/******************************************************************************* * Copyright 2009-2016 Jörg Müller * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************/ #include "PulseAudioDevice.h" #include "PulseAudioLibrary.h" #include "devices/DeviceManager.h" #include "devices/IDeviceFactory.h" #include "Exception.h" #include "IReader.h" AUD_NAMESPACE_BEGIN PulseAudioDevice::PulseAudioSynchronizer::PulseAudioSynchronizer(PulseAudioDevice *device) : m_device(device) { } double PulseAudioDevice::PulseAudioSynchronizer::getPosition(std::shared_ptr handle) { pa_usec_t latency; int negative; AUD_pa_stream_get_latency(m_device->m_stream, &latency, &negative); double delay = m_device->m_ring_buffer.getReadSize() / (AUD_SAMPLE_SIZE(m_device->m_specs) * m_device->m_specs.rate) + latency * 1.0e-6; return handle->getPosition() - delay; } void PulseAudioDevice::updateRingBuffer() { unsigned int samplesize = AUD_DEVICE_SAMPLE_SIZE(m_specs); std::unique_lock lock(m_mixingLock); Buffer buffer; while(m_valid) { size_t size = m_ring_buffer.getWriteSize(); size_t sample_count = size / samplesize; if(sample_count > 0) { size = sample_count * samplesize; buffer.assureSize(size); mix(reinterpret_cast(buffer.getBuffer()), sample_count); m_ring_buffer.write(reinterpret_cast(buffer.getBuffer()), size); } m_mixingCondition.wait(lock); } } void PulseAudioDevice::PulseAudio_state_callback(pa_context *context, void *data) { PulseAudioDevice* device = (PulseAudioDevice*)data; device->m_state = AUD_pa_context_get_state(context); AUD_pa_threaded_mainloop_signal(device->m_mainloop, 0); } void PulseAudioDevice::PulseAudio_request(pa_stream *stream, size_t total_bytes, void *data) { PulseAudioDevice* device = (PulseAudioDevice*)data; data_t* buffer; size_t sample_size = AUD_DEVICE_SAMPLE_SIZE(device->m_specs); while(total_bytes > 0) { size_t num_bytes = total_bytes; AUD_pa_stream_begin_write(stream, reinterpret_cast(&buffer), &num_bytes); size_t readsamples = device->m_ring_buffer.getReadSize(); readsamples = std::min(readsamples, size_t(num_bytes)) / sample_size; device->m_ring_buffer.read(buffer, readsamples * sample_size); if(readsamples * sample_size < num_bytes) std::memset(buffer + readsamples * sample_size, 0, num_bytes - readsamples * sample_size); if(device->m_mixingLock.try_lock()) { device->m_mixingCondition.notify_all(); device->m_mixingLock.unlock(); } AUD_pa_stream_write(stream, reinterpret_cast(buffer), num_bytes, nullptr, 0, PA_SEEK_RELATIVE); total_bytes -= num_bytes; } } void PulseAudioDevice::playing(bool playing) { m_playback = playing; AUD_pa_threaded_mainloop_lock(m_mainloop); AUD_pa_stream_cork(m_stream, playing ? 0 : 1, nullptr, nullptr); AUD_pa_threaded_mainloop_unlock(m_mainloop); } PulseAudioDevice::PulseAudioDevice(std::string name, DeviceSpecs specs, int buffersize) : m_synchronizer(this), m_playback(false), m_state(PA_CONTEXT_UNCONNECTED), m_valid(true), m_underflows(0) { m_mainloop = AUD_pa_threaded_mainloop_new(); AUD_pa_threaded_mainloop_lock(m_mainloop); m_context = AUD_pa_context_new(AUD_pa_threaded_mainloop_get_api(m_mainloop), name.c_str()); if(!m_context) { AUD_pa_threaded_mainloop_unlock(m_mainloop); AUD_pa_threaded_mainloop_free(m_mainloop); AUD_THROW(DeviceException, "Could not connect to PulseAudio."); } AUD_pa_context_set_state_callback(m_context, PulseAudio_state_callback, this); AUD_pa_context_connect(m_context, nullptr, PA_CONTEXT_NOFLAGS, nullptr); AUD_pa_threaded_mainloop_start(m_mainloop); while(m_state != PA_CONTEXT_READY) { switch(m_state) { case PA_CONTEXT_FAILED: case PA_CONTEXT_TERMINATED: AUD_pa_threaded_mainloop_unlock(m_mainloop); AUD_pa_threaded_mainloop_stop(m_mainloop); AUD_pa_context_disconnect(m_context); AUD_pa_context_unref(m_context); AUD_pa_threaded_mainloop_free(m_mainloop); AUD_THROW(DeviceException, "Could