/******************************************************************************* * Copyright 2009-2016 Jörg Müller * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************/ #include "devices/SoftwareDevice.h" #include "fx/PitchReader.h" #include "respec/ChannelMapperReader.h" #include "respec/JOSResampleReader.h" #include "respec/LinearResampleReader.h" #include "respec/Mixer.h" #include "Exception.h" #include "ISound.h" #include #include #include #include #include #include AUD_NAMESPACE_BEGIN enum RenderFlags { RENDER_DISTANCE = 0x01, RENDER_DOPPLER = 0x02, RENDER_CONE = 0x04, RENDER_VOLUME = 0x08 }; #define PITCH_MAX 10 /******************************************************************************/ /********************** SoftwareHandle Handle Code ************************/ /******************************************************************************/ bool SoftwareDevice::SoftwareHandle::pause(bool keep) { if(m_status) { std::lock_guard lock(*m_device); if(m_status == STATUS_PLAYING) { for(auto it = m_device->m_playingSounds.begin(); it != m_device->m_playingSounds.end(); it++) { if(it->get() == this) { std::shared_ptr This = *it; m_device->m_playingSounds.erase(it); m_device->m_pausedSounds.push_back(This); if(m_device->m_playingSounds.empty()) m_device->playing(m_device->m_playback = false); m_status = keep ? STATUS_STOPPED : STATUS_PAUSED; return true; } } } } return false; } SoftwareDevice::SoftwareHandle::SoftwareHandle(SoftwareDevice* device, std::shared_ptr reader, std::shared_ptr pitch, std::shared_ptr resampler, std::shared_ptr mapper, bool keep) : m_reader(reader), m_pitch(pitch), m_resampler(resampler), m_mapper(mapper), m_first_reading(true), m_keep(keep), m_user_pitch(1.0f), m_user_volume(1.0f), m_user_pan(0.0f), m_volume(0.0f), m_old_volume(0.0f), m_loopcount(0), m_relative(true), m_volume_max(1.0f), m_volume_min(0), m_distance_max(std::numeric_limits::max()), m_distance_reference(1.0f), m_attenuation(1.0f), m_cone_angle_outer(M_PI), m_cone_angle_inner(M_PI), m_cone_volume_outer(0), m_flags(RENDER_CONE), m_stop(nullptr), m_stop_data(nullptr), m_status(STATUS_PLAYING), m_device(device) { } void SoftwareDevice::SoftwareHandle::update() { int flags = 0; m_old_volume = m_volume; Vector3 SL; if(m_relative) SL = -m_location; else SL = m_device->m_location - m_location; float distance = SL * SL; if(distance > 0) distance = sqrt(distance); else flags |= RENDER_DOPPLER | RENDER_DISTANCE; if(m_pitch->getSpecs().channels != CHANNELS_MONO) { m_volume = m_user_volume; // we don't know a previous volume if this source has never been read before if(m_first_reading) { m_old_volume = m_volume; m_first_reading = false; } m_pitch->setPitch(m_user_pitch); return; } flags = ~(flags | m_flags | m_device->m_flags); // Doppler and Pitch if(flags & RENDER_DOPPLER) { float vls; if(m_relative) vls = 0; else vls = SL * m_device->m_velocity / distance; float vss = SL * m_velocity / distance; float max = m_device->m_speed_of_sound / m_device->m_doppler_factor; if(vss >= max) { m_pitch->setPitch(PITCH_MAX); } else { if(vls > max) vls = max; m_pitch->setPitch((m_device->m_speed_of_sound - m_device->m_doppler_factor * vls) / (m_device->m_speed_of_sound - m_device->m_doppler_factor * vss) * m_user_pitch); } } else m_pitch->setPitch(m_user_pitch); if(flags & RENDER_VOLUME) { // Distance if(flags & RENDER_DISTANCE) { if(m_device->m_distance_model == DISTANCE_MODEL_INVERSE_CLAMPED || m_device->m_distance_model == DISTANCE_MODEL_LINEAR_CLAMPED || m_device->m_distance_model == DISTANCE_MODEL_EXPONENT_CLAMPED) { distance = std::max(std::min(m_distance_max, distance), m_distance_reference); } switch(m_device->m_distance_model) { case DISTANCE_MODEL_INVERSE: case