \a Aligned or \a Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template template EIGEN_STRONG_INLINE void MatrixBase::writePacket (int index, const typename ei_packet_traits::Scalar>::type& x) { ei_internal_assert(index >= 0 && index < size()); derived().template writePacket(index,x); } #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal Copies the coefficient at position (row,col) of other into *this. * * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code * with usual assignments. * * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. */ template template EIGEN_STRONG_INLINE void MatrixBase::copyCoeff(int row, int col, const MatrixBase& other) { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); derived().coeffRef(row, col) = other.derived().coeff(row, col); } /** \internal Copies the coefficient at the given index of other into *this. * * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code * with usual assignments. * * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. */ template template EIGEN_STRONG_INLINE void MatrixBase::copyCoeff(int index, const MatrixBase& other) { ei_internal_assert(index >= 0 && index < size()); derived().coeffRef(index) = other.derived().coeff(index); } /** \internal Copies the packet at position (row,col) of other into *this. * * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code * with usual assignments. * * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. */ template template EIGEN_STRONG_INLINE void MatrixBase::copyPacket(int row, int col, const MatrixBase& other) { ei_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); derived().template writePacket(row, col, other.derived().template packet(row, col)); } /** \internal Copies the packet at the given index of other into *this. * * This method is overridden in SwapWrapper, allowing swap() assignments to share 99% of their code * with usual assignments. * * Outside of this internal usage, this method has probably no usefulness. It is hidden in the public API dox. */ template template EIGEN_STRONG_INLINE void MatrixBase::copyPacket(int index, const MatrixBase& other) { ei_internal_assert(index >= 0 && index < size()); derived().template writePacket(index, other.derived().template packet(index)); } #endif #endif // EIGEN_COEFFS_H