not connect to PulseAudio."); break; default: AUD_pa_threaded_mainloop_wait(m_mainloop); break; } } if(specs.channels == CHANNELS_INVALID) specs.channels = CHANNELS_STEREO; if(specs.format == FORMAT_INVALID) specs.format = FORMAT_FLOAT32; if(specs.rate == RATE_INVALID) specs.rate = RATE_48000; m_specs = specs; pa_sample_spec sample_spec; sample_spec.channels = specs.channels; sample_spec.format = PA_SAMPLE_FLOAT32; sample_spec.rate = specs.rate; switch(m_specs.format) { case FORMAT_U8: sample_spec.format = PA_SAMPLE_U8; break; case FORMAT_S16: sample_spec.format = PA_SAMPLE_S16NE; break; case FORMAT_S24: sample_spec.format = PA_SAMPLE_S24NE; break; case FORMAT_S32: sample_spec.format = PA_SAMPLE_S32NE; break; case FORMAT_FLOAT32: sample_spec.format = PA_SAMPLE_FLOAT32; break; case FORMAT_FLOAT64: m_specs.format = FORMAT_FLOAT32; break; default: break; } m_stream = AUD_pa_stream_new(m_context, "Playback", &sample_spec, nullptr); if(!m_stream) { AUD_pa_threaded_mainloop_unlock(m_mainloop); AUD_pa_threaded_mainloop_stop(m_mainloop); AUD_pa_context_disconnect(m_context); AUD_pa_context_unref(m_context); AUD_pa_threaded_mainloop_free(m_mainloop); AUD_THROW(DeviceException, "Could not create PulseAudio stream."); } AUD_pa_stream_set_write_callback(m_stream, PulseAudio_request, this); buffersize *= AUD_DEVICE_SAMPLE_SIZE(m_specs); m_buffersize = buffersize; pa_buffer_attr buffer_attr; buffer_attr.fragsize = -1U; buffer_attr.maxlength = -1U; buffer_attr.minreq = -1U; buffer_attr.prebuf = -1U; buffer_attr.tlength = buffersize; m_ring_buffer.resize(buffersize); if(AUD_pa_stream_connect_playback(m_stream, nullptr, &buffer_attr, static_cast(PA_STREAM_INTERPOLATE_TIMING | PA_STREAM_ADJUST_LATENCY | PA_STREAM_AUTO_TIMING_UPDATE), nullptr, nullptr) < 0) { AUD_pa_threaded_mainloop_unlock(m_mainloop); AUD_pa_threaded_mainloop_stop(m_mainloop); AUD_pa_context_disconnect(m_context); AUD_pa_context_unref(m_context); AUD_pa_threaded_mainloop_free(m_mainloop); AUD_THROW(DeviceException, "Could not connect PulseAudio stream."); } AUD_pa_threaded_mainloop_unlock(m_mainloop); create(); m_mixingThread = std::thread(&PulseAudioDevice::updateRingBuffer, this); } PulseAudioDevice::~PulseAudioDevice() { m_valid = false; m_mixingLock.lock(); m_mixingCondition.notify_all(); m_mixingLock.unlock(); m_mixingThread.join(); AUD_pa_threaded_mainloop_stop(m_mainloop); AUD_pa_context_disconnect(m_context); AUD_pa_context_unref(m_context); AUD_pa_threaded_mainloop_free(m_mainloop); destroy(); } ISynchronizer *PulseAudioDevice::getSynchronizer() { return &m_synchronizer; } class PulseAudioDeviceFactory : public IDeviceFactory { private: DeviceSpecs m_specs; int m_buffersize; std::string m_name; public: PulseAudioDeviceFactory() : m_buffersize(AUD_DEFAULT_BUFFER_SIZE), m_name("Audaspace") { m_specs.format = FORMAT_FLOAT32; m_specs.channels = CHANNELS_STEREO; m_specs.rate = RATE_48000; } virtual std::shared_ptr openDevice() { return std::shared_ptr(new PulseAudioDevice(m_name, m_specs, m_buffersize)); } virtual int getPriority() { return 1 << 15; } virtual void setSpecs(DeviceSpecs specs) { m_specs = specs; } virtual void setBufferSize(int buffersize) { m_buffersize = buffersize; } virtual void setName(std::string name) { m_name = name; } }; void PulseAudioDevice::registerPlugin() { if(loadPulseAudio()) DeviceManager::registerDevice("PulseAudio", std::shared_ptr(new PulseAudioDeviceFactory)); } #ifdef PULSEAUDIO_PLUGIN extern "C" AUD_PLUGIN_API void registerPlugin() { PulseAudioDevice::registerPlugin(); } extern "C" AUD_PLUGIN_API const char* getName() { return "PulseAudio"; } #endif AUD_NAMESPACE_END