DISTANCE_MODEL_INVERSE_CLAMPED: m_volume = m_distance_reference / (m_distance_reference + m_attenuation * (distance - m_distance_reference)); break; case DISTANCE_MODEL_LINEAR: case DISTANCE_MODEL_LINEAR_CLAMPED: { float temp = m_distance_max - m_distance_reference; if(temp == 0) { if(distance > m_distance_reference) m_volume = 0.0f; else m_volume = 1.0f; } else m_volume = 1.0f - m_attenuation * (distance - m_distance_reference) / (m_distance_max - m_distance_reference); break; } case DISTANCE_MODEL_EXPONENT: case DISTANCE_MODEL_EXPONENT_CLAMPED: if(m_distance_reference == 0) m_volume = 0; else m_volume = std::pow(distance / m_distance_reference, -m_attenuation); break; default: m_volume = 1.0f; } } else m_volume = 1.0f; // Cone if(flags & RENDER_CONE) { Vector3 SZ = m_orientation.getLookAt(); float phi = std::acos(float(SZ * SL / (SZ.length() * SL.length()))); float t = (phi - m_cone_angle_inner)/(m_cone_angle_outer - m_cone_angle_inner); if(t > 0) { if(t > 1) m_volume *= m_cone_volume_outer; else m_volume *= 1 + t * (m_cone_volume_outer - 1); } } if(m_volume > m_volume_max) m_volume = m_volume_max; else if(m_volume < m_volume_min) m_volume = m_volume_min; // Volume m_volume *= m_user_volume; } // we don't know a previous volume if this source has never been read before if(m_first_reading) { m_old_volume = m_volume; m_first_reading = false; } // 3D Cue Quaternion orientation; if(!m_relative) orientation = m_device->m_orientation; Vector3 Z = orientation.getLookAt(); Vector3 N = orientation.getUp(); Vector3 A = N * ((SL * N) / (N * N)) - SL; float Asquare = A * A; if(Asquare > 0) { float phi = std::acos(float(Z * A / (Z.length() * std::sqrt(Asquare)))); if(N.cross(Z) * A > 0) phi = -phi; m_mapper->setMonoAngle(phi); } else m_mapper->setMonoAngle(m_relative ? m_user_pan * M_PI / 2.0 : 0); } void SoftwareDevice::SoftwareHandle::setSpecs(Specs specs) { m_mapper->setChannels(specs.channels); m_resampler->setRate(specs.rate); } bool SoftwareDevice::SoftwareHandle::pause() { return pause(false); } bool SoftwareDevice::SoftwareHandle::resume() { if(m_status) { std::lock_guard lock(*m_device); if(m_status == STATUS_PAUSED) { for(auto it = m_device->m_pausedSounds.begin(); it != m_device->m_pausedSounds.end(); it++) { if(it->get() == this) { std::shared_ptr This = *it; m_device->m_pausedSounds.erase(it); m_device->m_playingSounds.push_back(This); if(!m_device->m_playback) m_device->playing(m_device->m_playback = true); m_status = STATUS_PLAYING; return true; } } } } return false; } bool SoftwareDevice::SoftwareHandle::stop() { if(!m_status) return false; std::lock_guard lock(*m_device); if(!m_status) return false; m_status = STATUS_INVALID; for(auto it = m_device->m_playingSounds.begin(); it != m_device->m_playingSounds.end(); it++) { if(it->get() == this) { std::shared_ptr This = *it; m_device->m_playingSounds.erase(it); if(m_device->m_playingSounds.empty()) m_device->playing(m_device->m_playback = false); return true; } } for(auto it = m_device->m_pausedSounds.begin(); it != m_device->m_pausedSounds.end(); it++) { if(it->get() == this) { std::shared_ptr This = *it; m_device->m_pausedSounds.erase(it); return true; } } return false; } bool SoftwareDevice::SoftwareHandle::getKeep() { if(m_status) return m_keep; return false; } bool SoftwareDevice::SoftwareHandle::setKeep(bool keep) { if(!m_status) return false; std::lock_guard lock(*m_device); if(!m_status) return false; m_keep = keep; return true; } bool SoftwareDevice::SoftwareHandle::seek(double position) { if(!m_status) return false; std::lock_guard lock(*m_device); if(!m_status) return false; m_pitch->setPitch(m_user_pitch); m_reader->seek((int)(position * m_reader->getSpecs().rate)); if(m_status == STATUS_STOPPED) m_status = STATUS_PAUSED; return true; } double SoftwareDevice::SoftwareHandle::getPosition() { if(!m_status) return false; std::lock_guard lock(*m_device); if(!m_status) return 0.0f; double position = m_reader->getPosition() / (double)m_device->m_specs.rate; return position; } Status SoftwareDevice::SoftwareHandle::getStatus() { return m_status; } float SoftwareDevice::SoftwareHandle::getVolume() { return m_user_volume; } bool SoftwareDevice::SoftwareHandle::setVolume(float volume) { if(!m_status) return false; m_user_volume = volume; if(volume == 0) { m_old_volume = m_volume = volume; m_flags |= RENDER_VOLUME; } else m_flags &= ~RENDER_VOLUME; return true; } float SoftwareDevice::SoftwareHandle::getPitch() { return m_user_pitch; } bool SoftwareDevice::SoftwareHandle::setPitch(float pitch) { if(!m_status) return false; if(pitch > 0.0f) m_user_pitch = pitch; return true; } int SoftwareDevice::SoftwareHandle::getLoopCount() { if(!m_status) return 0; return m_loopcount; } bool SoftwareDevice::SoftwareHandle::setLoopCount(int count) { if(!m_status) return false; if(m_status == STATUS_STOPPED && (count > m_loopcount || count < 0)) m_status = STATUS_PAUSED; m_loopcount = count; return true; } bool SoftwareDevice::SoftwareHandle::setStopCallback(stopCallback callback, void* data) { if(!m_status) return false; std::lock_guard lock(*m_device); if(!m_status) return false; m_stop = callback; m_stop_data = data; return true; } /******************************************************************************/ /******************** SoftwareHandle 3DHandle Code ************************/ /******************************************************************************/ Vector3 SoftwareDevice::SoftwareHandle::getLocation() { if(!m_status) return Vector3(); return m_location; } bool SoftwareDevice::SoftwareHandle::setLocation(const Vector3& location) { if(!m_status) return false; m_location = location; return true; } Vector3 SoftwareDevice::SoftwareHandle::getVelocity() { if(!m_status) return Vector3(); return m_velocity; } bool SoftwareDevice::SoftwareHandle::setVelocity(const Vector3& velocity) { if(!m_status) return false; m_velocity = velocity; return true; } Quaternion SoftwareDevice::SoftwareHandle::getOrientation() { if(!m_status) return Quaternion(); return m_orientation; } bool SoftwareDevice::SoftwareHandle::setOrientation(const Quaternion& orientation) { if(!m_status) return false; m_orientation = orientation; return true; } bool SoftwareDevice::SoftwareHandle::isRelative() { if(!m_status) return false; return m_relative; } bool SoftwareDevice::SoftwareHandle::setRelative(bool relative) { if(!m_status) return false; m_relative = relative; return true; } float SoftwareDevice::SoftwareHandle::getVolumeMaximum() { if(!m_status) return std::numeric_limits::quiet_NaN(); return m_volume_max; } bool SoftwareDevice::SoftwareHandle::setVolumeMaximum(float volume) { if(!m_status) return false; m_volume_max = volume; return true; } float SoftwareDevice::SoftwareHandle::getVolumeMinimum() { if(!m_status) return std::numeric_limits::quiet_NaN(); return m_volume_min; } bool SoftwareDevice::SoftwareHandle::setVolumeMinimum(float volume) { if(!m_status) return false; m_volume_min = volume; return true; } float SoftwareDevice::SoftwareHandle::getDistanceMaximum() { if(!m_status) return std::numeric_limits::quiet_NaN(); return m_distance_max; } bool SoftwareDevice::SoftwareHandle::setDistanceMaximum(float distance) { if(!m_status) return false; m_distance_max = distance; return true; } float SoftwareDevice::SoftwareHandle::getDistanceReference() { if(!m_status) return std::numeric_limits::quiet_NaN(); return m_distance_reference; } bool SoftwareDevice::SoftwareHandle::setDistanceReference(float distance) { if(!m_status) return false; m_distance_reference = distance; return true; } float SoftwareDevice::SoftwareHandle::getAttenuation() { if(!m_status) return std::numeric_limits::quiet_NaN(); return m_attenuation; } bool SoftwareDevice::SoftwareHandle::setAttenuation(float factor) { if(!m_status) return false; m_attenuation = factor; if(factor == 0) m_flags |= RENDER_DISTANCE; else m_flags &= ~RENDER_DISTANCE; return true; } float SoftwareDevice::SoftwareHandle::getConeAngleOuter() { if(!m_status) return std::numeric_limits::quiet_NaN(); return m_cone_angle_outer * 360.0f / M_PI; } bool SoftwareDevice::SoftwareHandle::setConeAngleOuter(float angle) { if(!m_status) return false; m_cone_angle_outer = angle * M_PI / 360.0f; return true; } float SoftwareDevice::SoftwareHandle::getConeAngleInner() { if(!m_status) return std::numeric_limits::quiet_NaN(); return m_cone_angle_inner * 360.0f / M_PI; } bool SoftwareDevice::SoftwareHandle::setConeAngleInner(float angle) { if(!m_status) return false; if(angle >= 360) m_flags |= RENDER_CONE; else m_flags &= ~RENDER_CONE; m_cone_angle_inner = angle * M_PI / 360.0f; return true; } float SoftwareDevice::SoftwareHandle::getConeVolumeOuter() { if(!m_status) return std::numeric_limits::quiet_NaN(); return m_cone_volume_outer; } bool SoftwareDevice::SoftwareHandle::setConeVolumeOuter(float volume) { if(!m_status) return false; m_cone_volume_outer = volume; return true; } /******************************************************************************/ /**************************** IDevice Code ************************************/ /******************************************************************************/ void SoftwareDevice::create() { m_playback = false; m_volume = 1.0f; m_mixer = std::shared_ptr(new Mixer(m_specs)); m_speed_of_sound = 343.3f; m_doppler_factor = 1.0f; m_distance_model = DISTANCE_MODEL_INVERSE_CLAMPED; m_flags = 0; m_quality = false; } void SoftwareDevice::destroy() { if(m_playback) playing(m_playback = false); while(!m_playingSounds.empty()) m_playingSounds.front()->stop(); while(!m_pausedSounds.empty()) m_pausedSounds.front()->stop(); } void SoftwareDevice::mix(data_t* buffer, int length) { m_buffer.assureSize(length * AUD_SAMPLE_SIZE(m_specs)); std::lock_guard lock(*this); { std::shared_ptr sound; int len; int pos; bool eos; std::list > stopSounds; std::list > pauseSounds; sample_t* buf = m_buffer.getBuffer(); m_mixer->clear(length); // for all sounds for(auto& sound : m_playingSounds) { // get the buffer from the source pos = 0; len = length; eos = false; // update 3D Info sound->update(); try { sound->m_reader->read(len, eos, buf); // in case of looping while(pos + len < length && sound->m_loopcount && eos) { m_mixer->mix(buf, pos, len, sound->m_volume, sound->m_old_volume); sound->m_old_volume = sound->m_volume; pos += len; if(sound->m_loopcount > 0) sound->m_loopcount--; sound->m_reader->seek(0); len = length - pos; sound->m_reader->read(len, eos, buf); // prevent endless loop if(!len) break; } } catch(Exception& e) { len = 0; std::cerr << "Caught exception while reading sound data during playback with software mixing: " << e.getMessage() << std::endl; } m_mixer->mix(buf, pos, len, sound->m_volume, sound->m_old_volume); // in case the end of the sound is reached if(eos && !sound->m_loopcount) { if(sound->m_stop) sound->m_stop(sound->m_stop_data); if(sound->m_keep) pauseSounds.push_back(sound); else stopSounds.push_back(sound); } } // superpose m_mixer->read(buffer, m_volume); // cleanup for(auto& sound : pauseSounds) sound->pause(true); for(auto& sound : stopSounds) sound->stop(); pauseSounds.clear(); stopSounds.clear(); } } void SoftwareDevice::setPanning(IHandle* handle, float pan) { SoftwareDevice::SoftwareHandle* h = dynamic_cast(handle); h->m_user_pan = pan; } void SoftwareDevice::setQuality(bool quality) { m_quality = quality; } void SoftwareDevice::setSpecs(Specs specs) { m_specs.specs = specs; m_mixer->setSpecs(specs); for(auto& sound : m_playingSounds) { sound->setSpecs(specs); } for(auto& sound : m_pausedSounds) { sound->setSpecs(specs); } } void SoftwareDevice::setSpecs(DeviceSpecs specs) { m_specs = specs; m_mixer->setSpecs(specs); for(auto& sound : m_playingSounds) { sound->setSpecs(specs.specs); } for(auto& sound : m_pausedSounds) { sound->setSpecs(specs.specs); } } SoftwareDevice::SoftwareDevice() { } DeviceSpecs SoftwareDevice::getSpecs() const { return m_specs; } std::shared_ptr SoftwareDevice::play(std::shared_ptr reader, bool keep) { // prepare the reader // pitch std::shared_ptr pitch = std::shared_ptr(new PitchReader(reader, 1)); reader = std::shared_ptr(pitch); std::shared_ptr resampler; // resample if(m_quality) resampler = std::shared_ptr(new JOSResampleReader(reader, m_specs.rate)); else resampler = std::shared_ptr(new LinearResampleReader(reader, m_specs.rate)); reader = std::shared_ptr(resampler); // rechannel std::shared_ptr mapper = std::shared_ptr(new ChannelMapperReader(reader, m_specs.channels)); reader = std::shared_ptr(mapper); if(!reader.get()) return std::shared_ptr(); // play sound std::shared_ptr sound = std::shared_ptr(new SoftwareDevice::SoftwareHandle(this, reader, pitch, resampler, mapper, keep)); std::lock_guard lock(*this); m_playingSounds.push_back(sound); if(!m_playback) playing(m_playback = true); return std::shared_ptr(sound); } std::shared_ptr SoftwareDevice::play(std::shared_ptr sound, bool keep) { return play(sound->createReader(), keep); } void SoftwareDevice::stopAll() { std::lock_guard lock(*this); while(!m_playingSounds.empty()) m_playingSounds.front()->stop(); while(!m_pausedSounds.empty()) m_pausedSounds.front()->stop(); } void SoftwareDevice::lock() { m_mutex.lock(); } void SoftwareDevice::unlock() { m_mutex.unlock(); } float SoftwareDevice::getVolume() const { return m_volume; } void SoftwareDevice::setVolume(float volume) { m_volume = volume; } ISynchronizer* SoftwareDevice::getSynchronizer() { return &m_synchronizer; } /******************************************************************************/ /**************************** 3D Device Code **********************************/ /******************************************************************************/ Vector3 SoftwareDevice::getListenerLocation() const { return m_location; } void SoftwareDevice::setListenerLocation(const Vector3& location) { m_location = location; } Vector3 SoftwareDevice::getListenerVelocity() const { return m_velocity; } void SoftwareDevice::setListenerVelocity(const Vector3& velocity) { m_velocity = velocity; } Quaternion SoftwareDevice::getListenerOrientation() const { return m_orientation; } void SoftwareDevice::setListenerOrientation(const Quaternion& orientation) { m_orientation = orientation; } float SoftwareDevice::getSpeedOfSound() const { return m_speed_of_sound; } void SoftwareDevice::setSpeedOfSound(float speed) { m_speed_of_sound = speed; } float SoftwareDevice::getDopplerFactor() const { return m_doppler_factor; } void SoftwareDevice::setDopplerFactor(float factor) { m_doppler_factor = factor; if(factor == 0) m_flags |= RENDER_DOPPLER; else m_flags &= ~RENDER_DOPPLER; } DistanceModel SoftwareDevice::getDistanceModel() const { return m_distance_model; } void SoftwareDevice::setDistanceModel(DistanceModel model) { m_distance_model = model; if(model == DISTANCE_MODEL_INVALID) m_flags |= RENDER_DISTANCE; else m_flags &= ~RENDER_DISTANCE; } AUD_NAMESPACE_END